The human skills we need in an unpredictable world | Margaret Heffernan

201,445 views ใƒป 2019-09-10

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืชืจื’ื•ื: Zeeva Livshitz ืขืจื™ื›ื”: Allon Sasson
00:12
Recently, the leadership team of an American supermarket chain
0
12731
3606
ืœืื—ืจื•ื ื”, ืฆื•ื•ืช ื”ื”ื ื”ืœื” ืฉืœ ืจืฉืช ืžืจื›ื•ืœื™ื ืืžืจื™ืงื ื™ืช
00:16
decided that their business needed to get a lot more efficient.
1
16361
3456
ื”ื—ืœื™ื˜ ืฉื”ืขืกืง ืฉืœื”ื ื—ื™ื™ื‘ ืœื”ื™ื•ืช ื™ืขื™ืœ ื‘ื”ืจื‘ื”.
00:19
So they embraced their digital transformation with zeal.
2
19841
3855
ืื– ื”ื ืื™ืžืฆื• ืืช ื”ื˜ืจื ืกืคื•ืจืžืฆื™ื” ื”ื“ื™ื’ื™ื˜ืœื™ืช ืฉืœื”ื ื‘ืœื”ื˜.
00:24
Out went the teams supervising meat, veg, bakery,
3
24174
3948
ื”ื ื™ื™ืชืจื• ืืช ื”ืฆื•ื•ืชื™ื ื”ืžืคืงื—ื™ื ืขืœ ื”ื‘ืฉืจ, ื”ื™ืจืงื•ืช ื•ื”ืžืืคื™ื”,
00:28
and in came an algorithmic task allocator.
4
28146
4156
ื•ื‘ืžืงื•ืžื ื”ื›ื ื™ืกื• ื›ืœื™ ืืœื’ื•ืจื™ืชืžื™ืงื” ืœื”ืงืฆืืช ืžืฉื™ืžื•ืช.
00:32
Now, instead of people working together,
5
32914
2103
ื•ืขื›ืฉื™ื•, ื‘ืžืงื•ื ืฉืื ืฉื™ื ื™ืขื‘ื“ื• ื™ื—ื“,
00:35
each employee went, clocked in, got assigned a task, did it,
6
35041
4241
ื›ืœ ืขื•ื‘ื“ ื ื›ื ืก, ืžื—ืชื™ื ื›ืจื˜ื™ืก, ืžืงื‘ืœ ืžืฉื™ืžื”, ืžื‘ืฆืข ืื•ืชื”,
00:39
came back for more.
7
39306
1578
ื•ื—ื•ื–ืจ ืœืงื‘ืœ ืขื•ื“ ืื—ืช.
00:41
This was scientific management on steroids,
8
41429
3727
ื–ื” ื”ื™ื” ื ื™ื”ื•ืœ ืžื“ืขื™ ืขืœ ืกื˜ืจื•ืื™ื“ื™ื,
00:45
standardizing and allocating work.
9
45180
2082
ืชึดึผืงึฐื ื•ึผืŸ ื•ื”ืงืฆืืช ืขื‘ื•ื“ื”.
00:47
It was super efficient.
10
47580
2090
ื–ื” ื”ื™ื” ืกื•ืคืจ ื™ืขื™ืœ.
00:50
Well, not quite,
11
50750
1366
ื•ื‘ื›ืŸ, ืœื ืžืžืฉ,
00:53
because the task allocator didn't know
12
53351
2326
ืžื›ื™ื•ื•ืŸ ืฉืžืงืฆื” ื”ืžืฉื™ืžื•ืช ืœื ื™ื“ืข
00:55
when a customer was going to drop a box of eggs,
13
55701
2922
ืžืชื™ ืœืงื•ื— ืขื•ืžื“ ืœื”ืคื™ืœ ืืจื™ื–ืช ื‘ื™ืฆื™ื,
00:58
couldn't predict when some crazy kid was going to knock over a display,
14
58647
3849
ืœื ื™ื›ื•ืœ ื”ื™ื” ืœื—ื–ื•ืช ืžืชื™ ืื™ื–ื” ื™ืœื“ ืคืจื•ืข ื™ื™ืœืš ื•ื™ืžื•ื˜ื˜ ืชืฆื•ื’ื”,
01:02
or when the local high school decided
15
62520
1916
ืื• ืžืชื™ ื‘ื™ืช ื”ืกืคืจ ื”ืชื™ื›ื•ืŸ ื”ืžืงื•ืžื™ ื™ื—ืœื™ื˜
01:04
that everybody needed to bring in coconuts the next day.
16
64460
2635
ืฉืขืœ ื›ื•ืœื ืœื”ื‘ื™ื ืœืžื—ืจืช ืื’ื•ื–ื™ ืงื•ืงื•ืก .
01:07
(Laughter)
17
67119
1000
(ืฆื—ื•ืง)
01:08
Efficiency works really well
18
68143
2137
ื™ืขื™ืœื•ืช ืคื•ืขืœืช ืžืžืฉ ื˜ื•ื‘,
01:10
when you can predict exactly what you're going to need.
19
70304
3039
ื›ืฉืืชื ื™ื›ื•ืœื™ื ืœื—ื–ื•ืช ื‘ื“ื™ื•ืง ืืช ืžื” ืฉืชืฆื˜ืจื›ื•.
01:13
But when the anomalous or unexpected comes along --
20
73815
3276
ืื‘ืœ ื›ืืฉืจ ื”ื—ืจื™ื’ ืื• ื”ื‘ืœืชื™ ืฆืคื•ื™ ืžื•ืคื™ืขื™ื --
01:17
kids, customers, coconuts --
21
77115
2332
ื™ืœื“ื™ื, ืœืงื•ื—ื•ืช, ืื’ื•ื–ื™ ืงื•ืงื•ืก --
01:19
well, then efficiency is no longer your friend.
22
79471
2873
ื”ื™ืขื™ืœื•ืช ื›ื‘ืจ ืื™ื ื” ื—ื‘ืจื” ืฉืœื›ื.
01:24
This has become a really crucial issue,
23
84074
2117
ื“ื‘ืจ ื–ื” ื”ืคืš ืžืžืฉ ืœืกื•ื’ื™ื” ืžื›ืจืขืช ื‘ื™ื•ืชืจ,
01:26
this ability to deal with the unexpected,
24
86215
2618
ื”ื™ื›ื•ืœืช ื”ื–ื• ืœื”ืชืžื•ื“ื“ ืขื ื”ื‘ืœืชื™ ืฆืคื•ื™,
01:29
because the unexpected is becoming the norm.
25
89771
3457
ื›ื™ ื”ื‘ืœืชื™ ืฆืคื•ื™ ื”ื•ืคืš ืœื ื•ืจืžื”.
01:33
It's why experts and forecasters are reluctant to predict anything
26
93660
4077
ื–ื• ื”ืกื™ื‘ื” ืฉืžื•ืžื—ื™ื ื•ื—ื–ืื™ื ืžืกืจื‘ื™ื ืœื—ื–ื•ืช ื“ื‘ืจ ื›ืœืฉื”ื•
01:37
more than 400 days out.
27
97761
2572
ืžืขื‘ืจ ืœืชืงื•ืคื” ืฉืœ 400 ื™ื•ื.
01:41
Why?
28
101054
1446
ืžื“ื•ืข?
01:42
Because over the last 20 or 30 years,
29
102524
1924
ื›ื™ ื‘- 20 ืื• 30 ื”ืฉื ื™ื ื”ืื—ืจื•ื ื•ืช,
01:44
much of the world has gone from being complicated
30
104472
3810
ืจื•ื‘ ื”ืขื•ืœื ื”ืคืš ืžืžืกื•ื‘ืš
01:48
to being complex --
31
108306
1296
ืœืžื•ืจื›ื‘ --
01:50
which means that yes, there are patterns,
32
110431
2283
ืžื” ืฉืื•ืžืจ ืฉื›ืŸ, ื™ืฉ ื“ืคื•ืกื™ื,
01:52
but they don't repeat themselves regularly.
33
112738
2296
ืื‘ืœ ื”ื ืœื ื—ื•ื–ืจื™ื ืขืœ ืขืฆืžื ื‘ืื•ืคืŸ ืงื‘ื•ืข.
01:55
It means that very small changes can make a disproportionate impact.
34
115440
4288
ื–ื” ืื•ืžืจ ืฉืฉื™ื ื•ื™ื™ื ืงื˜ื ื™ื ืžืื•ื“ ื™ื›ื•ืœื™ื ืœื”ืฉืคื™ืข ื‘ืื•ืคืŸ ื‘ืœืชื™ ืคืจื•ืคื•ืจืฆื™ื•ื ืืœื™.
02:00
And it means that expertise won't always suffice,
35
120244
2666
ื•ื–ื” ืื•ืžืจ ืฉืžื•ืžื—ื™ื•ืช ืœื ืชืžื™ื“ ืชืกืคื™ืง,
02:02
because the system just keeps changing too fast.
36
122934
3634
ื›ื™ ื”ืžืขืจื›ืช ืžืฉืชื ื” ื›ืœ ื”ื–ืžืŸ ืžื”ืจ ืžื“ื™.
02:08
So what that means
37
128192
2632
ื•ื–ื” ืื•ืžืจ
02:10
is that there's a huge amount in the world
38
130848
2887
ืฉืžื™ื“ืช ื”ืฉื™ื ื•ื™ ื‘ืขื•ืœื ื”ื™ื ื›ื” ืขืฆื•ืžื”
02:13
that kind of defies forecasting now.
39
133759
2990
ืฉื”ื™ื ืžืชืจื™ืกื” ื›ื™ื•ื ื ื’ื“ ื—ื™ื–ื•ื™.
02:16
It's why the Bank of England will say yes, there will be another crash,
40
136773
3830
ื–ื• ื”ืกื™ื‘ื” ืฉื”ื‘ื ืง ื”ืžืจื›ื–ื™ ืฉืœ ื‘ืจื™ื˜ื ื™ื” ื™ื›ืจื™ื– ืฉืชื”ื™ื” ืขื•ื“ ื”ืชืจืกืงื•ืช,
02:20
but we don't know why or when.
41
140627
2430
ืื‘ืœ ืื™ื ื ื• ื™ื•ื“ืขื™ื ืžื“ื•ืข ื•ืžืชื™.
02:23
We know that climate change is real,
42
143807
2616
ืื ื• ื™ื•ื“ืขื™ื ืฉืฉื™ื ื•ื™ ืืงืœื™ื ื”ื•ื ืืžื™ืชื™,
02:26
but we can't predict where forest fires will break out,
43
146447
3076
ืื‘ืœ ืื™ื ื ื• ื™ื›ื•ืœื™ื ืœื—ื–ื•ืช ื”ื™ื›ืŸ ื™ืคืจืฆื• ืฉืจื™ืคื•ืช ื™ืขืจ,
02:29
and we don't know which factories are going to flood.
44
149547
3250
ื•ืื™ื ื ื• ื™ื•ื“ืขื™ื ืื™ืœื• ืžืคืขืœื™ื ื™ื•ืฆืคื• ืขืงื‘ ืฉื™ื˜ืคื•ื ื•ืช.
02:33
It's why companies are blindsided
45
153313
2691
ื–ื• ื”ืกื™ื‘ื” ืฉื—ื‘ืจื•ืช ื ื“ื”ืžื•ืช ื•ืžื–ื“ืขื–ืขื•ืช
02:36
when plastic straws and bags and bottled water
46
156028
4869
ื›ืืฉืจ ืงืฉื™ื•ืช ืคืœืกื˜ื™ืง ื•ืฉืงื™ื•ืช ื•ืžื™ื ื‘ื‘ืงื‘ื•ืงื™ื
02:40
go from staples to rejects overnight,
47
160921
3305
ื”ื•ืคื›ื™ื ื‘ื™ืŸ ืœื™ืœื” ืžืžื•ืฆืจื™ ื‘ืกื™ืก ื—ืฉื•ื‘ื™ื ืœื‘ืœืชื™ ืจืฆื•ื™ื™ื,
02:45
and baffled when a change in social mores
48
165488
3572
ื•ืžืชืžืœืื•ืช ืžื‘ื•ื›ื” ื›ืฉื—ืœ ืฉื™ื ื•ื™ ื‘ื ื•ืจืžื•ืช ื—ื‘ืจืชื™ื•ืช
02:49
turns stars into pariahs and colleagues into outcasts:
49
169084
4540
ื›ืฉืกืœื‘ืจื™ื˜ืื™ื ื”ื•ืคื›ื™ื ืœื ื—ื•ืชื™ื, ื•ืขืžื™ืชื™ื ืœื“ื—ื•ื™ื™ื:
02:55
ineradicable uncertainty.
50
175155
3054
ืื™ ื•ื“ืื•ืช ืฉืœื ื ื™ืชื ืช ืœื”ืกืจื”.
02:59
In an environment that defies so much forecasting,
51
179319
4336
ื‘ืกื‘ื™ื‘ื” ืฉืžืชืจื™ืกื” ื›ืœ ื›ืš ื ื’ื“ ื—ื™ื–ื•ื™,
03:03
efficiency won't just not help us,
52
183679
3204
ื™ืขื™ืœื•ืช ืœื ืจืง ืฉืœื ืขื•ื–ืจืช ืœื ื•,
03:06
it specifically undermines and erodes our capacity to adapt and respond.
53
186907
6954
ื”ื™ื ื‘ืื•ืคืŸ ืกืคืฆื™ืคื™ ืžืขืจืขืจืช ื•ืžื•ื—ืงืช ืืช ื™ื›ื•ืœืชื ื• ืœื”ืกืชื’ืœ ื•ืœื”ื’ื™ื‘.
03:16
So if efficiency is no longer our guiding principle,
54
196055
3141
ืื– ืื ื”ื™ืขื™ืœื•ืช ืื™ื ื” ืขื•ื“ ื”ืขื™ืงืจื•ืŸ ื”ืžื ื—ื” ืฉืœื ื•,
03:19
how should we address the future?
55
199220
1748
ืื™ืš ืขืœื™ื ื• ืœื”ืชื™ื™ื—ืก ืœืขืชื™ื“?
03:20
What kind of thinking is really going to help us?
56
200992
2452
ืื™ื–ื” ืกื•ื’ ืฉืœ ื—ืฉื™ื‘ื” ื™ื•ื›ืœ ื‘ืืžืช ืœืขื–ื•ืจ ืœื ื•?
03:23
What sort of talents must we be sure to defend?
57
203468
5147
ืขืœ ืื™ื–ื” ืกื•ื’ ืฉืœ ื›ื™ืฉืจื•ื ื•ืช ื ื”ื™ื” ื—ื™ื™ื‘ื™ื ืœื”ื’ืŸ?
03:29
I think that, where in the past we used to think a lot about just in time management,
58
209601
4885
ืœื“ืขืชื™, ื‘ืžืงื•ื ืœื—ืฉื•ื‘ ื”ืจื‘ื” ืขืœ ืขืžื™ื“ื” ื‘ืœื•ื— ื”ื–ืžื ื™ื, ื›ืคื™ ืฉื ื”ื’ื ื• ืœืขืฉื•ืช ื‘ืขื‘ืจ
03:34
now we have to start thinking about just in case,
59
214510
3884
ืขืœื™ื ื• ืœื”ืชื—ื™ืœ ืœื—ืฉื•ื‘ ืขืœ ืื™ืš "ืœื™ืชืจ ื‘ื™ื˜ื—ื•ืŸ ื›ื“ืื™ ืฉื ืชื›ื•ื ืŸ ...,"
03:38
preparing for events that are generally certain
60
218418
3397
ืœืื™ืจื•ืขื™ื ืฉื”ื ื‘ื“ืจืš ื›ืœืœ ื‘ื˜ื•ื—ื™ื
03:41
but specifically remain ambiguous.
61
221839
2543
ืืš ืคืจื˜ื ื™ืช ื ื•ืชืจื™ื ืจื‘-ืžืฉืžืขื™ื™ื.
03:45
One example of this is the Coalition for Epidemic Preparedness, CEPI.
62
225110
5198
ื“ื•ื’ืžื” ืื—ืช ืœื›ืš ื”ื™ื "ื”ืงื•ืืœื™ืฆื™ื” ืœืžื•ื›ื ื•ืช ืœืžื’ื™ืคื•ืช", ืื• ื”-CEPI.
03:50
We know there will be more epidemics in future,
63
230332
4096
ืื ื—ื ื• ื™ื•ื“ืขื™ื ืฉื™ื”ื™ื• ื™ื•ืชืจ ืžื’ืคื•ืช ื‘ืขืชื™ื“,
03:54
but we don't know where or when or what.
64
234452
3886
ืื‘ืœ ืื ื—ื ื• ืœื ื™ื•ื“ืขื™ื ื”ื™ื›ืŸ ื•ืžืชื™ ืื• ืื™ื–ื•.
03:58
So we can't plan.
65
238362
1941
ืื– ืื ื—ื ื• ืœื ื™ื›ื•ืœื™ื ืœืชื›ื ืŸ.
04:00
But we can prepare.
66
240942
1651
ืื‘ืœ ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื”ืชื›ื•ื ืŸ.
04:03
So CEPI's developing multiple vaccines for multiple diseases,
67
243257
5768
ืื– CEPI ืžืคืชื—ืช ืžื’ื•ื•ืŸ ื’ื“ื•ืœ ืฉืœ ื—ื™ืกื•ื ื™ื ืœืžื—ืœื•ืช ืจื‘ื•ืช ื•ืžื’ื•ื•ื ื•ืช,
04:09
knowing that they can't predict which vaccines are going to work
68
249866
3547
ื‘ื™ื“ื™ืขื” ืฉื”ื ืœื ื™ื›ื•ืœื™ื ืœื—ื–ื•ืช ืื™ืœื• ื—ื™ืกื•ื ื™ื ื™ืชืื™ืžื•.
04:13
or which diseases will break out.
69
253437
2020
ืื• ืื™ืœื• ืžื—ืœื•ืช ื™ืชืคืจืฆื•.
04:15
So some of those vaccines will never be used.
70
255481
2973
ืื– ื‘ื›ืžื” ืžืื•ืชื ื—ื™ืกื•ื ื™ื ืœืขื•ืœื ืœื ื™ืฉืชืžืฉื•.
04:18
That's inefficient.
71
258478
1472
ื–ื” ืื™ื ื• ื™ืขื™ืœ.
04:20
But it's robust,
72
260794
1911
ืื‘ืœ ื™ืฉ ื‘ื–ื” ื—ื•ืกืŸ,
04:22
because it provides more options,
73
262729
1935
ืžื›ื™ื•ื•ืŸ ืฉื–ื” ืขื•ื ื” ืขืœ ื™ื•ืชืจ ืืคืฉืจื•ื™ื•ืช,
04:24
and it means that we don't depend on a single technological solution.
74
264688
5010
ื•ื–ื” ืื•ืžืจ ืฉืื™ื ื ื• ืชืœื•ื™ื™ื ื‘ืคืชืจื•ืŸ ื˜ื›ื ื•ืœื•ื’ื™ ื™ื—ื™ื“.
04:30
Epidemic responsiveness also depends hugely
75
270566
3368
ืชื’ื•ื‘ื” ืœืžื’ื™ืคื” ืชืœื•ื™ื” ืžืื•ื“
04:33
on people who know and trust each other.
76
273958
2917
ื’ื ื‘ืื ืฉื™ื ืฉืžื›ื™ืจื™ื ื•ืกื•ืžื›ื™ื ื–ื” ืขืœ ื–ื”.
04:36
But those relationships take time to develop,
77
276899
2787
ืื‘ืœ ืœืžืขืจื›ื•ืช ื™ื—ืกื™ื ืืœื• ืœื•ืงื— ื–ืžืŸ ืœื”ืชืคืชื—,
04:39
time that is always in short supply when an epidemic breaks out.
78
279710
4225
ื–ืžืŸ ืฉืชืžื™ื“ ื—ืกืจ ื›ืฉืคื•ืจืฆืช ืžื’ื™ืคื”.
04:43
So CEPI is developing relationships, friendships, alliances now
79
283959
5088
ืื– CEPI ืžืคืชื—ืช ืขื›ืฉื™ื• ืžืขืจื›ื•ืช ื™ื—ืกื™ื, ื—ื‘ืจื•ื™ื•ืช, ื•ื”ืชืงืฉืจื•ื™ื•ืช,
04:50
knowing that some of those may never be used.
80
290197
3196
ื‘ื™ื“ื™ืขื” ืฉื‘ื—ืœืง ืžืืœื• ืœืขื•ืœื ืœื ื™ืฉืชืžืฉื•.
04:53
That's inefficient, a waste of time, perhaps,
81
293949
3153
ื–ื” ืื™ื ื• ื™ืขื™ืœ, ื‘ื–ื‘ื•ื– ื–ืžืŸ, ืื•ืœื™
04:57
but it's robust.
82
297126
1294
ืื‘ืœ ื™ืฉ ื‘ื–ื” ื—ื•ืกืŸ.
04:59
You can see robust thinking in financial services, too.
83
299161
3805
ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ื—ืฉื™ื‘ื” ืขื•ืฆืžืชื™ืช ื’ื ื‘ืฉื™ืจื•ืชื™ื ืคื™ื ื ืกื™ื™ื.
05:02
In the past, banks used to hold much less capital
84
302990
3754
ื‘ืขื‘ืจ ื ื”ื’ื• ื”ื‘ื ืงื™ื ืœื”ื—ื–ื™ืง ื‘ื”ืจื‘ื” ืคื—ื•ืช ื”ื•ืŸ
05:06
than they're required to today,
85
306768
2223
ืžืžื” ืฉื”ื ื ื“ืจืฉื™ื ื”ื™ื•ื,
05:09
because holding so little capital, being too efficient with it,
86
309015
3741
ืžืฉื•ื ืฉื”ื—ื–ืงืช ื”ื•ืŸ ื›ื” ืงื˜ืŸ ื‘ื™ืขื™ืœื•ืช ืจื‘ื” ืžื“ื™
05:12
is what made the banks so fragile in the first place.
87
312780
3150
ื’ืจื ืœื‘ื ืงื™ื ืœื”ื™ื•ืช ื›ืœ ื›ืš ืฉื‘ื™ืจื™ื ืžืœื›ืชื—ื™ืœื”.
05:16
Now, holding more capital looks and is inefficient.
88
316581
5489
ื›ื™ื•ื ืœื”ื—ื–ื™ืง ื‘ื™ื•ืชืจ ื”ื•ืŸ, ื ืจืื” ื•ื”ื™ื ื• ื‘ืืžืช ืœื ื™ืขื™ืœ.
05:22
But it's robust, because it protects the financial system against surprises.
89
322094
6053
ืื‘ืœ ื™ืฉ ื‘ื–ื” ื—ื•ืกืŸ, ื›ื™ ื–ื” ืžื’ืŸ ืขืœ ื”ืžืขืจื›ืช ื”ืคื™ื ื ืกื™ืช ื›ื ื’ื“ ื”ืคืชืขื•ืช.
05:29
Countries that are really serious about climate change
90
329078
2994
ืžื“ื™ื ื•ืช ืฉืžืชื™ื™ื—ืกื•ืช ื‘ืจืฆื™ื ื•ืช ืœื ื•ืฉื ืฉืœ ืฉื™ื ื•ื™ื™ ืืงืœื™ื
05:32
know that they have to adopt multiple solutions,
91
332096
3554
ื™ื•ื“ืขื•ืช ืฉืขืœื™ื”ืŸ ืœืืžืฅ ืคืชืจื•ื ื•ืช ืžืจื•ื‘ื™ื,
05:35
multiple forms of renewable energy,
92
335674
3028
ืฆื•ืจื•ืช ืžืจื•ื‘ื•ืช ืฉืœ ืื ืจื’ื™ื” ืžืชื—ื“ืฉืช,
05:38
not just one.
93
338726
1329
ืœื ืจืง ืื—ืช.
05:40
The countries that are most advanced have been working for years now,
94
340079
4860
ื”ืžื“ื™ื ื•ืช ื”ืžืชืงื“ืžื•ืช ื‘ื™ื•ืชืจ ืขื•ื‘ื“ื•ืช ื›ื‘ืจ ืฉื ื™ื ืจื‘ื•ืช,
05:44
changing their water and food supply and healthcare systems,
95
344963
3666
ืขืœ ืฉื™ื ื•ื™ ื‘ืืกืคืงืช ื”ืžื™ื, ื”ืžื–ื•ืŸ ื•ืžืขืจื›ื•ืช ื”ื‘ืจื™ืื•ืช ืฉืœื”,
05:48
because they recognize that by the time they have certain prediction,
96
348653
4612
ื›ื™ ื”ืŸ ืžื›ื™ืจื•ืช ื‘ื›ืš, ืฉื›ืฉื™ื”ื™ื” ื‘ื™ื“ื™ื”ืŸ ื—ื™ื–ื•ื™ ื›ืœืฉื”ื•,
05:53
that information may very well come too late.
97
353289
3311
ื”ืžื™ื“ืข ื”ื–ื” ืขืœื•ืœ ืœื”ื’ื™ืข ืžืื•ื—ืจ ืžื“ื™.
05:57
You can take the same approach to trade wars, and many countries do.
98
357458
4456
ืืคืฉืจ ืœื ืงื•ื˜ ื‘ืื•ืชื” ื’ื™ืฉื” ืœื’ื‘ื™ ืžืœื—ืžื•ืช ืกื—ืจ, ื•ืžื“ื™ื ื•ืช ืจื‘ื•ืช ืขื•ืฉื•ืช ื–ืืช.
06:01
Instead of depending on a single huge trading partner,
99
361938
3823
ื‘ืžืงื•ื ืœื”ื™ื•ืช ืชืœื•ื™ื•ืช ื‘ืฉื•ืชืฃ ืขืกืงื™ ื™ื—ื™ื“ ื•ืขื ืง,
06:05
they try to be everybody's friends,
100
365785
2104
ื”ืŸ ืžื ืกื•ืช ืœื”ื™ื•ืช ื—ื‘ืจื•ืช ืฉืœ ื›ื•ืœื,
06:07
because they know they can't predict
101
367913
2338
ื›ื™ ื”ืŸ ื™ื•ื“ืขื•ืช ืฉืื™ื ืŸ ื™ื›ื•ืœื•ืช ืœื—ื–ื•ืช
06:10
which markets might suddenly become unstable.
102
370275
3754
ืื™ืœื• ืฉื•ื•ืงื™ื ื”ื•ืคื›ื™ื ืคืชืื•ื ืœื ื™ืฆื™ื‘ื™ื.
06:14
It's time-consuming and expensive, negotiating all these deals,
103
374053
4237
ืžืฉื ื•ืžืชืŸ ื‘ืงืฉืจ ืœื›ืœ ื”ืขืกืงืื•ืช ื”ืืœื”, ื”ื•ื ื™ืงืจ, ื•ื’ื•ื–ืœ ื–ืžืŸ ืจื‘,
06:18
but it's robust
104
378314
1158
ืื‘ืœ ื–ื”ื• ื—ื•ืกืŸ.
06:19
because it makes their whole economy better defended against shocks.
105
379496
5411
ื›ื™ ื–ื” ืžื’ืŸ ืขืœ ื”ื›ืœื›ืœื” ืฉืœื”ืŸ ื›ื•ืœื” ืžืคื ื™ ื–ืขื–ื•ืขื™ื.
06:24
It's particularly a strategy adopted by small countries
106
384931
3679
ื–ื• ืืกื˜ืจื˜ื’ื™ื” ืฉืื•ืžืฆื” ื‘ืขื™ืงืจ ืขืœ ื™ื“ื™ ืžื“ื™ื ื•ืช ืงื˜ื ื•ืช
06:28
that know they'll never have the market muscle to call the shots,
107
388634
4086
ืฉื™ื•ื“ืขื•ืช ืฉืœืขื•ืœื ืœื ื™ื”ื™ื” ื‘ื›ื•ื—ืŸ ืœืขืฉื•ืช ืืช ื”ื”ื—ืœื˜ื•ืช ื”ื—ืฉื•ื‘ื•ืช.
06:32
so it's just better to have too many friends.
108
392744
3154
ืื– ืขื“ื™ืฃ ืฉื™ื”ื™ื• ื™ื•ืชืจ ืžื“ื™ ื—ื‘ืจื™ื.
06:37
But if you're stuck in one of these organizations
109
397922
2407
ืื‘ืœ ืื ืืชื ืชืงื•ืขื™ื ื‘ืื—ื“ ื”ืืจื’ื•ื ื™ื ื”ืืœื”
06:40
that's still kind of captured by the efficiency myth,
110
400353
4895
ืฉืขื“ื™ื™ืŸ ืฉื‘ื•ื™ื™ื ื‘ืžื™ืชื•ืก ื”ื™ืขื™ืœื•ืช,
06:45
how do you start to change it?
111
405272
1762
ืื™ืš ืžืชื—ื™ืœื™ื ืœืฉื ื•ืช ืืช ื–ื”?
06:48
Try some experiments.
112
408011
1556
ื ืกื• ืœืขืจื•ืš ื›ืžื” ื ื™ืกื•ื™ื™ื.
06:50
In the Netherlands,
113
410421
1366
ื‘ื”ื•ืœื ื“,
06:51
home care nursing used to be run pretty much like the supermarket:
114
411811
4714
ืกื™ืขื•ื“ ื‘ื™ืชื™ ื”ื™ื” ืžื ื•ื”ืœ ื‘ืขื‘ืจ ื‘ืื•ืคืŸ ื“ื™ ื“ื•ืžื” ืœืกื•ืคืจืžืจืงื˜:
06:56
standardized and prescribed work
115
416549
2778
ืขื‘ื•ื“ื” ืกื˜ื ื“ืจื˜ื™ืช ื•ืงื‘ื•ืขื”
06:59
to the minute:
116
419351
1768
ืขืœ ื”ื“ืงื”:
07:01
nine minutes on Monday, seven minutes on Wednesday,
117
421143
3656
ืชืฉืข ื“ืงื•ืช ื‘ื™ื•ื ืฉื ื™, ืฉื‘ืข ื“ืงื•ืช ื‘ื™ื•ื ืจื‘ื™ืขื™,
07:04
eight minutes on Friday.
118
424823
1714
ืฉืžื•ื ื” ื“ืงื•ืช ื‘ื™ื•ื ืฉื™ืฉื™.
07:06
The nurses hated it.
119
426561
2382
ื”ืื—ื™ื•ืช ืฉื ืื• ืืช ื–ื”.
07:08
So one of them, Jos de Blok,
120
428967
2372
ืื– ืื—ื“ ืžื”ื, ื™ื•ืก ื“ื” ื‘ืœื•ืง,
07:11
proposed an experiment.
121
431363
1581
ื”ืฆื™ืข ื ื™ืกื•ื™.
07:13
Since every patient is different,
122
433564
1632
ืžื›ื™ื•ื•ืŸ ืฉื›ืœ ืžื˜ื•ืคืœ ืฉื•ื ื”,
07:15
and we don't quite know exactly what they'll need,
123
435220
2414
ื•ืื ื—ื ื• ืœื ืžืžืฉ ื™ื•ื“ืขื™ื ื‘ืžื“ื•ื™ืง ืžื” ื”ื ื™ืฆื˜ืจื›ื•,
07:17
why don't we just leave it to the nurses to decide?
124
437658
2687
ืžื“ื•ืข ืฉืœื ื ืฉืื™ืจ ืืช ื–ื” ืœื”ื—ืœื˜ืช ื”ืื—ื™ื•ืช?
07:21
Sound reckless?
125
441267
1370
ื ืฉืžืข ื—ืกืจ ื–ื”ื™ืจื•ืช?
07:22
(Laughter)
126
442661
1395
(ืฆื—ื•ืง)
07:24
(Applause)
127
444080
2120
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
07:26
In his experiment, Jos found the patients got better
128
446224
4134
ื”ื ื™ืกื•ื™ ืฉืœ ื™ื•ืก ื”ืจืื” ืฉื”ื—ื•ืœื™ื ื”ืฉืชืคืจื•
07:30
in half the time,
129
450382
2529
ื‘ืžื—ืฆื™ืช ืžื”ื–ืžืŸ,
07:32
and costs fell by 30 percent.
130
452935
3679
ื•ื”ืขืœื•ื™ื•ืช ืคื—ืชื• ื‘- 30%.
07:37
When I asked Jos what had surprised him about his experiment,
131
457920
4212
ื›ืฉืฉืืœืชื™ ืืช ื™ื•ืก ืžื” ื”ืคืชื™ืข ืื•ืชื• ื‘ื ื™ืกื•ื™ ืฉืœื•,
07:42
he just kind of laughed and he said,
132
462156
1793
ื”ื•ื ืคืฉื•ื˜ ืฆื—ืง ื•ืืžืจ,
07:43
"Well, I had no idea it could be so easy
133
463973
3192
"ื˜ื•ื‘, ืœื ื”ื™ื” ืœื™ ืžื•ืฉื’ ืฉื™ื”ื™ื” ื›ืœ ื›ืš ืงืœ
07:47
to find such a huge improvement,
134
467189
2590
ืœืžืฆื•ื ื“ืจืš ืœืฉื™ืคื•ืจ ื›ื” ืขื ืง,
07:49
because this isn't the kind of thing you can know or predict
135
469803
3623
ื›ื™ ื–ื” ืœื ืžืกื•ื’ ื”ื“ื‘ืจื™ื ืฉื ื™ืชืŸ ืœื“ืขืช ืื• ืœื—ื–ื•ืช
07:53
sitting at a desk or staring at a computer screen."
136
473450
2830
ื›ืฉื™ื•ืฉื‘ื™ื ืœื™ื“ ืฉื•ืœื—ืŸ ื”ืขื‘ื•ื“ื”, ืื• ื‘ื•ื”ื™ื ื‘ืžืกืš ื”ืžื—ืฉื‘."
07:56
So now this form of nursing has proliferated across the Netherlands
137
476734
3774
ืื– ืขื›ืฉื™ื• ืฆื•ืจืช ืกื™ืขื•ื“ ื–ื• ื”ืชืคืฉื˜ื” ื‘ืจื—ื‘ื™ ื”ื•ืœื ื“
08:00
and around the world.
138
480532
1734
ื•ื‘ืขื•ืœื ื›ื•ืœื•.
08:02
But in every new country it still starts with experiments,
139
482290
3220
ืื‘ืœ ื‘ื›ืœ ืžื“ื™ื ื” ื—ื“ืฉื” ื–ื” ืขื“ื™ื™ืŸ ืžืชื—ื™ืœ ื‘ื ื™ืกื•ื™ื™ื,
08:05
because each place is slightly and unpredictably different.
140
485534
4858
ื›ื™ ื›ืœ ืžืงื•ื ืฉื•ื ื” ืžืขื˜ ื•ื‘ืื•ืคืŸ ื‘ืœืชื™ ืฆืคื•ื™.
08:11
Of course, not all experiments work.
141
491246
3950
ื›ืžื•ื‘ืŸ ืฉืœื ื›ืœ ื”ื ื™ืกื•ื™ื™ื ืขื•ื‘ื“ื™ื.
08:15
Jos tried a similar approach to the fire service
142
495220
3056
ื™ื•ืก ื ื™ืกื” ืœืคืขื•ืœ ื‘ื’ื™ืฉื” ื“ื•ืžื” ืขื ืฉื™ืจื•ืชื™ ื”ื›ื‘ืื•ืช
08:18
and found it didn't work because the service is just too centralized.
143
498300
3537
ื•ื’ื™ืœื” ืฉื–ื” ืœื ืขื•ื‘ื“ ื›ื™ ื”ืฉื™ืจื•ืช ืคืฉื•ื˜ ื™ื•ืชืจ ืžื“ื™ ืจื™ื›ื•ื–ื™.
08:21
Failed experiments look inefficient,
144
501861
2563
ื ืจืื” ืฉื ื™ืกื•ื™ื™ื ื›ื•ืฉืœื™ื ืื™ื ื ื™ืขื™ืœื™ื,
08:24
but they're often the only way you can figure out
145
504448
3183
ืื‘ืœ ื”ื ื‘ื“ืจืš ื›ืœืœ ื”ื“ืจืš ื”ื™ื—ื™ื“ื” ื‘ื” ื ื™ืชืŸ ืœื”ื‘ื™ืŸ
08:27
how the real world works.
146
507655
2274
ืื™ืš ื”ืขื•ืœื ื”ืืžื™ืชื™ ืขื•ื‘ื“.
08:30
So now he's trying teachers.
147
510280
3033
ืื– ืขื›ืฉื™ื• ื”ื•ื ืžื ืกื” ืขื ื”ืžื•ืจื™ื.
08:34
Experiments like that require creativity
148
514746
3747
ื ื™ืกื•ื™ื™ื ื›ืืœื” ืžื—ื™ื™ื‘ื™ื ื™ืฆื™ืจืชื™ื•ืช
08:38
and not a little bravery.
149
518517
2307
ื•ืœื ืžืขื˜ ืื•ืžืฅ.
08:41
In England --
150
521613
1563
ื‘ืื ื’ืœื™ื” --
08:43
I was about to say in the UK, but in England --
151
523978
2905
ืขืžื“ืชื™ ืœื•ืžืจ ื‘ื‘ืจื™ื˜ื ื™ื”, ืื‘ืœ ื‘ืื ื’ืœื™ื” --
08:46
(Laughter)
152
526907
1742
(ืฆื—ื•ืง)
08:48
(Applause)
153
528673
4314
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
08:53
In England, the leading rugby team, or one of the leading rugby teams,
154
533363
4086
ืงื‘ื•ืฆืช ื”ืจื•ื’ื‘ื™ ื”ืžื•ื‘ื™ืœื”, ืื• ืื—ืช ืžื”ืžื•ื‘ื™ืœื•ืช,
08:57
is Saracens.
155
537473
1360
ื”ื™ื ืกืจืกื ืก.
08:59
The manager and the coach there realized that all the physical training they do
156
539299
5065
ื”ืžื ื”ืœ ื•ื”ืžืืžืŸ ืฉืœื” ื”ื‘ื™ื ื• ืฉื›ืœ ื”ืื™ืžื•ื ื™ื ื”ื’ื•ืคื ื™ื™ื ืฉื”ื ืขื•ืฉื™ื
09:04
and the data-driven conditioning that they do
157
544388
2714
ื•ื”ื”ืชื ื™ื” ืžื•ื ื—ื™ืช-ื”ื ืชื•ื ื™ื ืฉื”ื ืขื•ืฉื™ื
09:07
has become generic;
158
547126
1154
ื”ืคื›ื• ืœื’ื ืจื™ื™ื;
09:08
really, all the teams do exactly the same thing.
159
548304
2790
ื›ืœ ื”ืงื‘ื•ืฆื•ืช ืขื•ืฉื•ืช ื‘ื“ื™ื•ืง ืืช ืื•ืชื• ื”ื“ื‘ืจ .
09:11
So they risked an experiment.
160
551683
2332
ืื– ื”ื ื”ืกืชื›ื ื• ื‘ื ื™ืกื•ื™.
09:14
They took the whole team away, even in match season,
161
554039
4245
ื”ื ืœืงื—ื• ืืช ื›ืœ ื”ืงื‘ื•ืฆื”, ืืคื™ืœื• ื‘ืขื•ื ืช ื”ืžืฉื—ืงื™ื,
09:18
on ski trips
162
558308
1415
ืœื˜ื™ื•ืœื™ ืกืงื™
09:19
and to look at social projects in Chicago.
163
559747
3294
ื•ืœืจืื•ืช ืคืจื•ื™ืงื˜ื™ื ื—ื‘ืจืชื™ื™ื ื‘ืฉื™ืงื’ื•.
09:23
This was expensive,
164
563065
1526
ื–ื” ื”ื™ื” ื™ืงืจ,
09:24
it was time-consuming,
165
564615
1952
ื–ื” ื’ื–ืœ ื–ืžืŸ,
09:26
and it could be a little risky
166
566591
1681
ื•ื™ื›ื•ืœ ื”ื™ื” ืœื”ื™ื•ืช ืงืฆืช ืžืกื•ื›ืŸ
09:28
putting a whole bunch of rugby players on a ski slope, right?
167
568296
3774
ืœื”ื›ื ื™ืก ื—ื‘ื•ืจื” ืฉืœืžื” ืฉืœ ืฉื—ืงื ื™ ืจื•ื’ื‘ื™ ืœืžื“ืจื•ืŸ ืกืงื™, ื ื›ื•ืŸ?
09:32
(Laughter)
168
572094
1047
(ืฆื—ื•ืง)
09:33
But what they found was that the players came back
169
573165
3344
ืื‘ืœ ื”ื ืžืฆืื• ืฉื”ืฉื—ืงื ื™ื ื—ื–ืจื•
09:36
with renewed bonds of loyalty and solidarity.
170
576533
5266
ืขื ืงืฉืจื™ื ืžื—ื•ื“ืฉื™ื ืฉืœ ื ืืžื ื•ืช ื•ืกื•ืœื™ื“ืจื™ื•ืช.
09:41
And now when they're on the pitch under incredible pressure,
171
581823
3409
ื•ืขื›ืฉื™ื• ื›ืฉื”ื ืขืœ ื”ืžื’ืจืฉ ืชื—ืช ืœื—ืฅ ืžื“ื”ื™ื,
09:45
they manifest what the manager calls "poise" --
172
585256
4426
ื”ื ืžืคื’ื™ื ื™ื ืืช ืžื” ืฉื”ืžื ื”ืœ ืžื›ื ื” "ื ื™ื ื•ื—ื•ืช" -
09:50
an unflinching, unwavering dedication
173
590515
4159
ืžืกื™ืจื•ืช ื™ืฆื™ื‘ื” ื•ื‘ืœืชื™ ืžืขื•ืจืขืจืช
09:54
to each other.
174
594698
1475
ืื—ื“ ืœืฉื ื™.
09:56
Their opponents are in awe of this,
175
596824
3753
ื”ื™ืจื™ื‘ื™ื ืฉืœื”ื ืคื•ื—ื“ื™ื ืžื–ื”,
10:00
but still too in thrall to efficiency to try it.
176
600601
4152
ืื‘ืœ ืขื“ื™ื™ืŸ ืžืฉื•ืขื‘ื“ื™ื ืžื“ื™ ืœื™ืขื™ืœื•ืช ืžื›ื“ื™ ืœื ืกื•ืช ืืช ื–ื”.
10:05
At a London tech company, Verve,
177
605783
2032
ื‘ื—ื‘ืจืช ื˜ื›ื ื•ืœื•ื’ื™ื” ื‘ืœื•ื ื“ื•ืŸ, ื‘ืฉื Verve,
10:07
the CEO measures just about everything that moves,
178
607839
3343
ื”ืžื ื›"ืœื™ืช ืžื•ื“ื“ืช ื›ืžืขื˜ ื›ืœ ืžื” ืฉื–ื–,
10:11
but she couldn't find anything that made any difference
179
611206
3024
ืื‘ืœ ื”ื™ื ืœื ื”ืฆืœื™ื—ื” ืœืžืฆื•ื ืฉื•ื ื“ื‘ืจ ืฉืฉื™ื ื” ืžืฉื”ื•
10:14
to the company's productivity.
180
614254
2127
ื‘ืคืจื™ื•ืŸ ื”ื—ื‘ืจื”.
10:16
So she devised an experiment that she calls "Love Week":
181
616405
3755
ืื– ื”ื™ื ื™ื–ืžื” ื ื™ืกื•ื™ ืฉื”ื™ื ืžื›ื ื” "ืฉื‘ื•ืข ืื”ื‘ื”":
10:20
a whole week where each employee has to look for really clever,
182
620184
4537
ืฉื‘ื•ืข ืฉืœื ื‘ื• ื›ืœ ืขื•ื‘ื“ ืฆืจื™ืš ืœื—ืคืฉ, ื“ื‘ืจื™ื ืžืžืฉ ื—ื›ืžื™ื,
10:24
helpful, imaginative things
183
624745
2279
ืžื•ืขื™ืœื™ื ื•ื™ืฆื™ืจืชื™ื™ื
10:27
that a counterpart does,
184
627048
1800
ืฉืขืžื™ืชื™ื”ื ืขื•ืฉื™ื,
10:28
call it out and celebrate it.
185
628872
2464
ืœืฆื™ื™ืŸ ืื•ืชื ื•ืœื”ืœืœ ืื•ืชื.
10:31
It takes a huge amount of time and effort;
186
631360
2117
ื–ื” ืžืฆืจื™ืš ื›ืžื•ืช ืขืฆื•ืžื” ืฉืœ ื–ืžืŸ ื•ืžืืžืฅ;
10:33
lots of people would call it distracting.
187
633501
3037
ื”ืจื‘ื” ืื ืฉื™ื ื”ื™ื• ืงื•ืจืื™ื ืœื–ื” ื”ืกื—ืช ื“ืขืช.
10:36
But it really energizes the business
188
636562
2232
ืื‘ืœ ื–ื” ื‘ืืžืช ืžืžืจื™ืฅ ืืช ื”ืขืกืง
10:38
and makes the whole company more productive.
189
638818
3638
ื•ืžื™ื™ืขืœ ืืช ื”ื—ื‘ืจื” ื›ื•ืœื”.
10:44
Preparedness, coalition-building,
190
644048
3306
ืžื•ื›ื ื•ืช, ื‘ื ื™ื™ืช ืงื•ืืœื™ืฆื™ื”,
10:47
imagination, experiments,
191
647378
3582
ื“ืžื™ื•ืŸ, ื ื™ืกื•ื™ื™ื,
10:50
bravery --
192
650984
1167
ืื•ืžืฅ --
10:53
in an unpredictable age,
193
653028
1597
ื‘ืขื™ื“ืŸ ื‘ืœืชื™ ืฆืคื•ื™,
10:54
these are tremendous sources of resilience and strength.
194
654649
5668
ืืœื” ืžืงื•ืจื•ืช ืื“ื™ืจื™ื ืฉืœ ื—ื•ืกืŸ ื ืคืฉื™, ื•ื›ื•ื—.
11:00
They aren't efficient,
195
660673
2568
ื”ื ืœื ื™ืขื™ืœื™ื,
11:04
but they give us limitless capacity
196
664278
2669
ืื‘ืœ ื”ื ื ื•ืชื ื™ื ืœื ื• ื™ื›ื•ืœืช ื‘ืœืชื™ ืžื•ื’ื‘ืœืช
11:06
for adaptation, variation and invention.
197
666971
4495
ืœืกืชื’ืœื ื•ืช, ืฉื•ื ื•ืช ื•ื”ืžืฆืื”.
11:12
And the less we know about the future,
198
672284
2422
ื•ื›ื›ืœ ืฉืื ื• ื™ื•ื“ืขื™ื ืคื—ื•ืช ืขืœ ื”ืขืชื™ื“,
11:14
the more we're going to need these tremendous sources
199
674730
5402
ื™ื•ืชืจ ื ื–ื“ืงืง ืœืžืงื•ืจื•ืช ื”ืื“ื™ืจื™ื ื”ืืœื”
11:20
of human, messy, unpredictable skills.
200
680156
5621
ืฉืœ ืžื™ื•ืžื ื•ื™ื•ืช ืื ื•ืฉื™ื•ืช ืžื‘ื•ืœื’ื ื•ืช ื•ื‘ืœืชื™ ืฆืคื•ื™ื•ืช.
11:27
But in our growing dependence on technology,
201
687336
4060
ืื‘ืœ ืขืงื‘ ื”ืชืœื•ืช ื”ื’ื•ื‘ืจืช ืฉืœื ื• ื‘ื˜ื›ื ื•ืœื•ื’ื™ื”,
11:32
we're asset-stripping those skills.
202
692318
3350
ืื ื—ื ื• ืžืฆืžืฆืžื™ื ืืช ื”ื™ื›ื•ืœื•ืช ื”ืืœื•.
11:36
Every time we use technology
203
696642
3565
ื‘ื›ืœ ืคืขื ืฉืื ื—ื ื• ืžืฉืชืžืฉื™ื ื‘ื˜ื›ื ื•ืœื•ื’ื™ื”
11:40
to nudge us through a decision or a choice
204
700231
4192
ืขืœ ืžื ืช ืœื”ื ื™ืข ืื•ืชื ื• ืœื”ื—ืœื˜ื” ืื• ื‘ื—ื™ืจื”
11:44
or to interpret how somebody's feeling
205
704447
2314
ืื• ืœืคืจืฉ ืื™ืš ืžื™ืฉื”ื• ืžืจื’ื™ืฉ
11:46
or to guide us through a conversation,
206
706785
2177
ืื• ืœื”ื“ืจื™ืš ืื•ืชื ื• ื‘ืฉื™ื—ื”,
11:48
we outsource to a machine what we could, can do ourselves,
207
708986
5114
ืื ื• ืคื•ื ื™ื ืœืฉืจื•ืช ืžื™ืงื•ืจ ื—ื•ืฅ ืฉืœ ืžื›ื•ื ื”, ืขื‘ื•ืจ ืžื” ืฉื™ื›ื•ืœื ื•, ื•ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ื‘ืขืฆืžื ื•,
11:54
and it's an expensive trade-off.
208
714124
2524
ื•ื–ื” ื˜ืจื™ื™ื“-ืื•ืฃ ื™ืงืจ.
11:57
The more we let machines think for us,
209
717847
2902
ื›ื›ืœ ืฉื ื™ืชืŸ ืœืžื›ื•ื ื•ืช ืœื—ืฉื•ื‘ ืขื‘ื•ืจื ื•,
12:01
the less we can think for ourselves.
210
721780
2869
ื ื•ื›ืœ ืคื—ื•ืช ืœื—ืฉื•ื‘ ื‘ืขืฆืžื ื•.
12:05
The more --
211
725661
1153
ื›ื›ืœ --
12:06
(Applause)
212
726838
4570
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
12:11
The more time doctors spend staring at digital medical records,
213
731432
4721
ื›ื›ืœ ืฉืจื•ืคืื™ื ื‘ื•ื”ื™ื ื™ื•ืชืจ ื–ืžืŸ ื‘ืจื™ืฉื•ืžื™ื ืจืคื•ืื™ื™ื ื“ื™ื’ื™ื˜ืœื™ื™ื,
12:16
the less time they spend looking at their patients.
214
736177
3386
ืคื—ื•ืช ื–ืžืŸ ื”ื ืžืกืชื›ืœื™ื ืขืœ ื”ืžื˜ื•ืคืœื™ื ืฉืœื”ื.
12:20
The more we use parenting apps,
215
740325
2788
ื›ื›ืœ ืฉืื ื• ืžืฉืชืžืฉื™ื ื™ื•ืชืจ ื‘ืืคืœื™ืงืฆื™ื•ืช ืœื”ื•ืจื•ืช,
12:23
the less we know our kids.
216
743137
2157
ืคื—ื•ืช ืื ื• ืžื›ื™ืจื™ื ืืช ื™ืœื“ื™ื ื•.
12:26
The more time we spend with people that we're predicted and programmed to like,
217
746310
5086
ื›ื›ืœ ืฉืื ื• ืžื‘ืœื™ื ื™ื•ืชืจ ืขื ืื ืฉื™ื ืฉื™ื•ืขื“ื ื• ื•ืชื•ื›ื ืชื ื• ืœืื”ื•ื‘,
12:31
the less we can connect with people who are different from ourselves.
218
751420
3710
ืคื—ื•ืช ื ื•ื›ืœ ืœื”ืชื—ื‘ืจ ืœืื ืฉื™ื ืฉื•ื ื™ื ืžืื™ืชื ื•.
12:35
And the less compassion we need, the less compassion we have.
219
755154
5027
ื•ื›ื›ืœ ืฉืื ื• ื–ืงื•ืงื™ื ืคื—ื•ืช ืœื—ืžืœื”, ืคื—ื•ืช ื—ืžืœื” ื™ืฉ ื‘ื ื•.
12:41
What all of these technologies attempt to do
220
761825
3534
ืžื” ืฉื›ืœ ื”ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ื”ืืœื• ืžื ืกื•ืช ืœืขืฉื•ืช
12:45
is to force-fit a standardized model of a predictable reality
221
765383
6797
ื”ื•ื ืœื›ืคื•ืช ืžื•ื“ืœ ืžืชื•ืงื ืŸ ืฉืœ ืžืฆื™ืื•ืช ืฆืคื•ื™ื”
12:52
onto a world that is infinitely surprising.
222
772204
3368
ืขืœ ืขื•ืœื ืฉื”ื•ื ืžืคืชื™ืข ืขื“ ืื™ืŸ ืงืฅ.
12:56
What gets left out?
223
776926
1352
ืžื” ื ืฉืืจ ื‘ื—ื•ืฅ?
12:58
Anything that can't be measured --
224
778965
2603
ื›ืœ ืžื” ืฉืœื ื ื™ืชืŸ ืœืžื“ื™ื“ื” --
13:02
which is just about everything that counts.
225
782451
2359
ืฉื–ื” ื‘ืขืจืš ื›ืžืขื˜ ื›ืœ ืžื” ืฉื—ืฉื•ื‘.
13:05
(Applause)
226
785810
6965
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
13:14
Our growing dependence on technology
227
794854
4087
ื”ืชืœื•ืช ื”ื’ื•ื‘ืจืช ืฉืœื ื• ื‘ื˜ื›ื ื•ืœื•ื’ื™ื”
13:18
risks us becoming less skilled,
228
798965
3773
ืžืกื›ื ืช ืื•ืชื ื• ืœื”ืคื•ืš ืœืคื—ื•ืช ืžื™ื•ืžื ื™ื,
13:22
more vulnerable
229
802762
1595
ื™ื•ืชืจ ืคื’ื™ืขื™ื
13:24
to the deep and growing complexity
230
804381
2951
ืœื ื•ื›ื— ื”ืžื•ืจื›ื‘ื•ืช ื”ืขืžื•ืงื” ื•ื”ื’ื•ื‘ืจืช
13:27
of the real world.
231
807356
1373
ืฉืœ ื”ืขื•ืœื ื”ืืžื™ืชื™.
13:29
Now, as I was thinking about the extremes of stress and turbulence
232
809951
5384
ื›ืฉื—ืฉื‘ืชื™ ืขืœ ืžื™ื“ื•ืช ืงื™ืฆื•ื ื™ื•ืช ืฉืœ ืžืชื— ื•ื–ืขื–ื•ืข
13:35
that we know we will have to confront,
233
815359
2656
ืฉืื ื—ื ื• ื™ื•ื“ืขื™ื ืฉื ืฆื˜ืจืš ืœื”ืชืขืžืช ืื™ืชื,
13:39
I went and I talked to a number of chief executives
234
819412
2952
ื”ืœื›ืชื™ ื•ื“ื™ื‘ืจืชื™ ืขื ืžืกืคืจ ืžื ื”ืœื™ื
13:42
whose own businesses had gone through existential crises,
235
822388
4168
ืฉื”ืขืกืงื™ื ืฉืœื”ื ืขื‘ืจื• ืžืฉื‘ืจื™ื ืงื™ื•ืžื™ื™ื,
13:46
when they teetered on the brink of collapse.
236
826580
2888
ื›ืฉื”ื ื”ื™ื˜ืœื˜ืœื• ืขืœ ืกืฃ ืงืจื™ืกื”.
13:50
These were frank, gut-wrenching conversations.
237
830594
4808
ืฉื™ื—ื•ืช ืืœื• ื”ื™ื• ื’ืœื•ื™ื•ืช ืœื‘ ื•ื›ื•ืื‘ื•ืช.
13:56
Many men wept just remembering.
238
836302
3277
ื’ื‘ืจื™ื ืจื‘ื™ื ื‘ื›ื• ืจืง ื›ืฉื ื–ื›ืจื•.
14:00
So I asked them:
239
840214
1514
ืื– ืฉืืœืชื™ ืื•ืชื:
14:02
"What kept you going through this?"
240
842603
2065
"ืžื” ืขื–ืจ ืœื›ื ืœื”ื—ื–ื™ืง ืžืขืžื“ ื‘ื›ืœ ื–ื”?"
14:05
And they all had exactly the same answer.
241
845328
2654
ื•ืœื›ื•ืœื ื”ื™ื™ืชื” ื‘ื“ื™ื•ืง ืื•ืชื” ืชืฉื•ื‘ื”.
14:08
"It wasn't data or technology," they said.
242
848006
3110
"ืืœื” ืœื ื”ื™ื• ื”ื ืชื•ื ื™ื ืื• ื”ื˜ื›ื ื•ืœื•ื’ื™ื”,"
14:11
"It was my friends and my colleagues
243
851926
3385
"ื”ื—ื‘ืจื™ื ื•ื”ืขืžื™ืชื™ื ืฉืœื™ ื”ื™ื• ืืœื”
14:15
who kept me going."
244
855335
1336
ืฉืขื•ื“ื“ื• ืื•ืชื™ ืœื”ืžืฉื™ืš."
14:17
One added, "It was pretty much the opposite of the gig economy."
245
857173
5315
ืื—ื“ ื”ื•ืกื™ืฃ, "ื–ื” ื”ื™ื” ื”ืคื•ืš ืžืื•ื“ ืžื›ืœื›ืœืช ื’ื™ื’ (ื—ืœื˜ื•ืจื”)."
14:24
But then I went and I talked to a group of young, rising executives,
246
864056
3734
ืื‘ืœ ืื– ื“ื™ื‘ืจืชื™ ืขื ืงื‘ื•ืฆืช ืžื ื”ืœื™ื ืฆืขื™ืจื™ื ื‘ืชื”ืœื™ืš ืฆืžื™ื—ื”,
14:27
and I asked them,
247
867814
1807
ื•ืฉืืœืชื™ ืื•ืชื,
14:29
"Who are your friends at work?"
248
869645
1542
ืžื™ ื”ื—ื‘ืจื™ื ืฉืœื›ื ื‘ืขื‘ื•ื“ื”?"
14:31
And they just looked blank.
249
871211
1778
ื•ื”ื ืคืฉื•ื˜ ื ืจืื• ื—ืกืจื™ ื”ื‘ืขื”.
14:33
"There's no time."
250
873765
1850
"ืื™ืŸ ื–ืžืŸ."
14:35
"They're too busy."
251
875639
1809
"ื”ื ืขืกื•ืงื™ื ืžื“ื™."
14:37
"It's not efficient."
252
877472
1438
"ื–ื” ืœื ื™ืขื™ืœ."
14:39
Who, I wondered, is going to give them
253
879906
3572
ืชื”ื™ืชื™, ืžื™ ื™ืขื ื™ืง ืœื”ื
14:43
imagination and stamina and bravery
254
883502
4539
ื“ืžื™ื•ืŸ ื•ืกื™ื‘ื•ืœืช ื•ืื•ืžืฅ ืœื‘
14:48
when the storms come?
255
888065
1516
ื›ืฉื”ืกืขืจื•ืช ื™ื’ื™ืขื•?
14:51
Anyone who tries to tell you that they know the future
256
891694
3643
ื›ืœ ืžื™ ืฉืžื ืกื” ืœื•ืžืจ ืœื›ื ืฉื”ื•ื ื™ื•ื“ืข ืžื” ื™ื”ื™ื” ื‘ืขืชื™ื“
14:55
is just trying to own it,
257
895361
2198
ืจืง ืžื ืกื” ืœื”ื™ืื—ื– ื‘ื–ื”,
14:57
a spurious kind of manifest destiny.
258
897583
3308
ื‘ืกื•ื’ ืžื–ื•ื™ืฃ ืฉืœ ื’ื•ืจืœ ื ื’ืœื”.
15:01
The harder, deeper truth is
259
901794
2321
ื”ืืžืช ื”ืขืžื•ืงื” ื•ื”ืงืฉื” ื™ื•ืชืจ ื”ื™ื
15:05
that the future is uncharted,
260
905126
2409
ืฉื”ืขืชื™ื“ ืื™ื ื• ืžืžื•ืคื”,
15:07
that we can't map it till we get there.
261
907559
2244
ืฉืื™ื ื ื• ื™ื›ื•ืœื™ื ืœืžืคื•ืช ืื•ืชื• ืขื“ ืฉื ื’ื™ืข ืœืฉื.
15:10
But that's OK,
262
910734
2063
ืื‘ืœ ื–ื” ื‘ืกื“ืจ,
15:12
because we have so much imagination --
263
912821
3017
ื›ื™ ื™ืฉ ืœื ื• ื›ืœ ื›ืš ื”ืจื‘ื” ื“ืžื™ื•ืŸ --
15:15
if we use it.
264
915862
1447
ืื ืื ื—ื ื• ืžืฉืชืžืฉื™ื ื‘ื–ื”.
15:17
We have deep talents of inventiveness and exploration --
265
917333
5477
ื™ืฉ ืœื ื• ื›ื™ืฉืจื•ื ื•ืช ืจื‘ื™ื ืฉืœ ื—ื“ืฉื ื•ืช ื•ืžื—ืงืจ -
15:22
if we apply them.
266
922834
1777
ืื ืจืง ื ื™ื™ืฉื ืื•ืชื.
15:24
We are brave enough to invent things we've never seen before.
267
924635
5517
ืื ื—ื ื• ืžืกืคื™ืง ืืžื™ืฆื™ื ื›ื“ื™ ืœื”ืžืฆื™ื ื“ื‘ืจื™ื ืฉืžืขื•ืœื ืœื ืจืื™ื ื• ื‘ืขื‘ืจ.
15:31
Lose those skills,
268
931175
1615
ืื ื ืื‘ื“ ืืช ื”ื›ื™ืฉื•ืจื™ื ื”ืืœื”,
15:33
and we are adrift.
269
933810
1722
ื ื™ืกื—ืฃ ื‘ื–ืจื.
15:36
But hone and develop them,
270
936384
2725
ืื‘ืœ ืื ื ื—ื“ื“ ื•ื ืคืชื— ืื•ืชื,
15:40
we can make any future we choose.
271
940498
2458
ื ื•ื›ืœ ืœื™ื™ืฆืจ ื›ืœ ืขืชื™ื“ ืฉื ื‘ื—ืจ.
15:44
Thank you.
272
944382
1174
ืชื•ื“ื”.
15:45
(Applause)
273
945580
6086
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7