Mina Bissell: Experiments that point to a new understanding of cancer

103,769 views ใƒป 2012-07-16

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

00:00
Translator: Morton Bast Reviewer: Thu-Huong Ha
0
0
7000
ืžืชืจื’ื: Shlomo Adam ืžื‘ืงืจ: Ido Dekkers
00:15
Now, I don't usually like cartoons,
1
15692
2722
ื‘ื“ืจืš ื›ืœืœ ืื™ื ื ื™ ืื•ื”ื‘ืช ืงืจื™ืงื˜ื•ืจื•ืช
00:18
I don't think many of them are funny,
2
18414
2510
ืจื‘ื•ืช ืžื”ืŸ ืœื ืžืฆื—ื™ืงื•ืช ืื•ืชื™,
00:20
I find them weird. But I love this cartoon from the New Yorker.
3
20924
5223
ื”ืŸ ืžื•ื–ืจื•ืช ื‘ืขื™ื ื™. ืืš ืื ื™ ืื•ื”ื‘ืช ืืช ื”ืงืจื™ืงื˜ื•ืจื” ื”ื–ื• ืžื”"ื ื™ื•-ื™ื•ืจืงืจ"
00:26
(Text: Never, ever think outside the box.) (Laughter)
4
26147
2612
-"ืœืขื•ืœื ืืœ ืชื—ืฉื•ื‘ ืžื—ื•ืฅ ืœืงื•ืคืกื”"- [ืฆื—ื•ืง]
00:28
So, the guy is telling the cat,
5
28759
2469
ื”ืื™ืฉ ืื•ืžืจ ืœื—ืชื•ืœ,
00:31
don't you dare think outside the box.
6
31228
5371
"ืืœ ืชืขื™ื– ืœื—ืฉื•ื‘ ืžื—ื•ืฅ ืœืงื•ืคืกื”."
00:36
Well, I'm afraid I used to be the cat.
7
36599
3307
ืื ื™ ื—ื•ืฉืฉืช ืฉืคืขื ื”ื™ื™ืชื™ ื›ืžื• ื”ื—ืชื•ืœ ื”ื–ื”.
00:39
I always wanted to be outside the box.
8
39906
3058
ืชืžื™ื“ ืจืฆื™ืชื™ ืœื”ื™ื•ืช ืžื—ื•ืฅ ืœืจื™ื‘ื•ืข.
00:42
And it's partly because I came to this field
9
42964
3482
ื—ืœืงื™ืช ืžืคื ื™ ืฉื”ื’ืขืชื™ ืœืชื—ื•ื ื”ื–ื”
00:46
from a different background, chemist and a bacterial geneticist.
10
46446
5213
ืžืจืงืข ืฉื•ื ื”. ื”ื™ื™ืชื™ ื›ื™ืžืื™ืช ื•ื’ื ื˜ื™ืงืื™ืช ืฉืœ ื—ื™ื™ื“ืงื™ื.
00:51
So, what people were saying to me
11
51659
2602
ื•ืžื” ืฉืืžืจื• ืœื™
00:54
about the cause of cancer, sources of cancer,
12
54261
3191
ืขืœ ื”ื’ื•ืจื ืœืกืจื˜ืŸ, ืขืœ ืžืงื•ืจื•ืช ื”ืกืจื˜ืŸ,
00:57
or, for that matter, why you are who you are,
13
57452
3081
ื•ื‘ืื•ืชื• ืขื ื™ื™ืŸ, ืžื“ื•ืข ืืชื ื›ืคื™ ืฉืืชื,
01:00
didn't make sense.
14
60533
1874
ืœื ื ืฉืžืข ืœื™ ื”ื’ื™ื•ื ื™.
01:02
So, let me quickly try and tell you why I thought that
15
62407
3047
ืื ืกื” ืœืกืคืจ ืœื›ื ื‘ืงืฆืจื” ืžื“ื•ืข ื—ืฉื‘ืชื™ ื›ืš
01:05
and how I went about it.
16
65454
2601
ื•ืื™ืš ืคืขืœืชื™ ืœืื•ืจ ื–ืืช.
01:08
So, to begin with, however,
17
68055
2432
ืืš ืจืืฉื™ืช ื›ืœ,
01:10
I have to give you a very, very quick lesson
18
70487
4426
ืขืœื™ ืœืชืช ืœื›ื ืฉื™ืขื•ืจ ืงืฆืจ ืžืื“
01:14
in developmental biology,
19
74913
1767
ื‘ื‘ื™ื•ืœื•ื’ื™ื” ื”ืชืคืชื—ื•ืชื™ืช.
01:16
with apologies to those of you who know some biology.
20
76680
4062
ื•ืื ื™ ืžื‘ืงืฉืช ืกืœื™ื—ื” ืžืžื™ ืฉื™ื•ื“ืขื™ื ืงืฆืช ื‘ื™ื•ืœื•ื’ื™ื”.
01:20
So, when your mom and dad met,
21
80742
3014
ื›ืฉืืžื ื•ืื‘ื ื ืคื’ืฉื•,
01:23
there is a fertilized egg,
22
83756
2674
ื ื•ืฆืจื” ื‘ื™ืฆื™ืช ืžื•ืคืจื™ืช,
01:26
that round thing with that little blip.
23
86430
2121
ื”ื“ื‘ืจ ื”ืขื’ื•ืœ ื”ื–ื” ืขื ื”ื›ืชื ื”ืงื˜ืŸ ืฉื.
01:28
It grows and then it grows,
24
88551
3055
ื”ื™ื ื’ื“ืœื” ื•ื’ื“ืœื”,
01:31
and then it makes this handsome man.
25
91606
4153
ืขื“ ืฉื”ื™ื ื™ื•ืฆืจืช ืืช ื”ื’ื‘ืจ ื”ื ืื” ื”ื–ื”.
01:35
(Applause)
26
95759
1415
[ืžื—ื™ืื•ืช ื›ืคื™ื™ื]
01:37
So, this guy, with all the cells in his body,
27
97174
5658
ื”ื‘ื—ื•ืจ ื”ื–ื”, ื›ืœ ื”ืชืื™ื ืฉื‘ื’ื•ืคื•,
01:42
all have the same genetic information.
28
102832
4212
ื›ื•ืœื ืžื›ื™ืœื™ื ืื•ืชื• ืžื™ื“ืข ื’ื ื˜ื™.
01:47
So how did his nose become his nose, his elbow his elbow,
29
107044
4375
ืฉืงื•ื‘ืข ืื™ืš ื”ืืฃ ืฉืœื• ืื• ื”ืžืจืคืง ืฉืœื• ื ืขืฉื• ื›ืืœื”,
01:51
and why doesn't he get up one morning
30
111419
2176
ื•ืžื“ื•ืข ื”ื•ื ืœื ืงื ื‘ื•ืงืจ ืื—ื“
01:53
and have his nose turn into his foot?
31
113595
2560
ื•ืžื’ืœื” ืฉืืคื• ื”ืคืš ืœื›ืฃ-ืจื’ืœ.
01:56
It could. It has the genetic information.
32
116155
3240
ื–ื” ืืคืฉืจื™. ื–ื” ืื•ืชื• ืžื™ื“ืข ื’ื ื˜ื™.
01:59
You all remember, dolly,
33
119395
1208
ื›ื•ืœื›ื ื–ื•ื›ืจื™ื ืืช ื“ื•ืœื™,
02:00
it came from a single mammary cell.
34
120603
2681
ื”ื™ื ื ื•ืฆืจื” ืžืชื-ืขื˜ื™ืŸ ื‘ื•ื“ื“.
02:03
So, why doesn't it do it?
35
123284
1934
ืื– ืžื“ื•ืข ื–ื” ืœื ืงื•ืจื”?
02:05
So, have a guess of how many cells he has in his body.
36
125218
5503
ื ื—ืฉื• ื›ืžื” ืชืื™ื ื™ืฉ ื‘ื’ื•ืคื•.
02:10
Somewhere between 10 trillion to 70 trillion cells in his body.
37
130721
7402
ืžืฉื”ื• ื‘ื™ืŸ 10 ืœ-70 ื˜ืจื™ืœื™ื•ืŸ ืชืื™ื.
02:18
Trillion!
38
138123
1640
ื˜ืจื™ืœื™ื•ืŸ!
02:19
Now, how did these cells, all with the same genetic material,
39
139763
4638
ื•ืื™ืš ื”ืชืื™ื ื”ืืœื”, ืฉื‘ื›ื•ืœื ื™ืฉ ืื•ืชื• ื—ื•ืžืจ ื’ื ื˜ื™,
02:24
make all those tissues?
40
144401
2208
ื™ืฆืจื• ืืช ื›ืœ ื”ืจืงืžื•ืช ื”ืืœื”?
02:26
And so, the question I raised before
41
146609
3144
ื›ืš ืฉื”ืฉืืœื” ืฉืฉืืœืชื™ ืงื•ื“ื
02:29
becomes even more interesting if you thought about
42
149753
3614
ืžืขื ื™ื™ื ืช ืขื•ื“ ื™ื•ืชืจ ืื ื—ื•ืฉื‘ื™ื
02:33
the enormity of this in every one of your bodies.
43
153367
4586
ืขืœ ื”ื›ืžื•ืช ื”ืขืฆื•ืžื” ื”ื–ื• ื‘ื’ื•ืฃ ืฉืœ ื›ืœ ืื—ื“ ืžื›ื.
02:37
Now, the dominant cancer theory would say
44
157953
3000
ืชื™ืื•ืจื™ื™ืช ื”ืกืจื˜ืŸ ื”ืจื•ื•ื—ืช ืงื•ื‘ืขืช
02:40
that there is a single oncogene
45
160953
2312
ืฉื™ืฉ ืื•ื ืงื•ื’ืŸ (ื’ืŸ ืกืจื˜ื ื™) ื™ื—ื™ื“
02:43
in a single cancer cell, and it would make you
46
163265
3704
ื‘ืชื ืกืจื˜ื ื™ ื™ื—ื™ื“ ื•ื”ื•ื ืฉื™ื”ืคื•ืš ืืชื›ื
02:46
a cancer victim.
47
166969
2649
ืงื•ืจื‘ืŸ ืœืกืจื˜ืŸ.
02:49
Well, this did not make sense to me.
48
169618
3666
ื•ื‘ื›ืŸ, ื–ื” ืœื ื ืฉืžืข ืœื™ ื”ื’ื™ื•ื ื™.
02:53
Do you even know how a trillion looks?
49
173284
3182
ื”ืื ืืชื ื‘ื›ืœืœ ื™ื•ื“ืขื™ื ืื™ืš ื ืจืื” ื˜ืจื™ืœื™ื•ืŸ?
02:56
Now, let's look at it.
50
176466
1719
ื”ื‘ื” ื•ื ืจืื” ืืช ื–ื”.
02:58
There it comes, these zeroes after zeroes after zeroes.
51
178185
5041
ื”ื ื” ื–ื” ื‘ื. ืืคืกื™ื ืื—ืจื™ ืืคืกื™ื ืื—ืจื™ ืืคืกื™ื.
03:03
Now, if .0001 of these cells got mutated,
52
183226
6818
ืื ืจืง 0.0001 ืžื›ืœ ื”ืชืื™ื ื”ืืœื” ื™ืขื‘ืจื• ืžื•ื˜ืฆื™ื”,
03:10
and .00001 got cancer, you will be a lump of cancer.
53
190044
5257
ื•ืจืง 0.0001 ื™ื™ืขืฉื• ืกืจื˜ื ื™ื™ื, ืชื”ืคื›ื• ืœื’ื•ืฉ ืกืจื˜ื ื™.
03:15
You will have cancer all over you. And you're not.
54
195301
2296
ื™ื”ื™ื” ืœื›ื ืกืจื˜ืŸ ื‘ื›ืœ ื”ื’ื•ืฃ. ื•ื–ื” ืœื ืงื•ืจื”.
03:17
Why not?
55
197597
2309
ืžื“ื•ืข ืœื?
03:19
So, I decided over the years,
56
199906
3722
ืื– ืขื ื”ืฉื ื™ื ื”ื—ืœื˜ืชื™,
03:23
because of a series of experiments
57
203628
1928
ื‘ืขืงื‘ื•ืช ืกื“ืจืช ื ื™ืกื•ื™ื™ื
03:25
that this is because of context and architecture.
58
205556
4880
ืฉื–ื” ืชืœื•ื™ ื‘ื”ืงืฉืจ ื•ื‘ืžื‘ื ื”.
03:30
And let me quickly tell you
59
210436
2177
ืืกืคืจ ืœื›ื ื‘ืงืฆืจื”
03:32
some crucial experiment that was able to actually show this.
60
212613
3927
ืขืœ ื›ืžื” ื ื™ืกื•ื™ื™ื ืžื›ืจื™ืขื™ื ืฉื”ืฆืœื™ื—ื• ืœื”ื•ื›ื™ื— ื–ืืช.
03:36
To begin with, I came to work with this virus
61
216540
3911
ืชื—ื™ืœื”, ืขื‘ื“ืชื™ ืขื ื”ื ื’ื™ืฃ
03:40
that causes that ugly tumor in the chicken.
62
220451
3393
ืฉื’ื•ืจื ืœื’ื™ื“ื•ืœ ื”ืžื›ื•ืขืจ ื”ื–ื” ืืฆืœ ืชืจื ื’ื•ืœื•ืช.
03:43
Rous discovered this in 1911.
63
223844
3360
ืจืื•ืก ื’ื™ืœื” ืื•ืชื• ื‘-1911.
03:47
It was the first cancer virus discovered,
64
227204
3565
ื–ื” ื”ื™ื” ื ื’ื™ืฃ ื”ืกืจื˜ืŸ ื”ืจืืฉื•ืŸ ืฉื ืชื’ืœื”,
03:50
and when I call it "oncogene," meaning "cancer gene."
65
230769
4891
ื•ื›ืฉืื ื™ ืžื›ื ื” ืื•ืชื• "ืื•ื ืงื•ื’ืŸ", ื”ืคื™ืจื•ืฉ ื”ื•ื "ื’ืŸ ืกืจื˜ื ื™".
03:55
So, he made a filtrate, he took this filter
66
235660
2912
ื”ื•ื ื”ื›ื™ืŸ ืชืกื ื™ืŸ, ืœืงื— ืืช ื”ืชืกื ื™ืŸ ื”ื–ื”,
03:58
which was the liquid after he passed the tumor through a filter,
67
238572
4256
ืฉื”ื™ื” ื”ื ื•ื–ืœ ืฉื ื•ืชืจ ืื—ืจื™ ืฉื”ืขื‘ื™ืจ ืืช ื”ื’ื™ื“ื•ืœ ื‘ืžืกื ืŸ,
04:02
and he injected it to another chicken, and he got another tumor.
68
242828
4001
ื”ื–ืจื™ืง ืืช ื–ื” ืœืขื•ืฃ ืื—ืจ, ื•ืงื™ื‘ืœ ื’ื™ื“ื•ืœ ื ื•ืกืฃ.
04:06
So, scientists were very excited,
69
246829
2711
ื”ืžื“ืขื ื™ื ื”ืชืจื’ืฉื• ืžืื“,
04:09
and they said, a single oncogene can do it.
70
249540
2168
ื•ืืžืจื• ืฉืื•ื ืงื•ื’ืŸ ืื—ื“ ืžืกื•ื’ืœ ืœืขืฉื•ืช ืืช ื–ื”.
04:11
All you need is a single oncogene.
71
251708
2296
ื“ืจื•ืฉ ืจืง ืื•ื ืงื•ื’ืŸ ื‘ื•ื“ื“.
04:14
So, they put the cells in cultures, chicken cells,
72
254004
2895
ื”ื ื”ื ื™ื—ื• ืืช ื”ืชืื™ื ื‘ืชืจื‘ื™ื•ืช, ืืช ืชืื™ ื”ืชืจื ื’ื•ืœืช,
04:16
dumped the virus on it,
73
256899
2035
ืฉืคื›ื• ืขืœ ื–ื” ืืช ื”ื ื’ื™ืฃ,
04:18
and it would pile up,
74
258934
1449
ื•ื–ื” ื”ืชื’ื‘ืฉ,
04:20
and they would say, this is malignant and this is normal.
75
260383
3021
ื•ื”ื ืืžืจื•, ื–ื” ืžืžืื™ืจ ื•ื–ื” ื‘ืจื™ื.
04:23
And again this didn't make sense to me.
76
263404
2018
ื•ืฉื•ื‘ ื–ื” ืœื ื ืฉืžืข ืœื™ ื”ื’ื™ื•ื ื™.
04:25
So for various reasons, we took this oncogene,
77
265422
3286
ืื ื›ืŸ, ืžื›ืœ ืžื™ื ื™ ืกื™ื‘ื•ืช ืœืงื—ื ื• ืืช ื”ืื•ื ืงื•ื’ืŸ ื”ื–ื”
04:28
attached it to a blue marker,
78
268708
2312
ื”ืฆืžื“ื ื• ืื•ืชื• ืœืฆื•ื‘ืขืŸ ื›ื—ื•ืœ
04:31
and we injected it into the embryos.
79
271020
3008
ื•ื”ื–ืจืงื ื• ืื•ืชื• ืœืขื•ื‘ืจื™ื.
04:34
Now look at that. There is that beautiful feather in the embryo.
80
274028
4193
ื›ืขืช ื”ื‘ื™ื˜ื• ื‘ื ื•ืฆื” ื”ื™ืคื”ืคื™ื” ื”ื–ื• ืฉืœ ื”ืขื•ื‘ืจ .
04:38
Every one of those blue cells are a cancer gene
81
278221
4279
ื›ืœ ืื—ืช ืžื”ื ืงื•ื“ื•ืช ื”ื›ื—ื•ืœื•ืช ื”ืืœื” ื”ื™ื ื’ืŸ ืกืจื˜ื ื™.
04:42
inside a cancer cell, and they're part of the feather.
82
282500
4416
ื‘ืชื•ืš ืชื ืกืจื˜ื ื™, ื•ื”ื ื—ืœืง ืžื”ื ื•ืฆื”.
04:46
So, when we dissociated the feather and put it in a dish,
83
286916
4600
ื•ื›ืฉื”ืคืจื“ื ื• ืืช ื”ื ื•ืฆื” ื•ืฉืžื ื• ืื•ืชื” ื‘ืฆืœื•ื—ื™ืช,
04:51
we got a mass of blue cells.
84
291516
2712
ืงื™ื‘ืœื ื• ืžืกื” ืฉืœ ืชืื™ื ื›ื—ื•ืœื™ื.
04:54
So, in the chicken you get a tumor,
85
294228
1466
ืื– ื‘ืชืจื ื’ื•ืœืช ื™ืฉ ื’ื™ื“ื•ืœ,
04:55
in the embryo you don't,
86
295694
1704
ื‘ืขื•ื‘ืจ ืœื,
04:57
you dissociate, you put it in a dish, you get another tumor.
87
297398
3992
ืžืคืจื™ื“ื™ื, ืฉืžื™ื ื‘ืฆืœื•ื—ื™ืช, ื•ืžืงื‘ืœื™ื ื’ื™ื“ื•ืœ ื ื•ืกืฃ.
05:01
What does that mean?
88
301390
1223
ืžื” ื”ืžืฉืžืขื•ืช ืฉืœ ื–ื”?
05:02
That means that microenvironment
89
302613
2984
ื”ืžืฉืžืขื•ืช ื”ื™ื ืฉื”ืžื™ืงืจื•-ืกื‘ื™ื‘ื”
05:05
and the context which surrounds those cells
90
305597
4009
ื•ื”ื”ืงืฉืจ ืฉืกื‘ื™ื‘ ืชืื™ื ืืœื”
05:09
actually are telling the cancer gene and the cancer cell what to do.
91
309606
6927
ื”ื ื‘ืขืฆื ืืœื” ืฉืื•ืžืจื™ื ืœื’ืŸ ื”ืกืจื˜ื ื™ ื•ืœืชื ื”ืกืจื˜ื ื™ ืžื” ืœืขืฉื•ืช.
05:16
Now, let's take a normal example.
92
316533
3312
ื ื™ืงื— ื“ื•ื’ืžื” ื‘ืจื™ืื”.
05:19
The normal example, let's take the human mammary gland.
93
319845
3185
ื›ื“ื•ื’ืžื” ื‘ืจื™ืื”, ื ื™ืงื— ืืช ื‘ืœื•ื˜ืช ื”ื—ืœื‘ ื”ืื ื•ืฉื™ืช.
05:23
I work on breast cancer.
94
323030
1480
ืื ื™ ืขื•ื‘ื“ืช ื‘ืชื—ื•ื ืกืจื˜ืŸ ื”ืฉื“.
05:24
So, here is a lovely human breast.
95
324510
3007
ื”ื ื” ืฉื“ ืื ื•ืฉื™ ื™ืคื”.
05:27
And many of you know how it looks,
96
327517
1948
ืจื‘ื™ื ืžื›ื ื™ื•ื“ืขื™ื ืื™ืš ื”ื•ื ื ืจืื”.
05:29
except that inside that breast, there are all these
97
329465
2853
ืื‘ืœ ื‘ืชื•ืš ื”ืฉื“ ื™ืฉื ื ื›ืœ ืืœื”:
05:32
pretty, developing, tree-like structures.
98
332318
3377
ืžื‘ื ื™ื ื ืื™ื, ืžืชืคืชื—ื™ื, ื“ืžื•ื™ื™-ืขืฅ.
05:35
So, we decided that what we like to do
99
335695
2898
ืื– ื”ื—ืœื˜ื ื•
05:38
is take just a bit of that mammary gland,
100
338593
2960
ืœืงื—ืช ืžื‘ืœื•ื˜ืช ื”ื—ืœื‘ ื”ื–ื•
05:41
which is called an "acinus,"
101
341553
2032
ืžืฉื”ื• ืฉืงืจื•ื™ "ืื•ื ื™ืช",
05:43
where there are all these little things inside the breast
102
343585
3641
ื›ืœ ื”ื“ื‘ืจื™ื ื”ืงื˜ื ื™ื ื”ืืœื” ืฉื ืžืฆืื™ื ื‘ืชื•ืš ื”ืฉื“
05:47
where the milk goes, and the end of the nipple
103
347226
3543
ืฉื‘ื”ื ื ื•ืฆืจ ื”ื—ืœื‘, ื•ืงืฆื” ื”ืคื™ื˜ืžื”,
05:50
comes through that little tube when the baby sucks.
104
350769
3544
ื•ืขื•ื‘ืจ ื“ืจืš ื”ืฆื™ื ื•ืจื™ืช ื”ืงื˜ื ื” ืฉืžืžื ื” ื™ื•ื ืง ื”ืชื™ื ื•ืง.
05:54
And we said, wonderful! Look at this pretty structure.
105
354313
3407
ื•ืืžืจื ื•, ืžืฆื•ื™ืŸ. ื”ื‘ื™ื˜ื• ื‘ืžื‘ื ื” ื”ื™ืคื” ื”ื–ื”.
05:57
We want to make this a structure, and ask the question,
106
357720
3769
ืจืฆื™ื ื• ืœื™ืฆื•ืจ ืืช ื–ื” ื›ืžื‘ื ื” ื•ืœื‘ื—ื•ืŸ,
06:01
how do the cells do that?
107
361489
1704
ืื™ืš ื”ืชืื™ื ืขื•ืฉื™ื ื–ืืช?
06:03
So, we took the red cells --
108
363193
1792
ืื– ืœืงื—ื ื• ืืช ื”ืชืื™ื ื”ืื“ื•ืžื™ื--
06:04
you see the red cells are surrounded by blue,
109
364985
3248
ืืชื ืจื•ืื™ื ืฉื”ืชืื™ื ื”ืื“ื•ืžื™ื ืžื•ืงืคื™ื ื‘ืชืื™ื ื›ื—ื•ืœื™ื,
06:08
other cells that squeeze them, and behind it
110
368233
3329
ืชืื™ื ืื—ืจื™ื ืฉืžื•ื—ืฆื™ื ืื•ืชื, ื•ืžืื—ื•ืจื™ื”ื
06:11
is material that people thought was mainly inert,
111
371562
3718
ื™ืฉื ื• ื—ื•ืžืจ ืฉื‘ืขื‘ืจ ื ื—ืฉื‘ ื‘ืขื™ืงืจื• ืœืื“ื™ืฉ,
06:15
and it was just having a structure to keep the shape,
112
375280
3597
ื•ื”ื•ื ืจืง ื—ื•ืžืจ ืžื‘ื ื™ ืฉื ื•ืขื“ ืœืฉืžื•ืจ ืขืœ ื”ืฆื•ืจื”.
06:18
and so we first photographed it
113
378877
2928
ืื– ืชื—ื™ืœื” ืฆื™ืœืžื ื• ืืช ื–ื”
06:21
with the electron microscope years and years ago,
114
381805
2768
ื‘ืžื™ืงืจื•ืกืงื•ืค ืืœืงื˜ืจื•ื ื™, ืœืคื ื™ ืฉื ื™ื ืจื‘ื•ืช,
06:24
and you see this cell is actually quite pretty.
115
384573
3056
ื•ืืชื ืจื•ืื™ื ืฉื”ืชื ื”ื–ื” ื™ืคื” ืœืžื“ื™,
06:27
It has a bottom, it has a top,
116
387629
2463
ื™ืฉ ืœื• ืชื—ืชื™ืช, ื™ืฉ ืœื• ื—ืœืง ืขืœื™ื•ืŸ,
06:30
it is secreting gobs and gobs of milk,
117
390092
2681
ื”ื•ื ืžืคืจื™ืฉ ื›ืžื•ื™ื•ืช ืฉืœ ื—ืœื‘,
06:32
because it just came from an early pregnant mouse.
118
392773
3192
ื›ื™ ื”ื•ื ื ืœืงื— ื–ื” ืขืชื” ืžืขื›ื‘ืจื” ื‘ืชื—ื™ืœืช ื”ื”ืจื™ื•ืŸ.
06:35
You take these cells, you put them in a dish,
119
395965
2327
ืœื•ืงื—ื™ื ืืช ื”ืชืื™ื ื”ืืœื”, ืฉืžื™ื ืื•ืชื ื‘ืฆืœื•ื—ื™ืช,
06:38
and within three days, they look like that.
120
398292
3345
ื•ืชื•ืš 3 ื™ืžื™ื ื–ื” ื ืจืื” ื›ื›ื”.
06:41
They completely forget.
121
401637
3160
ื”ื ืฉื•ื›ื—ื™ื ื”ื›ืœ.
06:44
So you take them out, you put them in a dish,
122
404797
2800
ืื– ืื ืžื•ืฆื™ืื™ื ื•ืžื ื™ื—ื™ื ืื•ืชื ื‘ืฆืœื•ื—ื™ืช,
06:47
they don't make milk. They completely forget.
123
407597
2663
ื”ื ืœื ืžื™ื™ืฆืจื™ื ื—ืœื‘. ื”ื ืฉื•ื›ื—ื™ื ื–ืืช ืœื’ืžืจื™.
06:50
For example, here is a lovely yellow droplet of milk
124
410260
4899
ืœืžืฉืœ, ื”ื ื” ื˜ื™ืคื” ืฆื”ื•ื‘ื” ื•ื™ืคื” ืฉืœ ื—ืœื‘
06:55
on the left, there is nothing on the right.
125
415159
2255
ื‘ืฆื“ ืฉืžืืœ. ื‘ืฆื“ ื™ืžื™ืŸ ืื™ืŸ ื›ืœื•ื.
06:57
Look at the nuclei. The nuclei in the cell on the left
126
417414
3729
ื”ื‘ื™ื˜ื• ื‘ื’ืจืขื™ื ื™ ื”ืชื. ื’ืจืขื™ืŸ ื”ืชื ืฉืžืฉืžืืœ
07:01
is in the animal, the one on the right is in a dish.
127
421143
3496
ื ืžืฆื ื‘ื—ื™ื”, ื•ื–ื” ืฉืžื™ืžื™ืŸ ื ืžืฆื ื‘ืฆืœื•ื—ื™ืช.
07:04
They are completely different from each other.
128
424639
2736
ื”ื ืฉื•ื ื™ื ืœื’ืžืจื™ ื–ื” ืžื–ื”.
07:07
So, what does this tell you?
129
427375
2025
ืžื” ื–ื” ืื•ืžืจ ืœื›ื?
07:09
This tells you that here also, context overrides.
130
429400
4967
ื–ื” ืื•ืžืจ ืฉื’ื ื›ืืŸ ื”ื”ืงืฉืจ ื”ื•ื ืฉืงื•ื‘ืข.
07:14
In different contexts, cells do different things.
131
434367
3385
ื‘ื”ืงืฉืจื™ื ืฉื•ื ื™ื, ืชืื™ื ืขื•ืฉื™ื ื“ื‘ืจื™ื ืฉื•ื ื™ื.
07:17
But how does context signal?
132
437752
2745
ืื‘ืœ ืื™ืš ื”ื”ืงืฉืจ ืžืื•ืชืช?
07:20
So, Einstein said that
133
440497
2542
ืื™ื™ื ืฉื˜ื™ื™ืŸ ืืžืจ,
07:23
"For an idea that does not first seem insane, there is no hope."
134
443039
6653
"ืื™ืŸ ืชืงื•ื•ื” ืœืจืขื™ื•ืŸ ืฉืœื ื ืจืื” ืขืœ ืคื ื™ื• ืœื-ืฉืคื•ื™."
07:29
So, you can imagine the amount of skepticism
135
449692
5960
ืื– ืืชื ื™ื›ื•ืœื™ื ืœื“ืžื™ื™ืŸ ืืช ืžื™ื“ืช ื”ืกืคืงื ื•ืช
07:35
I received -- couldn't get money,
136
455652
2401
ืฉื‘ื” ื ืชืงืœืชื™-- ืœื ื™ื›ื•ืœืชื™ ืœื’ื™ื™ืก ื›ืกืคื™ื,
07:38
couldn't do a whole lot of other things,
137
458053
1943
ืœื ื™ื›ื•ืœืชื™ ืœืขืฉื•ืช ื”ืจื‘ื” ื“ื‘ืจื™ื ืื—ืจื™ื,
07:39
but I'm so glad it all worked out.
138
459996
1729
ืื‘ืœ ืื ื™ ื›ืœ-ื›ืš ืฉืžื—ื” ืฉื”ื›ืœ ื”ืฆืœื™ื—.
07:41
So, we made a section of the mammary gland of the mouse,
139
461725
3815
ืขืฉื™ื ื• ื—ื™ืชื•ืš ืฉืœ ื‘ืœื•ื˜ืช ื”ื—ืœื‘ ืฉืœ ื”ืขื›ื‘ืจื”,
07:45
and all those lovely acini are there,
140
465540
3183
ื•ื”ื™ื• ืฉื ื›ืœ ื”ืื•ื ื™ื•ืช ื”ื™ืคื•ืช ื”ืืœื”
07:48
every one of those with the red around them are an acinus,
141
468723
4211
ื›ืœ ืื—ืช ืžืืœื•, ืขื ืื“ื•ื ืžืกื‘ื™ื‘, ื”ื™ื ืื•ื ื™ืช,
07:52
and we said okay, we are going to try and make this,
142
472934
3694
ื•ืืžืจื ื•, ื‘ืกื“ืจ, ื ื ืกื” ืœืขืฉื•ืช ื–ืืช,
07:56
and I said, maybe that red stuff
143
476628
3232
ื•ืื ื™ ืืžืจืชื™, ืื•ืœื™ ื”ื—ื•ืžืจ ื”ืื“ื•ื
07:59
around the acinus that people think there's just a structural scaffold,
144
479860
5125
ืกื‘ื™ื‘ ื”ืื•ื ื™ืช, ืฉื ื—ืฉื‘ ืงื•ื“ื ืœืคื™ื’ื•ื,
08:04
maybe it has information,
145
484985
1940
ืื•ืœื™ ื”ื•ื ืžื›ื™ืœ ืžื™ื“ืข,
08:06
maybe it tells the cells what to do, maybe it tells the nucleus what to do.
146
486925
4566
ืื•ืœื™ ื”ื•ื ืื•ืžืจ ืœืชืื™ื, ืœื’ืจืขื™ืŸ, ืžื” ืœืขืฉื•ืช.
08:11
So I said, extracellular matrix, which is this stuff
147
491491
4283
ืืžืจืชื™ ืฉื”ืžื˜ืจื™ืฆื” ื—ื•ืฅ-ืชืื™ืช, ืฉื–ื” ื”ื—ื•ืžืจ ื”ื–ื”,
08:15
called ECM, signals and actually tells the cells what to do.
148
495774
4391
ืžืื•ืชืชืช ื•ื‘ืขืฆื ืื•ืžืจืช ืœืชืื™ื ืžื” ืœืขืฉื•ืช.
08:20
So, we decided to make things that would look like that.
149
500165
3767
ื”ื—ืœื˜ื ื• ืœืขืฉื•ืช ื“ื‘ืจื™ื ืฉื™ื™ืจืื• ื›ืš.
08:23
We found some gooey material
150
503932
2880
ืžืฆืื ื• ื—ื•ืžืจ ื“ื‘ื™ืง ืžืกื•ื™ื
08:26
that had the right extracellular matrix in it,
151
506812
2875
ื‘ืขืœ ืžื˜ืจื™ืฆื” ื—ื•ืฅ-ืชืื™ืช ืžืชืื™ืžื”,
08:29
we put the cells in it, and lo and behold,
152
509687
2539
ืฉืžื ื• ื‘ื• ืืช ื”ืชืื™ื, ื•ื”ืคืœื ื•ืคืœื,
08:32
in about four days, they got reorganized
153
512226
2821
ืชื•ืš 4 ื™ืžื™ื ื”ื ื”ืชืืจื’ื ื• ืžื—ื“ืฉ
08:35
and on the right, is what we can make in culture.
154
515047
3408
ื•ื‘ืฆื“ ื™ืžื™ืŸ, ื–ื” ืžื” ืฉืขืฉื™ื ื• ื‘ืชืจื‘ื™ืช,
08:38
On the left is what's inside the animal, we call it in vivo,
155
518455
4496
ื•ืžืฉืžืืœ ื–ื” ื‘ืชื•ืš ื”ื—ื™ื”, ื‘ื’ื•ืฃ ื”ื—ื™.
08:42
and the one in culture was full of milk,
156
522951
2584
ื•ืžื” ืฉื‘ืชืจื‘ื™ืช ื”ื™ื” ืžืœื ื—ืœื‘.
08:45
the lovely red there is full of milk.
157
525535
2800
ื”ืื“ื•ื ื”ื™ืคื” ื”ื–ื” ืฉื ืžืœื ื—ืœื‘.
08:48
So, we Got Milk, for the American audience.
158
528335
3416
ืื– "ื™ืฉ ื—ืœื‘", ืขื‘ื•ืจ ื”ืืžืจื™ืงืื™ื ืฉื‘ื™ื ื™ื›ื.
08:51
All right. And here is this beautiful human cell,
159
531751
5344
ื‘ืกื“ืจ. ื”ื ื” ื”ืชื ื”ืื ื•ืฉื™ ื”ื™ืคื” ื”ื–ื”,
08:57
and you can imagine that here also, context goes.
160
537095
4946
ื•ืืชื ื•ื“ืื™ ืžืชืืจื™ื ืœืขืฆืžื›ื ืฉื’ื ื›ืืŸ ื”ื”ืงืฉืจ ืงื•ื‘ืข.
09:02
So, what do we do now?
161
542041
2716
ืื– ืžื” ืขื•ืฉื™ื ื›ืขืช?
09:04
I made a radical hypothesis.
162
544757
2224
ื”ื ื—ืชื™ ื”ื ื—ื” ืงื™ืฆื•ื ื™ืช.
09:06
I said, if it's true that architecture is dominant,
163
546981
6663
ืื ื ื›ื•ืŸ ืฉื”ืืจื›ื™ื˜ืงื˜ื•ืจื” ื”ื™ื ื”ื“ื•ืžื™ื ื ื˜ื™ืช,
09:13
architecture restored to a cancer cell
164
553644
4486
ืื– ืฉื™ืงื•ื ื”ืืจื›ื™ื˜ืงื˜ื•ืจื” ืขื‘ื•ืจ ื”ืชื ื”ืกืจื˜ื ื™
09:18
should make the cancer cell think it's normal.
165
558130
2989
ืฆืจื™ื›ื” ืœื’ืจื•ื ืœืชื ื”ืกืจื˜ื ื™ ืœื—ืฉื•ื‘ ืฉื”ื•ื ื‘ืจื™ื.
09:21
Could this be done?
166
561119
1484
ื”ืื ื–ื” ื ื™ืชืŸ ืœื‘ื™ืฆื•ืข?
09:22
So, we tried it.
167
562603
2528
ืื– ื ื™ืกื™ื ื• ื–ืืช.
09:25
In order to do that, however,
168
565131
2038
ืื‘ืœ ืœืฉื ื›ืš
09:27
we needed to have a method of distinguishing normal from malignant,
169
567169
4885
ื ื–ืงืงื ื• ืœืฉื™ื˜ื” ืœื”ื‘ื—ื™ืŸ ื‘ื™ืŸ ืžืžืื™ืจ ืœื‘ืจื™ื,
09:32
and on the left is the single normal cell,
170
572054
3997
ืžืฉืžืืœ, ื–ื” ื”ืชื ื”ื‘ืจื™ื,
09:36
human breast, put in three-dimensional gooey gel
171
576051
3963
ืžืฉื“ ืื ื•ืฉื™, ืฉื”ื•ื ื— ื‘ื’'ืœ ื“ื‘ื™ืง ืชืœืช-ืžื™ืžื“ื™
09:40
that has extracellular matrix, it makes all these beautiful structures.
172
580014
3864
ื‘ืขืœ ืžื˜ืจื™ืฆื” ื—ื•ืฅ-ืชืื™ืช, ื”ื•ื ื™ื•ืฆืจ ืืช ื›ืœ ื”ืžื‘ื ื™ื ื”ื™ืคื™ื ื”ืืœื”.
09:43
On the right, you see it looks very ugly,
173
583878
2888
ืžื™ืžื™ืŸ, ืืชื ืจื•ืื™ื ืฉื–ื” ืžืื“ ืžื›ื•ืขืจ,
09:46
the cells continue to grow,
174
586766
1648
ื”ืชืื™ื ืžืžืฉื™ื›ื™ื ืœืฆืžื•ื—,
09:48
the normal ones stop.
175
588414
1576
ื”ืชื ื”ื‘ืจื™ื ื”ืคืกื™ืง.
09:49
And you see here in higher magnification
176
589990
2832
ื•ื›ืืŸ ืจื•ืื™ื ื‘ื”ื’ื“ืœื” ืจื‘ื” ื™ื•ืชืจ
09:52
the normal acinus and the ugly tumor.
177
592822
4352
ืืช ื”ืื•ื ื™ืช ื”ื‘ืจื™ืื” ื•ืืช ื”ื’ื™ื“ื•ืœ ื”ืžื›ื•ืขืจ.
09:57
So we said, what is on the surface of these ugly tumors?
178
597174
4224
ืฉืืœื ื•, ืžื” ื™ืฉ ืขืœ ืคื ื™ ื”ืฉื˜ื— ืฉืœ ื”ื’ื™ื“ื•ืœื™ื ื”ืžื›ื•ืขืจื™ื ื”ืืœื”?
10:01
Could we calm them down --
179
601398
2168
ื”ืื ื ื•ื›ืœ ืœืžืชืŸ ืืช ื–ื”--
10:03
they were signaling like crazy and they have pathways all messed up --
180
603566
4920
ื”ื ืžืื•ืชืชื™ื ื‘ื˜ื™ืจื•ืฃ ื•ื›ืœ ื”ืจืืงืฆื™ื•ืช ืฉืœื”ื ืžื‘ื•ืœื’ื ื•ืช--
10:08
and make them to the level of the normal?
181
608486
3064
ื•ืœื”ื•ืจื™ื“ ืื•ืชื ืœืจืžื” ื”ื‘ืจื™ืื”?
10:11
Well, it was wonderful. Boggles my mind.
182
611550
4720
ื–ื” ื”ื™ื” ื ื”ื“ืจ. ืžืžืฉ ื”ื“ื”ื™ื ืื•ืชื™.
10:16
This is what we got.
183
616270
2161
ื–ื” ืžื” ืฉืงื™ื‘ืœื ื•.
10:18
We can revert the malignant phenotype.
184
618431
3679
ืื ื• ื™ื›ื•ืœื™ื ืœื”ืคื•ืš ืืช ื›ื™ื•ื•ืŸ ื”ืคื ื•ื˜ื™ืค ื”ืžืžืื™ืจ.
10:22
(Applause)
185
622110
2568
[ืžื—ื™ืื•ืช ื›ืคื™ื™ื]
10:24
And in order to show you that the malignant phenotype
186
624678
3112
ื•ื›ื“ื™ ืœื”ืจืื•ืช ืœื›ื ืืช ื”ืคื ื•ื˜ื™ืค ื”ืžืžืื™ืจ
10:27
I didn't just choose one,
187
627790
1718
ืœื ื‘ื—ืจืชื™ ืจืง ืื—ื“ ื›ื–ื”,
10:29
here are little movies, sort of fuzzy,
188
629508
2770
ื”ื ื” ืกืจื˜ื•ื ื™ื ืงืฆืจื™ื, ืงืฆืช ืžื˜ื•ืฉื˜ืฉื™ื,
10:32
but you see that on the left are the malignant cells,
189
632278
3656
ืืš ืจื•ืื™ื ื‘ืฆื“ ืฉืžืืœ ืืช ื”ืชืื™ื ื”ืžืžืื™ืจื™ื,
10:35
all of them are malignant,
190
635934
1344
ื›ืœ ืืœื” ืžืžืื™ืจื™ื,
10:37
we add one single inhibitor in the beginning,
191
637278
4800
ื”ื•ืกืคื ื• ื—ื•ืžืจ ืžื“ื›ื ืื—ื“ ื‘ื”ืชื—ืœื”,
10:42
and look what happens, they all look like that.
192
642078
3457
ื•ืจืื• ืžื” ืงื•ืจื”. ื›ื•ืœื ื ืจืื™ื ื›ืš.
10:45
We inject them into the mouse, the ones on the right,
193
645535
3447
ื”ื–ืจืงื ื• ืื•ืชื ืœืขื›ื‘ืจื”, ืืช ืืœื” ืฉืžื™ืžื™ืŸ,
10:48
and none of them would make tumors.
194
648982
2240
ื•ืืฃ ืœื ืื—ื“ ืžื”ื ื™ืฆืจ ื’ื™ื“ื•ืœ.
10:51
We inject the other ones in the mouse, 100 percent tumors.
195
651222
3536
ื”ื–ืจืงื ื• ืืช ื”ืื—ืจื™ื ืœืขื›ื‘ืจื” - ืžืื” ืื—ื•ื– ื’ื™ื“ื•ืœื™ื.
10:54
So, it's a new way of thinking about cancer,
196
654758
2672
ืื– ื–ืืช ืฆื•ืจืช ื—ืฉื™ื‘ื” ื—ื“ืฉื” ืขืœ ื”ืกืจื˜ืŸ,
10:57
it's a hopeful way of thinking about cancer.
197
657430
2400
ืฆื•ืจืช ื—ืฉื™ื‘ื” ืžืœืืช ืชืงื•ื•ื” ืขืœ ื”ืกืจื˜ืŸ.
10:59
We should be able to be dealing with these things at this level,
198
659830
3976
ืขืœื™ื ื• ืœื“ืขืช ืœื”ืชืžื•ื“ื“ ืขื ื“ื‘ืจื™ื ืืœื” ื‘ืจืžื” ื”ื–ื•,
11:03
and these conclusions say that growth and malignant behavior
199
663806
5912
ื•ืžืกืงื ื•ืช ืืœื” ืื•ืžืจื•ืช ืฉื”ื’ื™ื“ื•ืœ ื•ื”ื”ืชื ื”ื’ื•ืช ื”ืžืžืื™ืจื”
11:09
is regulated at the level of tissue organization
200
669718
3872
ืžื•ื•ืกืชื™ื ื‘ืจืžืช ืืจื’ื•ืŸ ื”ืจืงืžื•ืช
11:13
and that the tissue organization is dependent
201
673590
3992
ื•ืฉืจืžืช ืืจื’ื•ืŸ ื”ืจืงืžื•ืช ืชืœื•ื™ื”
11:17
on the extracellular matrix and the microenvironment.
202
677582
3696
ื‘ืžื˜ืจื™ืฆื” ื”ื—ื•ืฅ-ืชืื™ืช ื•ื‘ืžื™ืงืจื•-ืกื‘ื™ื‘ื”.
11:21
All right, thus form and function interact dynamically and reciprocally.
203
681278
7631
ื‘ืกื“ืจ, ื›ืš ื”ืฆื•ืจื” ื•ื”ืชืคืงื•ื“ ืคื•ืขืœื™ื ื‘ื™ื—ืกื™-ื’ื•ืžืœื™ืŸ ื“ื™ื ืžื™ื™ื.
11:28
And here is another five seconds of repose,
204
688909
4120
ื•ื”ื ื” ืขื•ื“ ื—ืžืฉ ืฉื ื™ื•ืช ืฉืœ ื”ืชืจื’ืขื•ืช,
11:33
is my mantra. Form and function.
205
693029
4422
ื–ื• ื”ืžื ื˜ืจื” ืฉืœื™. ืฆื•ืจื” ื•ืชืคืงื•ื“.
11:37
And of course, we now ask, where do we go now?
206
697451
3646
ื•ื›ืžื•ื‘ืŸ, ื›ืขืช ืื ื• ืฉื•ืืœื™ื, ืื™ืš ืžืžืฉื™ื›ื™ื ืžื›ืืŸ?
11:41
We'd like to take this kind of thinking into the clinic.
207
701097
2995
ืื ื• ืจื•ืฆื™ื ืœื”ื‘ื™ื ืืช ืฆื•ืจืช ื”ื—ืฉื™ื‘ื” ื”ื–ื• ืืœ ื”ืงืœื™ื ื™ืงื”.
11:44
But before we do that, I'd like you to think
208
704092
3924
ืืš ืœืคื ื™ ื›ืŸ, ืื ื™ ืจื•ืฆื” ืฉืชื—ืฉื‘ื•
11:48
that at any given time when you're sitting there,
209
708016
3588
ืฉื‘ื›ืœ ืจื’ืข ื•ืจื’ืข ืฉืืชื ื™ื•ืฉื‘ื™ื ื›ืืŸ,
11:51
in your 70 trillion cells,
210
711604
3013
ื‘-70 ื˜ืจื™ืœื™ื•ืŸ ื”ืชืื™ื ืฉืœื›ื,
11:54
the extracellular matrix signaling to your nucleus,
211
714617
3473
ื”ืžื˜ืจื™ืฆื” ื”ื—ื•ืฅ-ืชืื™ืช ืžืื•ืชืชืช ืœื’ืจืขื™ื ื™ ื”ืชืื™ื ืฉืœื›ื,
11:58
the nucleus is signaling to your extracellular matrix
212
718090
3078
ื’ืจืขื™ื ื™ ื”ืชืื™ื ืฉืœื›ื ืžืื•ืชืชื™ื ืœืžื˜ืจื™ืฆื” ื”ื—ื•ืฅ-ืชืื™ืช
12:01
and this is how your balance is kept and restored.
213
721168
5994
ื•ื›ืš ื ืฉืžืจ ื•ืžืฉืชืงื ื”ืื™ื–ื•ืŸ ืืฆืœื›ื.
12:07
We have made a lot of discoveries,
214
727162
2215
ื™ืฉ ืœื ื• ื”ืžื•ืŸ ืชื’ืœื™ื•ืช,
12:09
we have shown that extracellular matrix talks to chromatin.
215
729377
3088
ื”ื•ื›ื—ื ื• ืฉื”ืžื˜ืจื™ืฆื” ื”ื—ื•ืฅ-ืชืื™ืช ืžื“ื‘ืจืช ืขื ื”ื›ืจื•ืžื˜ื™ืŸ.
12:12
We have shown that there's little pieces of DNA
216
732465
3447
ื”ื•ื›ื—ื ื• ืฉื™ืฉ ืคื™ืกื•ืช ื“ื "ื ืงื˜ื ื•ืช
12:15
on the specific genes of the mammary gland
217
735912
3823
ืขืœ ื”ื’ื ื™ื ื”ืกืคืฆื™ืคื™ื™ื ืฉืœ ื‘ืœื•ื˜ืช ื”ื—ืœื‘
12:19
that actually respond to extracellular matrix.
218
739735
2864
ืฉืžื’ื™ื‘ื™ื ืœืžื˜ืจื™ืฆื” ื”ื—ื•ืฅ-ืชืื™ืช.
12:22
It has taken many years, but it has been very rewarding.
219
742599
3697
ื ื“ืจืฉื• ืœื›ืš ืฉื ื™ื ืจื‘ื•ืช, ืื‘ืœ ื”ืกื™ืคื•ืง ืจื‘ ืžืื“.
12:26
And before I get to the next slide, I have to tell you
220
746296
4391
ื•ืœืคื ื™ ืฉืืขื‘ื•ืจ ืœืฉืงื•ืคื™ืช ื”ื‘ืื”, ืขืœื™ ืœื•ืžืจ ืœื›ื
12:30
that there are so many additional discoveries to be made.
221
750687
5112
ืฉื™ืฉ ืœื’ืœื•ืช ืขื•ื“ ื”ืžื•ืŸ ืชื’ืœื™ื•ืช.
12:35
There is so much mystery we don't know.
222
755799
2528
ื™ืฉ ืชืขืœื•ืžื•ืช ื›ื” ืจื‘ื•ืช ืฉืื ื• ืœื ื™ื•ื“ืขื™ื.
12:38
And I always say to the students and post-docs I lecture to,
223
758327
4361
ื•ืื ื™ ืชืžื™ื“ ืื•ืžืจืช ืœืกื˜ื•ื“ื ื˜ื™ื ื•ืœื‘ื•ื’ืจื™ื ืœื”ื ืื ื™ ืžืจืฆื”
12:42
don't be arrogant, because arrogance kills curiosity.
224
762688
5663
ืืœ ืชื”ื™ื• ืฉื—ืฆื ื™ื, ื›ื™ ื”ืฉื—ืฆื ื•ืช ื”ื•ืจื’ืช ืืช ื”ืกืงืจื ื•ืช.
12:48
Curiosity and passion.
225
768351
2192
ืกืงืจื ื•ืช ื•ืœื”ื˜.
12:50
You need to always think, what else needs to be discovered?
226
770543
3897
ืชืžื™ื“ ืฆืจื™ืš ืœื—ืฉื•ื‘: ืžื” ืขื•ื“ ืฆืจื™ืš ืœื’ืœื•ืช?
12:54
And maybe my discovery needs to be added to
227
774440
2975
ืื•ืœื™ ืฆืจื™ืš ืœื”ื•ืกื™ืฃ ืขืœ ื”ืชื’ืœื™ืช ืฉืœื™,
12:57
or maybe it needs to be changed.
228
777415
1792
ืื• ืื•ืœื™ ืœืฉื ื•ืชื”.
12:59
So, we have now made an amazing discovery,
229
779207
3504
ื•ื›ืขืช ื’ื™ืœื™ื ื• ืชื’ืœื™ืช ืžื“ื”ื™ืžื”,
13:02
a post-doc in the lab who is a physicist asked me,
230
782711
3104
ื‘ื•ื’ืจืช ื•ืคื™ื–ื™ืงืื™ืช ืฉืขื•ื‘ื“ืช ื‘ืžืขื‘ื“ื” ืฉืืœื” ืื•ืชื™,
13:05
what do the cells do when you put them in?
231
785815
2177
ืžื” ื”ืชืื™ื ืขื•ืฉื™ื ื›ืฉืžื›ื ื™ืกื™ื ืื•ืชื?
13:07
What do they do in the beginning when they do?
232
787992
3294
ืžื” ื”ื ืขื•ืฉื™ื ืžื™ื“ ื‘ื”ืชื—ืœื”?
13:11
I said, I don't know, we couldn't look at them.
233
791286
1481
ืืžืจืชื™, ืื™ื ื™ ื™ื•ื“ืขืช. ืœื ื™ื›ื•ืœื ื• ืœืฆืคื•ืช ื‘ื”ื.
13:12
We didn't have high images in the old days.
234
792767
2593
ื‘ื™ืžื™ื ื”ื”ื ืœื ื”ื™ื” ืœื ื• ืฆื™ืœื•ื ื‘ื”ืคืจื“ื” ื’ื‘ื•ื”ื”.
13:15
So she, being an imager and a physicist,
235
795360
2695
ืื– ื‘ืชื•ืจ ืฆืœืžืช ื•ืคื™ื–ื™ืงืื™ืช,
13:18
did this incredible thing.
236
798055
1744
ื”ื™ื ืขืฉืชื” ืืช ื”ื“ื‘ืจ ื”ืžื“ื”ื™ื ื”ื–ื”.
13:19
This is a single human breast cell in three dimensions.
237
799799
4376
ื–ื”ื• ืชื ื‘ื•ื“ื“ ืฉืœ ืฉื“ ืื ื•ืฉื™ ื‘ืชืœืช-ืžื™ืžื“.
13:24
Look at it. It's constantly doing this.
238
804175
2528
ื”ื‘ื™ื˜ื• ื‘ื•. ื”ื•ื ื›ืœ ื”ื–ืžืŸ ืขื•ืฉื” ืืช ื–ื”.
13:26
Has a coherent movement.
239
806703
2096
ื™ืฉ ืœื• ืชื ื•ืขื” ืขืงื‘ื™ืช.
13:28
You put the cancer cells there, and they do go all over,
240
808799
4334
ืžื›ื ื™ืกื™ื ืชืื™ื ืกืจื˜ื ื™ื™ื, ื•ื’ื ื”ื ืขื•ืฉื™ื ืืช ื–ื”.
13:33
they do this. They don't do this.
241
813133
1904
ื›ืš, ื•ืœื ื›ืš.
13:35
And when we revert the cancer cell, it again does this.
242
815037
4008
ื•ื›ืฉื”ืคื›ื ื• ืืช ืชื”ืœื™ืš ื”ืชื ื”ืกืจื˜ื ื™, ื”ื•ื ื—ื–ืจ ืœืขืฉื•ืช ืืช ื–ื”.
13:39
Absolutely boggles my mind.
243
819045
2184
ื–ื” ื”ื“ื”ื™ื ืื•ืชื™ ืœื’ืžืจื™.
13:41
So the cell acts like an embryo. What an exciting thing.
244
821229
5344
ืื– ื”ืชืื™ื ืžืชื ื”ื’ื™ื ื›ืžื• ืขื•ื‘ืจื™ื. ืื™ื–ื” ื“ื‘ืจ ืžืจื’ืฉ.
13:46
So I'd like to finish with a poem.
245
826573
2856
ื‘ืจืฆื•ื ื™ ืœืกื™ื™ื ื‘ืฉื™ืจ.
13:49
Well I used to love English literature,
246
829429
3064
ืคืขื ืื”ื‘ืชื™ ืกืคืจื•ืช ืื ื’ืœื™ืช,
13:52
and I debated in college, which one should I do?
247
832493
2607
ื•ื‘ืงื•ืœื’' ื”ื™ื• ืœื™ ืœื‘ื˜ื™ื ืžื” ืœืœืžื•ื“.
13:55
And unfortunately or fortunately, chemistry won.
248
835100
4612
ืœืžืจื‘ื” ื”ืžื–ืœ ืื• ืœืจื•ืข ื”ืžื–ืœ ื”ื›ื™ืžื™ื” ื ื™ืฆื—ื”.
13:59
But here is a poem from Yeats. I'll just read you the last two lines.
249
839712
5724
ื–ื”ื• ืฉื™ืจ ืžืืช ื™ื™ื˜ืก. ืืงืจื ืœื›ื ืจืง ืืช ืฉืชื™ ื”ืฉื•ืจื•ืช ื”ืื—ืจื•ื ื•ืช.
14:05
It's called "Among the School Children."
250
845436
2659
ื”ื•ื ืงืจื•ื™: "ื‘ื™ืŸ ื™ืœื“ื™ ื‘ื™ืช ื”ืกืคืจ"
14:08
"O body swayed to music / O brightening glance /
251
848095
4521
"ื’ื•ืฃ ืžืชื ื•ืขืข ืขื ื”ืžื•ืกื™ืงื”/ ืžื‘ื˜ ืžืื™ืจ/
14:12
How [can we know] the dancer from the dance?"
252
852616
3150
ื”ื™ืืš ื ื‘ื“ื™ืœ ื‘ื™ืŸ ื”ืžื—ื•ืœืœ ืœืžื—ื•ืœ?"
14:15
And here is Merce Cunningham,
253
855766
1911
ื•ื–ื”ื• ืžืจืก ืงื ื™ื ื’ื”ื,
14:17
I was fortunate to dance with him when I was younger,
254
857677
2984
ื ืคืœ ื‘ื—ืœืงื™ ืœืจืงื•ื“ ืื™ืชื• ื›ืฉื”ื™ื™ืชื™ ืฆืขื™ืจื” ื™ื•ืชืจ,
14:20
and here he is a dancer,
255
860661
2193
ื•ื›ืืŸ ื”ื•ื ืจืงื“ืŸ,
14:22
and while he is dancing, he is both the dancer and the dance.
256
862854
3304
ื•ื›ืฉื”ื•ื ืจื•ืงื“, ื”ื•ื ื’ื ื”ืจืงื“ืŸ ื•ื’ื ื”ืจื™ืงื•ื“.
14:26
The minute he stops, we have neither.
257
866158
3701
ื‘ืจื’ืข ืฉื”ื•ื ืขื•ืฆืจ, ืฉื ื™ื”ื ื ืขืœืžื™ื.
14:29
So it's like form and function.
258
869859
3474
ื‘ื“ื™ื•ืง ื›ืžื• ืฆื•ืจื” ื•ืชืคืงื•ื“.
14:33
Now, I'd like to show you a current picture of my group.
259
873333
5779
ื‘ืจืฆื•ื ื™ ืœื”ืจืื•ืช ืœื›ื ืชืžื•ื ื” ืขื›ืฉื•ื•ื™ืช ืฉืœ ื”ืฆื•ื•ืช ืฉืœื™.
14:39
I have been fortunate to have had these magnificant
260
879112
3528
ื”ืชืžื–ืœ ืžื–ืœื™, ืœืขื‘ื•ื“ ืขื ื›ืœ ื”ืกื˜ื•ื“ื ื˜ื™ื ื•ื”ื‘ื•ื’ืจื™ื
14:42
students and post-docs who have taught me so much,
261
882640
3224
ื”ื ืคืœืื™ื ื”ืืœื” ืฉืœื™ืžื“ื• ืื•ืชื™ ื›ื” ื”ืจื‘ื”,
14:45
and I have had many of these groups come and go.
262
885864
3263
ื•ื›ื‘ืจ ืขื‘ื“ืชื™ ืขื ืฆื•ื•ืชื™ื ืจื‘ื™ื.
14:49
They are the future and I try to make them not be afraid
263
889127
4577
ื”ื ื”ืขืชื™ื“, ื•ืื ื™ ืžืฉืชื“ืœืช ืœื’ืจื•ื ืœื›ืš ืฉืœื ื™ื—ืฉืฉื•
14:53
of being the cat and being told,
264
893704
3703
ืœื”ื™ื•ืช ื”ื—ืชื•ืœ ืฉืื•ืžืจื™ื ืœื•,
14:57
don't think outside the box.
265
897407
1593
ืืœ ืชื—ืฉื•ื‘ ืžื—ื•ืฅ ืœืจื™ื‘ื•ืข.
14:59
And I'd like to leave you with this thought.
266
899000
2495
ื•ืื ื™ ืจื•ืฆื” ืœื”ืฉืื™ืจ ืืชื›ื ืขื ื”ืžื—ืฉื‘ื” ื”ื–ื•.
15:01
On the left is water coming through the shore,
267
901495
4745
ืžืฉืžืืœ, ืืœื” ืžื™ื ื‘ืฉืคืš ื ื”ืจ
15:06
taken from a NASA satellite.
268
906240
1895
ืชืžื•ื ื” ืฉืฆื•ืœืžื” ืžืœื•ื•ื™ืŸ ืฉืœ ื ืืก"ื.
15:08
On the right, there is a coral.
269
908135
3049
ืžื™ืžื™ืŸ, ื–ื”ื• ืืœืžื•ื’.
15:11
Now if you take the mammary gland and spread it
270
911184
4002
ืื ืชืงื—ื• ืืช ื‘ืœื•ื˜ืช ื”ื—ืœื‘ ื•ืชืคืจืฉื• ืื•ืชื”
15:15
and take the fat away, on a dish it looks like that.
271
915186
3445
ืขืœ ืฆืœื•ื—ื™ืช ื‘ืœื™ ื”ืฉื•ืžืŸ, ื”ื™ื ืชื™ืจืื” ื›ืš.
15:18
Do they look the same? Do they have the same patterns?
272
918631
3352
ื”ืื ื”ื ื ืจืื™ื ื–ื”ื™ื? ื”ืื ื™ืฉ ืœื”ื ืื•ืชื ื“ืคื•ืกื™ื?
15:21
Why is it that nature keeps doing that over and over again?
273
921983
3952
ืžื“ื•ืข ื”ื˜ื‘ืข ืขื•ืฉื” ื–ืืช ืฉื•ื‘ ื•ืฉื•ื‘?
15:25
And I'd like to submit to you
274
925935
2360
ื•ืื ื™ ืจื•ืฆื” ืœื˜ืขื•ืŸ ื‘ืคื ื™ื›ื
15:28
that we have sequenced the human genome,
275
928295
2177
ืฉื›ื‘ืจ ืจื™ืฆืคื ื• ืืช ื”ื’ื ื•ื ื”ืื ื•ืฉื™,
15:30
we know everything about the sequence of the gene,
276
930472
2880
ืื ื• ื™ื•ื“ืขื™ื ื”ื›ืœ ืขืœ ืจืฆืฃ ื”ื’ื ื™ื,
15:33
the language of the gene, the alphabet of the gene,
277
933352
2431
ืขืœ ืฉืคืช ื”ื’ื ื™ื, ืขืœ ื”ืืœืฃ-ื‘ื™ืช ืฉืœ ื”ื’ื ื™ื,
15:35
But we know nothing, but nothing,
278
935783
3239
ืืš ืื™ื ื ื• ื™ื•ื“ืขื™ื ื“ื‘ืจ, ืžืžืฉ ื›ืœื•ื,
15:39
about the language and alphabet of form.
279
939022
4663
ืขืœ ื”ืฉืคื” ื•ื”ืืœืฃ-ื‘ื™ืช ืฉืœ ื”ืฆื•ืจื”.
15:43
So, it's a wonderful new horizon,
280
943685
3044
ื›ืš ืฉื–ื”ื• ืื•ืคืง ื—ื“ืฉ ื•ื ืคืœื,
15:46
it's a wonderful thing to discover for the young
281
946729
3750
ื“ื‘ืจ ื ืคืœื ืฉื™ืชื’ืœื” ืข"ื™ ื”ืฆืขื™ืจื™ื
15:50
and the passionate old, and that's me.
282
950479
2480
ื•ื”ื–ืงื ื™ื ืžืœืื™ ื”ืœื”ื˜, ืฉื–ื• ืื ื™.
15:52
So go to it!
283
952959
2048
ืื– ืงื“ื™ืžื” ืœืขื‘ื•ื“ื”!
15:55
(Applause)
284
955007
11500
[ืžื—ื™ืื•ืช ื›ืคื™ื™ื]
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7