The human skills we need in an unpredictable world | Margaret Heffernan

201,445 views

2019-09-10 ใƒป TED


New videos

The human skills we need in an unpredictable world | Margaret Heffernan

201,445 views ใƒป 2019-09-10

TED


์•„๋ž˜ ์˜๋ฌธ์ž๋ง‰์„ ๋”๋ธ”ํด๋ฆญํ•˜์‹œ๋ฉด ์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค.

๋ฒˆ์—ญ: Dae Gil Hwang ๊ฒ€ํ† : Yunjung Nam
00:12
Recently, the leadership team of an American supermarket chain
0
12731
3606
์ตœ๊ทผ ๋ฏธ๊ตญ ์–ด๋Š ์Šˆํผ๋งˆ์ผ“์˜ ๋ฆฌ๋”์‹ญ ํŒ€์€
00:16
decided that their business needed to get a lot more efficient.
1
16361
3456
๊ทธ๋“ค์˜ ์‚ฌ์—…์— ๋” ํšจ์œจ์„ฑ์„ ๋„์ž… ํ•˜๊ธฐ๋กœ ๊ฒฐ์ •ํ•˜๊ณ 
00:19
So they embraced their digital transformation with zeal.
2
19841
3855
๊ธฐ๊บผ์ด ๋””์ง€ํ„ธํ™”๋ฅผ ์ˆ˜์šฉํ•ฉ๋‹ˆ๋‹ค.
00:24
Out went the teams supervising meat, veg, bakery,
3
24174
3948
๊ณ ๊ธฐ, ์•ผ์ฑ„, ๋นต์ง‘์„ ๊ฐ๋…ํ•˜๋Š” ํŒ€๋“ค์ด ๋‚˜๊ฐ”๊ณ 
00:28
and in came an algorithmic task allocator.
4
28146
4156
์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ธฐ๋ฐ˜์˜ ์ž‘์—… ๋ถ„๋ฐฐ๊ธฐ๋ฅผ ๋„์ž…ํ•˜์˜€์ฃ .
00:32
Now, instead of people working together,
5
32914
2103
์ด์ œ๋Š” ์‚ฌ๋žŒ๋“ค์ด ๊ฐ™์ด ์ผํ•˜๋Š” ๋Œ€์‹ 
00:35
each employee went, clocked in, got assigned a task, did it,
6
35041
4241
์ง์›๋“ค์€ ์ถœ๊ทผ์นด๋“œ๋ฅผ ์ฐ๊ณ  ์ž‘์—…์„ ํ• ๋‹น๋ฐ›๊ณ  ์ผ์„ ํ•˜๊ณ ๋‚˜์„œ
00:39
came back for more.
7
39306
1578
๋‹ค๋ฅธ ์ผ์„ ์œ„ํ•ด ๋‹ค์‹œ ๋“ค๋ฅด์ฃ .
00:41
This was scientific management on steroids,
8
41429
3727
์ด๊ฑด ๊ฐ•๋ ฅํ•œ ๊ณผํ•™์ ์ธ ๊ด€๋ฆฌ์ด๋ฉฐ
00:45
standardizing and allocating work.
9
45180
2082
ํ†ต์ผ์ ์ด๊ณ  ํšจ์œจ์ ์ธ ๋ถ„๋ฐฐ์˜€์—ˆ์ฃ .
00:47
It was super efficient.
10
47580
2090
๋งค์šฐ ํšจ๊ณผ์ ์ผ ์ค„ ์•Œ์•˜๋Š”๋ฐ,
00:50
Well, not quite,
11
50750
1366
๋ณ„๋กœ ๊ทธ๋ ‡์ง€ ์•Š์•˜์ฃ .
00:53
because the task allocator didn't know
12
53351
2326
์™œ๋ƒํ•˜๋ฉด, ์ž‘์—… ๋ถ„๋ฐฐ๊ธฐ๋Š” ๋ชจ๋ฆ…๋‹ˆ๋‹ค.
00:55
when a customer was going to drop a box of eggs,
13
55701
2922
์–ธ์ œ ๊ณ ๊ฐ์ด ๊ณ„๋ž€ ๋ฐ•์Šค๋“ค์„ ์“ฐ๋Ÿฌ๋œจ๋ฆด์ง€
00:58
couldn't predict when some crazy kid was going to knock over a display,
14
58647
3849
์•„์ด๋“ค์ด ํ™”๋ฉด์„ ์ณ์„œ ์“ฐ๋Ÿฌ๋œจ๋ฆด์ง€ ์•Œ ์ˆ˜ ์—†์œผ๋ฉฐ
01:02
or when the local high school decided
15
62520
1916
ํ˜น์€ ๊ทผ์ฒ˜ ํ•™๊ต๋“ค์ด ๋ชจ๋“  ํ•™์ƒ์ด
01:04
that everybody needed to bring in coconuts the next day.
16
64460
2635
๋‹ค์Œ๋‚  ์ฝ”์ฝ”๋„›์„ ๊ฐ€์ ธ์˜ค๋„๋ก ํ• ์ง€๋„ ๋ชฐ๋ž์ฃ .
01:07
(Laughter)
17
67119
1000
(์›ƒ์Œ)
01:08
Efficiency works really well
18
68143
2137
ํšจ์œจ์„ฑ์€ ์—ฌ๋Ÿฌ๋ถ„์ด ๋ฌด์—‡์ด ํ•„์š”ํ• ์ง€
01:10
when you can predict exactly what you're going to need.
19
70304
3039
์ •ํ™•ํ•˜๊ฒŒ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ์„ ๋•Œ ๋งค์šฐ ํšจ๊ณผ์ ์ž…๋‹ˆ๋‹ค.
01:13
But when the anomalous or unexpected comes along --
20
73815
3276
ํ•˜์ง€๋งŒ, ๋ณ€์น™์ ์ด๊ณ  ์˜ˆ์ƒ์น˜ ๋ชปํ•œ ์ผ์ด ์ƒ๊ธธ๋•Œ๊ฐ€ ์žˆ์ฃ .
01:17
kids, customers, coconuts --
21
77115
2332
์•„์ด๋“ค, ๊ณ ๊ฐ๋“ค, ์ฝ”์ฝ”๋„› ๋“ฑ ๋ง์ด์—์š”.
01:19
well, then efficiency is no longer your friend.
22
79471
2873
ํšจ์œจ์„ฑ์€ ๋” ์ด์ƒ ์—ฌ๋Ÿฌ๋ถ„์˜ ์นœ๊ตฌ๊ฐ€ ์•„๋‹™๋‹ˆ๋‹ค.
์ •๋ง ์ค‘์š”ํ•œ ๋ฌธ์ œ๊ฐ€ ๋˜๋Š” ๊ฒƒ์€
01:24
This has become a really crucial issue,
23
84074
2117
01:26
this ability to deal with the unexpected,
24
86215
2618
์˜ˆ์ƒ์น˜ ๋ชปํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋Š” ๋Šฅ๋ ฅ์ž…๋‹ˆ๋‹ค.
01:29
because the unexpected is becoming the norm.
25
89771
3457
์˜ˆ์ƒ์น˜ ๋ชปํ•œ ์ผ๋“ค์€ ์ด์ œ ์ผ๋ฐ˜์ ์ด๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
01:33
It's why experts and forecasters are reluctant to predict anything
26
93660
4077
์ „๋ฌธ๊ฐ€๋“ค๊ณผ ์˜ˆ๋ณด์ž๋“ค๋„
400์ผ ์ด์ƒ์˜ ์ผ๋“ค์„ ์˜ˆ์ธกํ•˜๋Š”๊ฒƒ์„ ์ฃผ์ €ํ•˜๋Š” ์ด์œ ๊ธฐ๋„ ํ•˜์ฃ 
01:37
more than 400 days out.
27
97761
2572
01:41
Why?
28
101054
1446
์™œ๋ƒ๊ณ ์š”?
01:42
Because over the last 20 or 30 years,
29
102524
1924
์™œ๋ƒํ•˜๋ฉด ์ง€๋‚œ 20~30 ๋…„๊ฐ„,
01:44
much of the world has gone from being complicated
30
104472
3810
๋Œ€๋ถ€๋ถ„์˜ ์„ธ์ƒ์€ ๋ณต์žกํ•จ์—์„œ ๋ฒ—์–ด๋‚˜
01:48
to being complex --
31
108306
1296
๋ณตํ•ฉ์ ์ด ๋˜์—ˆ๋‹ค๋Š” ๊ฒƒ์ด์ฃ .
01:50
which means that yes, there are patterns,
32
110431
2283
์ฆ‰, ๋ฌผ๋ก  ์„ธ์ƒ์— ํŒจํ„ด์ด ์กด์žฌํ•˜์ง€๋งŒ
01:52
but they don't repeat themselves regularly.
33
112738
2296
๊ทœ์น™์ ์œผ๋กœ ๋ฐ˜๋ณต๋˜์ง€๋Š” ์•Š๋Š”๋‹ค๋Š” ๋œป์ž…๋‹ˆ๋‹ค.
01:55
It means that very small changes can make a disproportionate impact.
34
115440
4288
๋งค์šฐ ์ž‘์€ ๋ณ€ํ™”๋„ ๋ถˆ๊ท ํ˜•์ ์ธ ์˜ํ–ฅ์„ ๋ผ์น˜๋ฉฐ
02:00
And it means that expertise won't always suffice,
35
120244
2666
์ „๋ฌธ์ง€์‹๋งŒ์œผ๋กœ ํ•ญ์ƒ ์ถฉ๋ถ„ํ•˜์ง€ ์•Š๋‹ค๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•˜๋Š”๋ฐ
02:02
because the system just keeps changing too fast.
36
122934
3634
์‹œ์Šคํ…œ์ด ๋„ˆ๋ฌด ๋น ๋ฅด๊ฒŒ ๋ณ€ํ™”ํ•˜๊ธฐ ๋•Œ๋ฌธ์ด์ฃ .
02:08
So what that means
37
128192
2632
๊ทธ๊ฒƒ์ด ์˜๋ฏธํ•˜๋Š” ๊ฒƒ์€ ๋ฐ”๋กœ
02:10
is that there's a huge amount in the world
38
130848
2887
์„ธ์ƒ์—๋Š” ์˜ˆ์ธก์ด ๋น—๋‚˜๊ฐ€๋Š” ๊ฒƒ๋“ค์ด
02:13
that kind of defies forecasting now.
39
133759
2990
๋„ˆ๋ฌด ๋งŽ๋‹ค๋Š” ๊ฒ๋‹ˆ๋‹ค.
02:16
It's why the Bank of England will say yes, there will be another crash,
40
136773
3830
์ž‰๊ธ€๋žœ๋“œ ์€ํ–‰์€ ๋˜ ๋‹ค๋ฅธ ๋ถ•๊ดด๊ฐ€ ์žˆ์„ ๊ฒƒ์ด๋ผ๊ณ  ๋งํ•˜์ง€๋งŒ
02:20
but we don't know why or when.
41
140627
2430
์™œ, ๊ทธ๋ฆฌ๊ณ  ์–ธ์ œ ์ธ์ง€๋Š” ๋ชจ๋ฅด์ฃ .
02:23
We know that climate change is real,
42
143807
2616
์šฐ๋ฆฌ๋Š” ๊ธฐํ›„๋ณ€ํ™”๊ฐ€ ์‚ฌ์‹ค์ธ ๊ฒƒ์„ ์•Œ์ง€๋งŒ
02:26
but we can't predict where forest fires will break out,
43
146447
3076
์–ธ์ œ ์‚ฐ๋ถˆ์ด ๋ฐœ์ƒํ• ์ง€ ์˜ˆ์ธกํ•  ์ˆ˜ ์—†๊ณ 
02:29
and we don't know which factories are going to flood.
44
149547
3250
์–ด๋Š ๊ณต์žฅ์ด ํ™์ˆ˜์— ์ž ๊ธธ์ง€ ์•Œ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.
02:33
It's why companies are blindsided
45
153313
2691
ํšŒ์‚ฌ๋“ค์€ ๊ฐ‘์ž๊ธฐ ๊ธฐ์Šต์„ ๋‹นํ•˜๊ธฐ๋„ ํ•˜๋Š”๋ฐ
ํ”Œ๋ผ์Šคํ‹ฑ ๋นจ๋Œ€์™€ ๊ฐ€๋ฐฉ ๊ทธ๋ฆฌ๊ณ  ๋ฌผ๋ณ‘์ด
02:36
when plastic straws and bags and bottled water
46
156028
4869
02:40
go from staples to rejects overnight,
47
160921
3305
์ฃผ์š” ์ƒํ’ˆ์ด์—ˆ๋‹ค๊ฐ€ ํ•˜๋ฃป๋ฐค ์‚ฌ์ด์— ๋ถˆ๋Ÿ‰ํ’ˆ์ด ๋˜๊ธฐ๋„ ํ•˜์ฃ .
02:45
and baffled when a change in social mores
48
165488
3572
๊ทธ๋ฆฌ๊ณ  ๋ชน์‹œ ๋‹นํ™ฉ์Šค๋Ÿฌ์šด ๊ฒƒ์€
์‚ฌํšŒ์ ์œผ๋กœ ์Šคํƒ€๊ฐ€ ์ถ”๋ฝํ•  ๋•Œ๋‚˜ ๋™๋ฃŒ๋“ค์ด ๋”ฐ๋Œ๋ฆผ์„ ๋‹นํ•  ๋•Œ ๊ทธ๋ ‡์ฃ .
02:49
turns stars into pariahs and colleagues into outcasts:
49
169084
4540
๊ทผ์ ˆํ•  ์ˆ˜ ์—†๋Š” ๋ถˆํ™•์‹ค์„ฑ ์ž…๋‹ˆ๋‹ค.
02:55
ineradicable uncertainty.
50
175155
3054
02:59
In an environment that defies so much forecasting,
51
179319
4336
์˜ˆ์ธก์— ๋„์ „ํ•˜๋Š” ํ™˜๊ฒฝ์—์„œ๋Š”
03:03
efficiency won't just not help us,
52
183679
3204
ํšจ์œจ์„ฑ์€ ๋„์›€์ด ๊ทธ๋‹ค์ง€ ๋˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
03:06
it specifically undermines and erodes our capacity to adapt and respond.
53
186907
6954
๊ทธ๊ฑด ํ™•์‹คํžˆ ์šฐ๋ฆฌ๋ฅผ ์ทจ์•ฝํ•˜๊ฒŒ ํ•˜๊ณ  ์„œ์„œํžˆ ๋ฌด๋„ˆ๋œจ๋ฆฌ๋Š”๋ฐ
๋ณ€ํ™”๋ฅผ ์ˆ˜์šฉํ•˜๊ณ  ๋Œ€์‘ํ•  ์ˆ˜ ์žˆ๋Š” ๋Šฅ๋ ฅ์„ ๋ง์ด์ฃ .
03:16
So if efficiency is no longer our guiding principle,
54
196055
3141
๋งŒ์•ฝ ํšจ์œจ์„ฑ์ด ๋” ์ด์ƒ ์šฐ๋ฆฌ์˜ ์›์น™์ด ์•„๋‹ˆ๋ผ๋ฉด
03:19
how should we address the future?
55
199220
1748
์šฐ๋ฆฌ๋Š” ์–ด๋–ป๊ฒŒ ํ•ด์•ผ ํ• ๊นŒ์š”?
03:20
What kind of thinking is really going to help us?
56
200992
2452
์–ด๋–ค ์•„์ด๋””์–ด๊ฐ€ ์ •๋ง ๋„์›€์ด ๋ ๊นŒ์š”?
03:23
What sort of talents must we be sure to defend?
57
203468
5147
์šฐ๋ฆฌ๋Š” ์–ด๋–ค ์žฌ๋Šฅ์„ ๋ฐ˜๋“œ์‹œ ์ง€์ผœ์•ผ ํ• ๊นŒ์š”?
03:29
I think that, where in the past we used to think a lot about just in time management,
58
209601
4885
๊ณผ๊ฑฐ์—๋Š” ๊ทธ๋•Œ ๊ทธ๋•Œ ์ฒ˜๋ฆฌํ–ˆ์—ˆ์ง€๋งŒ
03:34
now we have to start thinking about just in case,
59
214510
3884
์ด์ œ๋Š” ๋งŒ์•ฝ์˜ ๊ฒฝ์šฐ์— ๋Œ€ํ•ด ์ƒ๊ฐํ•˜๊ธฐ ์‹œ์ž‘ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
03:38
preparing for events that are generally certain
60
218418
3397
์ „๋ฐ˜์ ์œผ๋กœ ํ™•์‹คํ•˜์ง€๋งŒ, ๊ตฌ์ฒด์ ์œผ๋กœ๋Š” ์—ฌ์ „ํžˆ ๋ชจํ˜ธํ•œ ์ผ์„ ์ค€๋น„ํ•ด์•ผ ํ•˜์ฃ .
03:41
but specifically remain ambiguous.
61
221839
2543
03:45
One example of this is the Coalition for Epidemic Preparedness, CEPI.
62
225110
5198
ํ•œ ๊ฐ€์ง€ ์˜ˆ๋กœ๋Š” CEPI(์ „์—ผ๋ณ‘ ์˜ˆ๋ฐฉ ํ˜‘ํšŒ)๊ฐ€ ์žˆ๋Š”๋ฐ
03:50
We know there will be more epidemics in future,
63
230332
4096
์šฐ๋ฆฌ๋Š” ๋ฏธ๋ž˜์— ๋” ๋งŽ์€ ์ „์—ผ๋ณ‘์ด ์ƒ๊ธธ ๊ฒƒ ์ด๋ž€๊ฑธ ์•Œ๊ณ  ์žˆ์ฃ .
03:54
but we don't know where or when or what.
64
234452
3886
ํ•˜์ง€๋งŒ, ์–ด๋””์„œ, ์–ธ์ œ, ํ˜น์€ ์–ด๋–ค ๋ณ‘์ผ์ง€๋Š” ๋ชจ๋ฅด์ฃ .
03:58
So we can't plan.
65
238362
1941
๊ทธ๋ž˜์„œ ์šฐ๋ฆฌ๋Š” ๊ณ„ํšํ•  ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.
04:00
But we can prepare.
66
240942
1651
ํ•˜์ง€๋งŒ, ๋Œ€๋น„ํ•  ์ˆ˜๋Š” ์žˆ์ฃ .
04:03
So CEPI's developing multiple vaccines for multiple diseases,
67
243257
5768
๊ทธ๋ž˜์„œ CEPI๋Š” ๋‹ค์–‘ํ•œ ์งˆ๋ณ‘์— ๋Œ€ํ•œ ๋‹ค์–‘ํ•œ ๋ฐฑ์‹ ์„ ๊ฐœ๋ฐœํ•˜๊ณ  ์žˆ์ง€๋งŒ
04:09
knowing that they can't predict which vaccines are going to work
68
249866
3547
์–ด๋–ค ๋ฐฑ์‹ ์ด ํšจ๊ณผ๊ฐ€ ์žˆ์„์ง€ ์–ด๋–ค ์ „์—ผ๋ณ‘์ด ์ƒ๊ฒจ๋‚ ์ง€
04:13
or which diseases will break out.
69
253437
2020
์˜ˆ์ธกํ•  ์ˆ˜ ์—†๋‹ค๋Š” ๊ฒƒ์„ ์•Œ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
04:15
So some of those vaccines will never be used.
70
255481
2973
๊ทธ๋ž˜์„œ ๊ทธ์ค‘ ์ผ๋ถ€๋Š” ์•„์˜ˆ ์‚ฌ์šฉ์กฐ์ฐจ ๋˜์งˆ ์•Š์•„์š”.
04:18
That's inefficient.
71
258478
1472
์ด๊ฑด ๋ถ„๋ช… ๋น„ํšจ์œจ์ ์ž…๋‹ˆ๋‹ค.
04:20
But it's robust,
72
260794
1911
ํ•˜์ง€๋งŒ, ํ™•์‹คํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
04:22
because it provides more options,
73
262729
1935
์™œ๋ƒํ•˜๋ฉด, ๋” ๋งŽ์€ ์„ ํƒ๊ถŒ์„ ์ œ๊ณตํ•˜๋ฉฐ
04:24
and it means that we don't depend on a single technological solution.
74
264688
5010
์šฐ๋ฆฌ๊ฐ€ ํ•œ ๊ฐ€์ง€ ๊ธฐ์ˆ ์  ํ•ด๊ฒฐ์ฑ…์— ์˜์ง€ํ•˜์ง€ ์•Š์•„๋„ ๋œ๋‹ค๋Š” ์˜๋ฏธ์ด์ฃ .
04:30
Epidemic responsiveness also depends hugely
75
270566
3368
์ „์—ผ๋ณ‘ ๋ฐ˜์‘ ๋˜ํ•œ ์„œ๋กœ ๋ฏฟ๊ณ  ์˜์ง€ํ•˜๋Š”
04:33
on people who know and trust each other.
76
273958
2917
์‚ฌ๋žŒ๋“ค์— ์˜ํ•ด ํฌ๊ฒŒ ๋‹ฌ๋ผ์ง€๋Š”๋ฐ
04:36
But those relationships take time to develop,
77
276899
2787
ํ•˜์ง€๋งŒ, ์ด๋Ÿฐ ๊ด€๊ณ„ ์‹œ๊ฐ„์ด ๋งŽ์ด ๊ฑธ๋ฆฌ๋ฉฐ
04:39
time that is always in short supply when an epidemic breaks out.
78
279710
4225
์ „์—ผ๋ณ‘์ผ ๋ฐœ๋ณ‘ํ–ˆ์„ ๋•Œ ์‹œ๊ฐ„์€ ํ•ญ์ƒ ์ด‰๋ฐ•ํ•˜์ฃ .
04:43
So CEPI is developing relationships, friendships, alliances now
79
283959
5088
CEPI๋Š” ํ˜„์žฌ ์นœ๋ฐ€ํ•œ ์—ฐํ•ฉ ๊ด€๊ณ„๋ฅผ ๋ฐœ์ „์‹œํ‚ค๊ณ  ์žˆ๋Š”๋ฐ
04:50
knowing that some of those may never be used.
80
290197
3196
์ผ๋ถ€๋Š” ์“ธ๋ชจ๊ฐ€ ์—†๋‹ค๋Š” ๊ฒƒ์„ ์•Œ๋ฉด์„œ๋„ ๋ง์ด์ฃ .
04:53
That's inefficient, a waste of time, perhaps,
81
293949
3153
์ด๊ฑด ๋น„๋Šฅ๋ฅ  ์ ์ด๊ณ , ์‹œ๊ฐ„ ๋‚ญ๋น„์ผ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
04:57
but it's robust.
82
297126
1294
ํ•˜์ง€๋งŒ, ํ™•์‹คํ•˜์ฃ .
04:59
You can see robust thinking in financial services, too.
83
299161
3805
๊ธˆ์œต ์„œ๋น„์Šค์—๋„ ํ™•์‹คํ•œ ์ƒ๊ฐ์„ ๋ณผ ์ˆ˜ ์žˆ๋Š”๋ฐ
05:02
In the past, banks used to hold much less capital
84
302990
3754
๊ณผ๊ฑฐ์—๋Š” ์€ํ–‰๋“ค์€ ๋” ์ ์€ ์ž์‚ฐ์„ ๊ฐ€์ง€๊ณ  ์žˆ์—ˆ๋Š”๋ฐ
05:06
than they're required to today,
85
306768
2223
์ง€๊ธˆ ํ•„์š”ํ•œ ์ž์‚ฐ๋ณด๋‹ค ๋ง์ด์ฃ .
05:09
because holding so little capital, being too efficient with it,
86
309015
3741
์™œ๋ƒํ•˜๋ฉด ์ ์€ ์ž๋ณธ์„ ํšจ์œจ์ ์œผ๋กœ ์šด์šฉํ•˜๋Š” ๊ฒƒ์€
05:12
is what made the banks so fragile in the first place.
87
312780
3150
์€ํ–‰๋“ค์„ ์ดˆ๋ฐ˜์— ์ทจ์•ฝํ•˜๊ฒŒ ๋งŒ๋“ค์ฃ .
05:16
Now, holding more capital looks and is inefficient.
88
316581
5489
์š”์ฆ˜์€ ๋” ๋งŽ์€ ์ž๋ณธ์„ ์ฅ๊ณ  ์žˆ๋Š” ๊ฒƒ์€ ๋น„ํšจ์œจ์ ์œผ๋กœ ๋ณด์ง€๋งŒ,
05:22
But it's robust, because it protects the financial system against surprises.
89
322094
6053
๊ธˆ์œต ์‹œ์Šคํ…œ์„ ๋ถˆํ™•์‹ค์„ฑ์œผ๋กœ๋ถ€ํ„ฐ ์ง€ํ‚ฌ ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์ข‹์€ ์„ ํƒ์ž…๋‹ˆ๋‹ค.
05:29
Countries that are really serious about climate change
90
329078
2994
๊ธฐํ›„ ๋ณ€ํ™”์— ๋Œ€ํ•ด ์ง„์ง€ํ•˜๊ฒŒ ์ƒ๊ฐํ•˜๋Š” ๊ตญ๊ฐ€๋“ค์€ ์•Œ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
05:32
know that they have to adopt multiple solutions,
91
332096
3554
๋‹ค์–‘ํ•œ ํ•ด๊ฒฐ๋ฐฉ์•ˆ๊ณผ ์žฌ์‚ฌ์šฉ์ด ๊ฐ€๋Šฅํ•œ ์—๋„ˆ์ง€๋ฅผ
05:35
multiple forms of renewable energy,
92
335674
3028
๋ฐ›์•„๋“ค์ด๊ณ  ์‚ฌ์šฉํ•ด์•ผ ํ•œ๋‹ค๋Š” ๊ฒƒ์„์š”.
05:38
not just one.
93
338726
1329
๋‹จ ํ•˜๋‚˜๊ฐ€ ์•„๋‹™๋‹ˆ๋‹ค.
05:40
The countries that are most advanced have been working for years now,
94
340079
4860
๋Œ€๋ถ€๋ถ„ ์„ ์ง„๊ตญ๋“ค์€ ๋ช‡ ๋…„๊ฐ„ ์ˆ˜๋„์™€ ์‹๋Ÿ‰ ๊ณต๊ธ‰,
05:44
changing their water and food supply and healthcare systems,
95
344963
3666
์˜๋ฃŒ ๋ณดํ—˜ ์‹œ์Šคํ…œ์„ ๋ฐ”๊พธ๊ณ ์ž ๋…ธ๋ ฅํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
05:48
because they recognize that by the time they have certain prediction,
96
348653
4612
์™œ๋ƒํ•˜๋ฉด ๊ทธ๋“ค์ด ์–ด๋–ค ์˜ˆ์ธก์„ ํ•  ๋•Œ ์ฏค์ด๋ฉด
05:53
that information may very well come too late.
97
353289
3311
์ด๋ฏธ ๋„ˆ๋ฌด ๋Šฆ์„์ง€๋„ ๋ชจ๋ฅธ๋‹ค๋Š” ๊ฒƒ์„ ์•Œ๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
05:57
You can take the same approach to trade wars, and many countries do.
98
357458
4456
๋งŽ์€ ๊ตญ๊ฐ€๋“ค ๊ฐ„ ๋ฌด์—ญ์ „์Ÿ์—์„œ๋„ ๋˜‘๊ฐ™์€ ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
06:01
Instead of depending on a single huge trading partner,
99
361938
3823
ํฐ ํ•˜๋‚˜์˜ ํŒŒํŠธ๋„ˆ์˜ ์˜์ง€ํ•˜๋Š” ๋Œ€์‹ 
06:05
they try to be everybody's friends,
100
365785
2104
๋ชจ๋“  ๋‚˜๋ผ์™€ ์นœ๊ตฌ๊ฐ€ ๋˜๋ ค๊ณ  ๋…ธ๋ ฅํ•˜์ฃ .
06:07
because they know they can't predict
101
367913
2338
์™œ๋ƒํ•˜๋ฉด, ์–ด๋–ค ์‹œ์žฅ์ด ๊ฐ‘์ž๊ธฐ ๋ถˆ์•ˆ์ •ํ•ด์งˆ์ง€
06:10
which markets might suddenly become unstable.
102
370275
3754
์˜ˆ์ธกํ•  ์ˆ˜๊ฐ€ ์—†๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
06:14
It's time-consuming and expensive, negotiating all these deals,
103
374053
4237
๊ทธ ๋ชจ๋“  ๊ฑฐ๋ž˜๋ฅผ ํ˜‘์ƒํ•˜๋Š” ๊ฑด ์‹œ๊ฐ„๊ณผ ๋น„์šฉ์˜ ์†Œ๋ชจ๊ฐ€ ํฝ๋‹ˆ๋‹ค.
06:18
but it's robust
104
378314
1158
ํ•˜์ง€๋งŒ, ํ™•์‹คํ•˜๊ธด ํ•˜์ฃ .
06:19
because it makes their whole economy better defended against shocks.
105
379496
5411
๊ฒฝ์ œ ๋ถ•๊ดด์— ๋Œ€๋น„ํ•  ์ˆ˜ ์žˆ๋„๋ก ๋งŒ๋“ค์–ด ์ฃผ๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
06:24
It's particularly a strategy adopted by small countries
106
384931
3679
ํŠนํžˆ, ์ž‘์€ ๊ตญ๊ฐ€๋“ค์ด ์ด๋Ÿฐ ์ „๋žต์„ ๋„์ž…ํ•˜๋Š”๋ฐ
06:28
that know they'll never have the market muscle to call the shots,
107
388634
4086
๊ทธ๋“ค์€ ์ ˆ๋Œ€ ์‹œ์žฅ ์ง€๋ฐฐ๋ ฅ์„ ๊ฐ–์ง€ ๋ชปํ•  ๊ฒƒ์„ ์•Œ๊ณ  ์žˆ์ฃ .
06:32
so it's just better to have too many friends.
108
392744
3154
๊ทธ๋ž˜์„œ ๋งŽ์€ ์นœ๊ตฌ๋ฅผ ๋‘๋Š” ๊ฒŒ ํ›จ์”ฌ ๋” ๋‚˜์€ ๊ฑฐ์ฃ .
06:37
But if you're stuck in one of these organizations
109
397922
2407
๋งŒ์•ฝ ์—ฌ๋Ÿฌ๋ถ„์ด ๊ทธ๋Ÿฐ ๋‹จ์ฒด ์ค‘ ํ•˜๋‚˜์— ์†Œ์†๋˜์–ด ์žˆ๊ณ 
06:40
that's still kind of captured by the efficiency myth,
110
400353
4895
๊ทธ๋Ÿฐ ํšจ์œจ์„ฑ์˜ ์‹ ํ™”์— ๊ฐ‡ํ˜€ ์žˆ๋‹ค๋ฉด
06:45
how do you start to change it?
111
405272
1762
์–ด๋–ป๊ฒŒ ๋ฐ”๊ฟ€์ˆ˜ ์žˆ์„๊นŒ์š”?
06:48
Try some experiments.
112
408011
1556
๋ช‡ ๊ฐ€์ง€ ์‹คํ—˜์„ ํ•ด๋ณด์„ธ์š”.
06:50
In the Netherlands,
113
410421
1366
๋„ค๋œ๋ž€๋“œ์—์„œ๋Š”
06:51
home care nursing used to be run pretty much like the supermarket:
114
411811
4714
๊ฐ€์ • ์š”์–‘์ด ์Šˆํผ๋งˆ์ผ“์ฒ˜๋Ÿผ ์šด์˜๋ผ๊ณค ํ–ˆ์Šต๋‹ˆ๋‹ค.
06:56
standardized and prescribed work
115
416549
2778
ํ‘œ์ค€ํ™”๋˜๊ณ  ๊ทœ์ •๋œ ๋ถ„๋‹น ์ž‘์—… ์‹œ๊ฐ„์€
06:59
to the minute:
116
419351
1768
07:01
nine minutes on Monday, seven minutes on Wednesday,
117
421143
3656
์›”์š”์ผ 9๋ถ„, ์ˆ˜์š”์ผ 7๋ถ„
07:04
eight minutes on Friday.
118
424823
1714
๊ธˆ์š”์ผ 8๋ถ„์ž…๋‹ˆ๋‹ค.
07:06
The nurses hated it.
119
426561
2382
๊ฐ„ํ˜ธ์‚ฌ๋“ค์€ ์ •๋ง ์‹ซ์–ดํ–ˆ์—ˆ์ฃ .
07:08
So one of them, Jos de Blok,
120
428967
2372
๊ทธ์ค‘ ํ•œ๋ช…์ธ ์š”์Šค ๋“œ ๋ธ”๋ก์€
07:11
proposed an experiment.
121
431363
1581
์‹คํ—˜์„ ํ•˜๋‚˜๋ฅผ ์ œ์•ˆํ–ˆ์Šต๋‹ˆ๋‹ค.
07:13
Since every patient is different,
122
433564
1632
๋ชจ๋“  ํ™˜์ž๋Š” ๋‹ค๋ฅด๊ณ 
07:15
and we don't quite know exactly what they'll need,
123
435220
2414
๊ทธ๋“ค์ด ๋ฌด์—‡์„ ํ•„์š”๋กœ ํ• ์ง€ ๋ชจ๋ฅด๊ธฐ ๋•Œ๋ฌธ์—
07:17
why don't we just leave it to the nurses to decide?
124
437658
2687
๊ทธ๋ƒฅ ๊ฐ„ํ˜ธ์‚ฌ๊ฐ€ ๊ฒฐ์ •ํ•˜๊ฒŒ ๋†”๋‘๋ฉด ์–ด๋–จ๊นŒ์š”?
07:21
Sound reckless?
125
441267
1370
๋ฌด๋ชจํ•˜๊ฒŒ ๋“ค๋ฆฌ๋‚˜์š”?
07:22
(Laughter)
126
442661
1395
(์›ƒ์Œ)
(๋ฐ•์ˆ˜)
07:24
(Applause)
127
444080
2120
07:26
In his experiment, Jos found the patients got better
128
446224
4134
์š”์Šค๋Š” ์ด ์‹คํ—˜์„ ํ†ตํ•ด ๊ธฐ์กด์— ๊ฑธ๋ฆฌ๋˜ ์‹œ๊ฐ„์˜
07:30
in half the time,
129
450382
2529
์ ˆ๋ฐ˜์˜ ์‹œ๊ฐ„ ์•ˆ์— ํ™˜์ž๋“ค์ด ๋” ๋‚˜์•„์ง€๋Š” ๊ฒƒ์„ ์•Œ์•˜๊ณ 
07:32
and costs fell by 30 percent.
130
452935
3679
30%์˜ ๋น„์šฉ ์ ˆ๊ฐ์„ ํ•˜์˜€์Šต๋‹ˆ๋‹ค.
07:37
When I asked Jos what had surprised him about his experiment,
131
457920
4212
์ €๋Š” ์š”์Šค์—๊ฒŒ ๋ฌด์—‡์ด ๊ทธ๋ฅผ ๋†€๋ผ๊ฒŒ ํ–ˆ๋Š”์ง€ ๋ฌผ์—ˆ์ฃ .
07:42
he just kind of laughed and he said,
132
462156
1793
๊ทธ๋Š” ๊ทธ๋ƒฅ ์›ƒ์œผ๋ฉฐ ๋งํ–ˆ์ฃ .
07:43
"Well, I had no idea it could be so easy
133
463973
3192
"๊ธ€์Ž„์š”, ๊ทธ๋ ‡๊ฒŒ ํฐ ๊ฐœ์„ ์ฑ…์„ ์ด๋ ‡๊ฒŒ ์‰ฝ๊ฒŒ ๋ฐœ๊ฒฌํ•  ์ง€ ๋ชฐ๋ž์–ด์š”.
07:47
to find such a huge improvement,
134
467189
2590
07:49
because this isn't the kind of thing you can know or predict
135
469803
3623
๊ทธ๊ฑด ์ฑ…์ƒ ์•‰์•„์„œ๋‚˜, ์ปดํ“จํ„ฐ ์Šคํฌ๋ฆฐ์„ ๋ณธ๋‹ค๊ณ 
07:53
sitting at a desk or staring at a computer screen."
136
473450
2830
์•Œ๊ฑฐ๋‚˜ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒŒ ์•„๋‹ˆ์—ˆ๊ฑฐ๋“ ์š”."
07:56
So now this form of nursing has proliferated across the Netherlands
137
476734
3774
๊ทธ๋ž˜์„œ ์ด๋Ÿฐ ํ˜•ํƒœ์˜ ๊ฐ„ํ˜ธ๋Š” ๋„ค๋œ๋ž€๋“œ์™€
08:00
and around the world.
138
480532
1734
์ „ ์„ธ๊ณ„์ ์œผ๋กœ ํ™•์‚ฐ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
08:02
But in every new country it still starts with experiments,
139
482290
3220
ํ•˜์ง€๋งŒ ์ƒˆ๋กญ๊ฒŒ ๋„์ž…๋œ ๊ฐ๊ตญ์—์„œ๋Š” ์—ฌ์ „ํžˆ ์‹คํ—˜๋‹จ๊ณ„์ž…๋‹ˆ๋‹ค.
08:05
because each place is slightly and unpredictably different.
140
485534
4858
๊ฐ ์žฅ์†Œ๋Š” ์กฐ๊ธˆ์”ฉ ๋‹ค๋ฅด๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
08:11
Of course, not all experiments work.
141
491246
3950
๋ฌผ๋ก , ๋ชจ๋“  ์‹คํ—˜์ด ํšจ๊ณผ๊ฐ€ ์žˆ๋Š” ๊ฒƒ์€ ์•„๋‹™๋‹ˆ๋‹ค.
08:15
Jos tried a similar approach to the fire service
142
495220
3056
์š”์Šค๋Š” ๋น„์Šทํ•œ ์‹คํ—˜์„ ์†Œ๋ฐฉ๋Œ€์—๊ฒŒ ์‹คํ–‰ํ•ด ๋ดค์ง€๋งŒ
08:18
and found it didn't work because the service is just too centralized.
143
498300
3537
๋„ˆ๋ฌด ์ค‘์•™ ์ง‘๊ถŒ์ ์ด์—ˆ๊ธฐ ๋•Œ๋ฌธ์— ํšจ๊ณผ๊ฐ€ ์—†๋‹ค๋Š” ๊ฒƒ์„ ์•Œ๊ฒŒ ๋์ฃ .
08:21
Failed experiments look inefficient,
144
501861
2563
์‹คํŒจํ•œ ์‹คํ—˜์€ ๋น„ํšจ์œจ์ ์œผ๋กœ ๋ณด์ด์ฃ .
08:24
but they're often the only way you can figure out
145
504448
3183
ํ•˜์ง€๋งŒ, ๊ทธ๊ฑด ์ง„์งœ ์„ธ์ƒ์ด ์–ด๋–ป๊ฒŒ ๋Œ์•„๊ฐ€๋Š”์ง€
08:27
how the real world works.
146
507655
2274
์—ฌ๋Ÿฌ๋ถ„์ด ์•Œ์•„๋‚ผ ์ˆ˜ ์žˆ๋Š” ์œ ์ผํ•œ ๋ฐฉ๋ฒ•์ด์ฃ .
08:30
So now he's trying teachers.
147
510280
3033
๊ทธ๋ž˜์„œ, ๊ทธ๋Š” ์ง€๊ธˆ ์„ ์ƒ๋‹˜๋“ค ์œ„ํ•ด ๋…ธ๋ ฅํ•˜๊ณ  ์žˆ์ฃ .
08:34
Experiments like that require creativity
148
514746
3747
๊ทธ๋Ÿฐ ์‹คํ—˜๋“ค์€ ์ฐฝ์˜์„ฑ์„ ์š”๊ตฌํ•˜๋ฉฐ
08:38
and not a little bravery.
149
518517
2307
์ž‘์€ ์šฉ๊ธฐ๊ฐ€ ํ•„์š” ํ•ฉ๋‹ˆ๋‹ค.
08:41
In England --
150
521613
1563
์ž‰๊ธ€๋žœ๋“œ์—์„œ๋Š”
08:43
I was about to say in the UK, but in England --
151
523978
2905
์˜๊ตญ์„ ๋งํ•˜๋ ค๊ณ  ํ–ˆ๋Š”๋ฐ, ์–ด์จŒ๋“  ์ž‰๊ธ€๋žœ๋“œ์—์„œ๋Š”
08:46
(Laughter)
152
526907
1742
(์›ƒ์Œ)
08:48
(Applause)
153
528673
4314
(๋ฐ•์ˆ˜)
08:53
In England, the leading rugby team, or one of the leading rugby teams,
154
533363
4086
์ž‰๊ธ€๋žœ๋“œ์—์„œ ์„ ๋‘์— ์žˆ๋Š” ๋Ÿญ๋น„ํŒ€ ์ค‘ ํ•˜๋‚˜๋Š”
08:57
is Saracens.
155
537473
1360
์‚ฌ๋ผ์„ผ์ฆˆ์ธ๋ฐ
08:59
The manager and the coach there realized that all the physical training they do
156
539299
5065
๊ทธ ํŒ€์˜ ์ฝ”์น˜์™€ ๋งค๋‹ˆ์ €๊ฐ€ ๊นจ๋‹ฌ์€ ๊ฒƒ์€
๊ทธ๋“ค์ด ํ•˜๋Š” ๋ชจ๋“  ํŠธ๋ ˆ์ด๋‹๋“ค๊ณผ
09:04
and the data-driven conditioning that they do
157
544388
2714
๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ํ›ˆ๋ จ์€ ์ผ๋ฐ˜์ ์ด๋ผ๋Š” ๊ฒ๋‹ˆ๋‹ค.
09:07
has become generic;
158
547126
1154
09:08
really, all the teams do exactly the same thing.
159
548304
2790
์ •๋ง๋กœ ๋ชจ๋“  ํŒ€๋“ค์ด ์ •ํ™•ํžˆ ๋˜‘๊ฐ™์ด ํ–ˆ์Šต๋‹ˆ๋‹ค.
09:11
So they risked an experiment.
160
551683
2332
๊ทธ๋ž˜์„œ ๊ทธ๋“ค์€ ๋ชจํ—˜ ์‚ผ์•„ ์‹คํ—˜์„ ํ–ˆ๋Š”๋ฐ
09:14
They took the whole team away, even in match season,
161
554039
4245
๊ฒฝ๊ธฐ๊ฐ€ ํ•œ์ฐฝ์ธ ์‹œ์ฆŒ ์ค‘ ์ž„์—๋„
๋ชจ๋“  ์„ ์ˆ˜๋“ค์„ ์Šคํ‚ค์—ฌํ–‰์„ ๋ณด๋ƒˆ์Šต๋‹ˆ๋‹ค.
09:18
on ski trips
162
558308
1415
09:19
and to look at social projects in Chicago.
163
559747
3294
๊ทธ๋ฆฌ๊ณ  ์‹œ์นด๊ณ ์—์„œ ์—ด๋ฆฌ๋Š” ์‚ฌ๊ต ๋ชจ์ž„ ํ”„๋กœ์ ํŠธ๋ฅผ ์•Œ์•„๋ดค๋Š”๋ฐ
09:23
This was expensive,
164
563065
1526
์—„์ฒญ ๋น„์‹ธ๊ณ  ์‹œ๊ฐ„๋‚ญ๋น„์˜€์Šต๋‹ˆ๋‹ค.
09:24
it was time-consuming,
165
564615
1952
09:26
and it could be a little risky
166
566591
1681
๋Ÿญ๋น„ ์„ ์ˆ˜๋“ค์„ ์Šคํ‚ค์žฅ์— ๋ณด๋‚ด๋Š” ๊ฑด ๊ฝค๋‚˜ ๋ฌด๋ชจํ•œ ๊ฒƒ ๊ฐ™์ฃ , ๊ทธ๋ ‡์ฃ ?
09:28
putting a whole bunch of rugby players on a ski slope, right?
167
568296
3774
09:32
(Laughter)
168
572094
1047
(์›ƒ์Œ)
ํ•˜์ง€๋งŒ, ๊ทธ๋“ค์ด ์•Œ๊ฒŒ ๋œ ๊ฑด ์„ ์ˆ˜๋“ค์ด ๋Œ์•„์™”์„ ๋•Œ
09:33
But what they found was that the players came back
169
573165
3344
09:36
with renewed bonds of loyalty and solidarity.
170
576533
5266
ํ•œ์ธต ์ƒˆ๋กœ์›Œ์ง„ ์ถฉ์„ฑ์‹ฌ, ๋‹จ๊ฒฐ์‹ฌ๊ณผ ๊ฒฐ์†๋ ฅ์„ ๋ณด์—ฌ์ฃผ์—ˆ์ฃ .
09:41
And now when they're on the pitch under incredible pressure,
171
581823
3409
์ด์ œ๋Š” ๊ฒฝ๊ธฐ๊ฐ€ ๊ณ ์กฐ๋˜์–ด ๊ทธ๋“ค์ด ์ค‘์••๊ฐ์„ ๋Š๋‚„ ๋•Œ
09:45
they manifest what the manager calls "poise" --
172
585256
4426
๊ทธ๋“ค์€ ๋งค๋‹ˆ์ €๊ฐ€ ๋งํ•˜๋Š” "์นจ์ฐฉ์„ฑ"์„ ๋ณด์ž…๋‹ˆ๋‹ค.
09:50
an unflinching, unwavering dedication
173
590515
4159
์ฃผ๋ˆ… ๋“ค์ง€ ์•Š๊ณ , ํ™•๊ณ ํ•œ ์„œ๋กœ์— ๋Œ€ํ•œ ๋ฏฟ์Œ๊ณผ ํ—Œ์‹ ์„ ๋งํ•˜์ฃ .
09:54
to each other.
174
594698
1475
09:56
Their opponents are in awe of this,
175
596824
3753
์ƒ๋Œ€ํŒ€์€ ์ด๊ฒƒ์„ ๋‘๋ ค์›Œํ•˜๊ณ 
10:00
but still too in thrall to efficiency to try it.
176
600601
4152
์—ฌ์ „ํžˆ ํšจ์œจ์„ฑ์— ์‚ฌ๋กœ์žกํ˜€ ์‹œ๋„ํ•˜๊ธด ํž˜๋“  ๊ฒƒ ์ด์—ˆ์ฃ .
10:05
At a London tech company, Verve,
177
605783
2032
๋Ÿฐ๋˜์˜ ๊ธฐ์ˆ  ํšŒ์‚ฌ์ธ Verve์˜ CEO๋Š”
10:07
the CEO measures just about everything that moves,
178
607839
3343
์ง„ํ–‰ ์ค‘์ธ ๋ชจ๋“  ๊ฒƒ์„ ์ธก์ •ํ•˜์˜€์ง€๋งŒ
10:11
but she couldn't find anything that made any difference
179
611206
3024
๊ทธ๋…€๋Š” ํšŒ์‚ฌ ์ƒ์‚ฐ์„ฑ์— ์˜ํ–ฅ์„ ๋ผ์น˜๋Š” ๊ฑธ ์•„๋ฌด๊ฒƒ๋„ ์ฐพ์ง€ ๋ชปํ•˜์˜€์Šต๋‹ˆ๋‹ค.
10:14
to the company's productivity.
180
614254
2127
10:16
So she devised an experiment that she calls "Love Week":
181
616405
3755
๊ทธ๋ž˜์„œ, ๊ทธ๋…€๋Š” "Love week" ๋ผ๊ณ  ๋ถˆ๋ฆฌ๋Š” ๊ฑธ ์ƒ๊ฐํ•ด๋ƒˆ๋Š”๋ฐ
10:20
a whole week where each employee has to look for really clever,
182
620184
4537
์ผ์ฃผ์ผ ๋‚ด๋‚ด ๊ฐ ์ง์›๋“ค์€ ์ฐพ์•„๋ณด๋„๋ก ํ•˜๋Š” ๊ฒ๋‹ˆ๋‹ค.
๋˜‘๋˜‘ํ•˜๊ณ , ๋„์›€์ด ๋˜๋ฉฐ, ์ฐฝ์˜์ ์ธ ๊ฒƒ ๋“ค์„์š”.
10:24
helpful, imaginative things
183
624745
2279
10:27
that a counterpart does,
184
627048
1800
๋‹ค๋ฅธ ๋ˆ„๊ตฐ๊ฐ€๊ฐ€ ์ด๋ฏธ ํ•˜๋Š” ๊ฒƒ์„์š”.
10:28
call it out and celebrate it.
185
628872
2464
๊ทธ๋ฆฌ๊ณ  ํฌ๊ฒŒ ์ถ•ํ•˜ ํ•ด์ค๋‹ˆ๋‹ค.
10:31
It takes a huge amount of time and effort;
186
631360
2117
์—„์ฒญ๋‚œ ์‹œ๊ฐ„๊ณผ ๋…ธ๋ ฅ์ด ํ•„์š”ํ•˜๊ธฐ์—
10:33
lots of people would call it distracting.
187
633501
3037
๋งŽ์€ ์ง์›๋“ค์€ ์“ธ๋ฐ์—†๋Š” ์ง“์ด๋ผ๊ณ  ๋งํ•˜์˜€์Šต๋‹ˆ๋‹ค.
10:36
But it really energizes the business
188
636562
2232
ํ•˜์ง€๋งŒ, ๊ทธ๊ฑด ๋น„์ฆˆ๋‹ˆ์Šค์— ๋Œ€ํ•œ ์—ด์ •์„ ๋‹์šฐ๋ฉฐ
10:38
and makes the whole company more productive.
189
638818
3638
ํšŒ์‚ฌ ์ „์ฒด๋ฅผ ์ƒ์‚ฐ์ ์ด๊ฒŒ ๋งŒ๋“ค์—ˆ์ฃ .
10:44
Preparedness, coalition-building,
190
644048
3306
์ค€๋น„์„ฑ, ์—ฐํ•ฉ์„ฑ
10:47
imagination, experiments,
191
647378
3582
์ƒ์ƒ๋ ฅ, ์‹คํ—˜์ •์‹ ,
10:50
bravery --
192
650984
1167
์šฉ๊ฐํ•จ.
10:53
in an unpredictable age,
193
653028
1597
์˜ˆ์ธกํ•  ์ˆ˜ ์—†๋Š” ์‹œ๋Œ€์—๋Š”
10:54
these are tremendous sources of resilience and strength.
194
654649
5668
์ด๊ฒƒ๋“ค์€ ๊ต‰์žฅํžˆ ์ค‘์š”ํ•œ ํšŒ๋ณต๋ ฅ๊ณผ ํž˜์˜ ์›์ฒœ์ž…๋‹ˆ๋‹ค.
11:00
They aren't efficient,
195
660673
2568
๊ทธ๊ฒƒ๋“ค์€ ํšจ์œจ์ ์ด์ง€ ์•Š์ง€๋งŒ
11:04
but they give us limitless capacity
196
664278
2669
ํ•˜์ง€๋งŒ ์šฐ๋ฆฌ์—๊ฒŒ ๋ฌดํ•œํ•œ ๋Šฅ๋ ฅ์„ ์ค๋‹ˆ๋‹ค.
11:06
for adaptation, variation and invention.
197
666971
4495
์ˆ˜์šฉ๊ณผ ์ ์‘ ๊ทธ๋ฆฌ๊ณ  ์ฐฝ์˜๋ ฅ์„ ๋ง์ด์ฃ .
11:12
And the less we know about the future,
198
672284
2422
์šฐ๋ฆฌ๊ฐ€ ๋ฏธ๋ž˜์— ๋Œ€ํ•ด ๋ชจ๋ฅผ์ˆ˜๋ก
11:14
the more we're going to need these tremendous sources
199
674730
5402
์šฐ๋ฆฌ๋Š” ๋”์šฑ ์ด๋Ÿฌํ•œ ๊ต‰์žฅํ•œ ์š”์†Œ๋“ค์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค.
11:20
of human, messy, unpredictable skills.
200
680156
5621
์ธ๊ฐ„์ ์ด๊ณ , ๋ณต์žกํ•˜๋ฉฐ, ์˜ˆ์ธกํ•  ์ˆ˜ ์—†๋Š” ๋Šฅ๋ ฅ๋“ค ๋ง์ด์ฃ .
11:27
But in our growing dependence on technology,
201
687336
4060
ํ•˜์ง€๋งŒ ๊ธฐ์ˆ ์— ๋Œ€ํ•œ ์˜์กด๋„๊ฐ€ ์ฆ๊ฐ€ํ•˜๋ฉด์„œ
11:32
we're asset-stripping those skills.
202
692318
3350
์šฐ๋ฆฌ๋Š” ์ด ๋Šฅ๋ ฅ์„ ํŒ”์•„ ์น˜์šฐ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
11:36
Every time we use technology
203
696642
3565
๋งค ์ˆœ๊ฐ„ ์šฐ๋ฆฌ๊ฐ€ ๊ธฐ์ˆ ์„ ์‚ฌ์šฉํ•˜์—ฌ
11:40
to nudge us through a decision or a choice
204
700231
4192
์šฐ๋ฆฌ๋ฅผ ์–ด๋–ค ๊ฒฐ์ •์ด๋‚˜ ์„ ํƒ์„ ํ•˜๊ฒŒ ํ•˜๊ฑฐ๋‚˜
11:44
or to interpret how somebody's feeling
205
704447
2314
ํ˜น์€, ๋‹ค๋ฅธ ์‚ฌ๋žŒ์˜ ๊ฐ์ •์„ ์ดํ•ดํ•˜๋ ค๊ฑฐ๋‚˜
11:46
or to guide us through a conversation,
206
706785
2177
๋Œ€ํ™”๋ฅผ ์ด๋Œ์–ด ๊ฐ€๊ณ ์ž ํ•  ๋•Œ
11:48
we outsource to a machine what we could, can do ourselves,
207
708986
5114
์šฐ๋ฆฌ๋Š” ์šฐ๋ฆฌ ์Šค์Šค๋กœ ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์„ ๊ธฐ๊ณ„์—๊ฒŒ ๋งก๊ธฐ๋Š”๋ฐ
11:54
and it's an expensive trade-off.
208
714124
2524
์—„์ฒญ๋‚˜๊ฒŒ ๋น„์‹ผ ๊ฑฐ๋ž˜์ž…๋‹ˆ๋‹ค.
11:57
The more we let machines think for us,
209
717847
2902
๋”์šฑ๋” ๊ธฐ๊ณ„๊ฐ€ ์šฐ๋ฆฌ๋ฅผ ๋Œ€์‹ ํ•ด ์ƒ๊ฐํ•  ๋•Œ
12:01
the less we can think for ourselves.
210
721780
2869
์šฐ๋ฆฌ๋Š” ์Šค์Šค๋กœ ์ƒ๊ฐํ•  ์ˆ˜ ์—†๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
12:05
The more --
211
725661
1153
12:06
(Applause)
212
726838
4570
(๋ฐ•์ˆ˜)
์˜์‚ฌ๋“ค์ด ๋”๋”์šฑ ๋””์ง€ํ„ธ ์˜๋ฃŒ ๊ธฐ๋ก์„ ์ณ๋‹ค๋ณผ์ˆ˜๋ก
12:11
The more time doctors spend staring at digital medical records,
213
731432
4721
12:16
the less time they spend looking at their patients.
214
736177
3386
๊ทธ๋“ค์€ ๋”์šฑ ์ ์€ ์‹œ๊ฐ„์„ ํ™˜์ž๋ฅผ ๋Œ๋ณด๋Š”๋ฐ ์“ฐ์ฃ 
12:20
The more we use parenting apps,
215
740325
2788
์šฐ๋ฆฌ๊ฐ€ ์œก์•„ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์„ ๋” ์‚ฌ์šฉํ• ์ˆ˜๋ก
12:23
the less we know our kids.
216
743137
2157
์ž๊ธฐ ์ž๋…€์— ๋Œ€ํ•ด์„  ๋”์šฑ ๋ชจ๋ฅด๊ฒŒ ๋˜์ฃ .
12:26
The more time we spend with people that we're predicted and programmed to like,
217
746310
5086
๋” ๋งŽ์€ ์‹œ๊ฐ„์„ ์šฐ๋ฆฌ๊ฐ€ ์ข‹์•„ํ•˜๋Š” ์‚ฌ๋žŒ๋“ค๊ณผ ๋ณด๋‚ผ์ˆ˜๋ก
12:31
the less we can connect with people who are different from ourselves.
218
751420
3710
์šฐ๋ฆฌ์™€ ๋‹ค๋ฅธ ์‚ฌ๋žŒ๋“ค๊ณผ๋Š” ๋” ์ ์€ ์‹œ๊ฐ„์„ ๋ณด๋‚ด๊ฒŒ ๋˜์ฃ .
12:35
And the less compassion we need, the less compassion we have.
219
755154
5027
๋” ์ ์€ ๋™์ •์‹ฌ์ด ํ•„์š”ํ• ์ˆ˜๋ก ๋” ์ ์€ ์—ฐ๋ฏผ์„ ๋Š๋ผ๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
12:41
What all of these technologies attempt to do
220
761825
3534
์ด ๋ชจ๋“  ๊ธฐ์ˆ ์ด ์‹œ๋„ํ•˜๋ ค๋Š” ๊ฒƒ์€
12:45
is to force-fit a standardized model of a predictable reality
221
765383
6797
์˜ˆ์ธก ๊ฐ€๋Šฅํ•œ ํ˜„์‹ค์˜ ํ‘œ์ค€ํ™”๋œ ๋ชจ๋ธ์„
12:52
onto a world that is infinitely surprising.
222
772204
3368
๋ฌดํ•œํžˆ ๋†€๋ผ์šด ์„ธ๊ณ„์— ๊ฐ•์ œ ์ ์šฉํ•˜๋ ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
12:56
What gets left out?
223
776926
1352
๋ฌด์—‡์ด ๋น ์กŒ์„๊นŒ์š”?
12:58
Anything that can't be measured --
224
778965
2603
์šฐ๋ฆฌ๊ฐ€ ์ธก์ •ํ•  ์ˆ˜ ์—†๋Š” ๋ชจ๋“  ๊ฒƒ๋“ค
13:02
which is just about everything that counts.
225
782451
2359
๊ทธ๊ฑด, ๋ชจ๋“  ์ค‘์š”ํ•œ ๊ฐ€์น˜๋“ค์ž…๋‹ˆ๋‹ค.
13:05
(Applause)
226
785810
6965
(๋ฐ•์ˆ˜)
13:14
Our growing dependence on technology
227
794854
4087
์šฐ๋ฆฌ์˜ ๊ธฐ์ˆ  ๋ฐœ์ „์— ๋Œ€ํ•œ ์˜์กด์ด ๋†’์•„์ง€๋ฉด
13:18
risks us becoming less skilled,
228
798965
3773
์šฐ๋ฆฌ์˜ ๋Šฅ๋ ฅ์€ ๋ถ€์กฑํ•ด์ ธ ์ž์‹ ์„ ์œ„ํƒœ๋กญ๊ฒŒ ํ•˜๋ฉฐ
13:22
more vulnerable
229
802762
1595
์ ์  ๋” ๋ณต์žกํ•ด์ง€๋Š” ํ˜„์‹ค ์„ธ๊ณ„์— ๋” ์ทจ์•ฝํ•˜๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
13:24
to the deep and growing complexity
230
804381
2951
13:27
of the real world.
231
807356
1373
13:29
Now, as I was thinking about the extremes of stress and turbulence
232
809951
5384
์ œ๊ฐ€ ์ƒ๊ฐ์„ ํ•ด ๋ดค๋Š”๋ฐ์š”.
์šฐ๋ฆฌ๊ฐ€ ๋งˆ์ฃผํ•ด์•ผ ํ•  ๊ทน์‹ฌํ•œ ์ŠคํŠธ๋ ˆ์Šค์™€ ๊ฒฉ๋™์— ๋Œ€ํ•ด์„œ ์ƒ๊ฐํ•ด๋ดค์Šต๋‹ˆ๋‹ค.
13:35
that we know we will have to confront,
233
815359
2656
13:39
I went and I talked to a number of chief executives
234
819412
2952
์ €๋Š” ์ƒ๊ณผ ์‚ฌ๋ฅผ ์˜ค๊ฐ€๋Š” ๊ฒฝํ—˜์„ ๊ฒช์–ด๋ƒˆ๋˜
13:42
whose own businesses had gone through existential crises,
235
822388
4168
๋‹ค์ˆ˜์˜ CEO๋“ค๊ณผ ์–˜๊ธฐ๋ฅผ ๋‚˜๋ˆ ๋ดค์Šต๋‹ˆ๋‹ค.
13:46
when they teetered on the brink of collapse.
236
826580
2888
๊ทธ๋“ค์ด ๋ถ•๊ดด ์ง์ „์˜ ์ƒํ™ฉ์— ์ฒ˜ํ–ˆ์„ ๋•Œ์— ๋Œ€ํ•ด์„œ ๋ง์ด์ฃ .
13:50
These were frank, gut-wrenching conversations.
237
830594
4808
์†์ด ๋’ค์ง‘ํž ์ •๋„์˜ ์†”์งํ•œ ๋Œ€ํ™”์˜€์Šต๋‹ˆ๋‹ค.
13:56
Many men wept just remembering.
238
836302
3277
๊ทธ์ € ํšŒ์ƒํ•˜๋Š” ๊ฒƒ๋งŒ์œผ๋กœ ๋ˆˆ๋ฌผ์„ ํ˜๋ ธ์ฃ .
14:00
So I asked them:
239
840214
1514
์ „ ๊ทธ๋“ค์—๊ฒŒ ๋ฌผ์—ˆ์Šต๋‹ˆ๋‹ค.
14:02
"What kept you going through this?"
240
842603
2065
"๋ฌด์—‡์ด ๋‹น์‹ ์„ ๊ณ„์† ๋‚˜์•„๊ฐ€๊ฒŒ ๋งŒ๋“ค์—ˆ๋‚˜์š”?"
14:05
And they all had exactly the same answer.
241
845328
2654
๊ทธ๋“ค์€ ํ•˜๋‚˜๊ฐ™์ด ๋˜‘๊ฐ™์€ ๋Œ€๋‹ต์„ ํ•˜์˜€์Šต๋‹ˆ๋‹ค.
14:08
"It wasn't data or technology," they said.
242
848006
3110
"๊ทธ๊ฑด ๋ฐ์ดํ„ฐ๋‚˜ ๊ธฐ์ˆ  ๊ฐ™์€ ๊ฒƒ๋“ค์ด ์•„๋‹™๋‹ˆ๋‹ค.
14:11
"It was my friends and my colleagues
243
851926
3385
์ €๋ฅผ ์ง€ํƒฑํ•ด์ค€ ๊ฑด ์ œ ์นœ๊ตฌ์™€ ๋™๋ฃŒ๋“ค์ด์—ˆ์Šต๋‹ˆ๋‹ค.
14:15
who kept me going."
244
855335
1336
14:17
One added, "It was pretty much the opposite of the gig economy."
245
857173
5315
๊ธฑ ์ด์ฝ”๋…ธ๋ฏธ ๊ฐ™์€ ๊ฒƒ๊ณผ๋Š” ์™„์ „ํžˆ ๋‹ค๋ฅธ ๊ฒƒ์ด์ฃ "
14:24
But then I went and I talked to a group of young, rising executives,
246
864056
3734
๊ทธ๋Ÿฌ๊ณ  ์„ฑ์žฅ ์ค‘์ธ ์ Š์€ CEO ๊ทธ๋ฃน๊ณผ ์–˜๊ธฐ๋ฅผ ๋‚˜๋ˆ„์—ˆ์Šต๋‹ˆ๋‹ค.
14:27
and I asked them,
247
867814
1807
๊ทธ๋“ค์—๊ฒŒ ๋ฌผ์—ˆ์ฃ .
14:29
"Who are your friends at work?"
248
869645
1542
"์ง์žฅ์—์„œ ๋ˆ„๊ฐ€์™€ ์นœ๊ตฌ์˜ˆ์š”?"
14:31
And they just looked blank.
249
871211
1778
๊ทธ๋“ค์€ ๊ทธ์ € ๋ˆˆ๋งŒ ๊นœ๋ฐ•๊ฑฐ๋ ธ๊ณ 
14:33
"There's no time."
250
873765
1850
"์‹œ๊ฐ„์ด ์—†์–ด์š”."
14:35
"They're too busy."
251
875639
1809
"๋„ˆ๋ฌด ๋ฐ”๋น ์š”."
14:37
"It's not efficient."
252
877472
1438
"๊ทธ๊ฑด ํšจ์œจ์ ์ด์ง€ ์•Š์•„์š”."
14:39
Who, I wondered, is going to give them
253
879906
3572
์ €๋Š” ๋ˆ„๊ตฐ์ง€ ๊ถ๊ธˆํ–ˆ์Šต๋‹ˆ๋‹ค.
ํญํ’์ด ์˜ฌ ๋•Œ ๋ˆ„๊ฐ€ ๊ทธ๋“ค์—๊ฒŒ ์ƒ์ƒ๋ ฅ๊ณผ ์ฒด๋ ฅ ๊ทธ๋ฆฌ๊ณ  ์šฉ๊ธฐ๋ฅผ ์ค„๊นŒ์š”?
14:43
imagination and stamina and bravery
254
883502
4539
14:48
when the storms come?
255
888065
1516
14:51
Anyone who tries to tell you that they know the future
256
891694
3643
๋ฏธ๋ž˜๋ฅผ ์•ˆ๋‹ค๊ณ  ๋งํ•˜๋ ค๋Š” ์‚ฌ๋žŒ์€
14:55
is just trying to own it,
257
895361
2198
๋ˆ„๊ตฌ๋‚˜ ์†Œ์œ ํ•˜๋ ค๊ณ  ํ•  ๋ฟ์ž…๋‹ˆ๋‹ค.
14:57
a spurious kind of manifest destiny.
258
897583
3308
๊ทธ๋Ÿด์‹ธํ•œ ์ž˜๋ชป๋œ ๋ฏธ๋ž˜๋ฅผ ๋ง์ด์ฃ .
15:01
The harder, deeper truth is
259
901794
2321
๋” ๋ถ„๋ช…ํ•œ ๊นŠ์€ ์ง„์‹ค์€
15:05
that the future is uncharted,
260
905126
2409
๋ฏธ๋ž˜๋Š” ๊ทธ๋ ค์ง€์ง€ ์•Š์€ ์ง€๋„์ž…๋‹ˆ๋‹ค.
15:07
that we can't map it till we get there.
261
907559
2244
๊ทธ๊ณณ์— ๋„์ฐฉํ•˜๊ธฐ ์ „๊นŒ์ง€๋Š”์š”.
15:10
But that's OK,
262
910734
2063
ํ•˜์ง€๋งŒ ๊ดœ์ฐฎ์•„์š”.
15:12
because we have so much imagination --
263
912821
3017
์šฐ๋ฆฌ๋Š” ๋„ˆ๋ฌด๋‚˜ ๋งŽ์€ ์ƒ์ƒ๋ ฅ์ด ์žˆ๊ฑฐ๋“ ์š”.
15:15
if we use it.
264
915862
1447
๋งŒ์•ฝ ๊ทธ๊ฑธ ์‚ฌ์šฉํ•œ๋‹ค๋ฉด
15:17
We have deep talents of inventiveness and exploration --
265
917333
5477
๊นŠ๊ณ  ๋…์ฐฝ์ ์ธ ์ƒ์ƒ๋ ฅ๊ณผ ํƒ์‚ฌํ•˜๋Š” ์žฌ๋Šฅ์„ ๊ฐ–๊ฒŒ ๋˜๊ณ 
15:22
if we apply them.
266
922834
1777
๋งŒ์•ฝ ๊ทธ๊ฑธ ์ ์šฉํ•œ๋‹ค๋ฉด
15:24
We are brave enough to invent things we've never seen before.
267
924635
5517
์šฐ๋ฆฌ๊ฐ€ ์—ฌํƒœ๊ป ๋ณด์ง€ ๋ชปํ•œ ๊ฒƒ์„ ๋งŒ๋“ค ๋งŒํผ ์ถฉ๋ถ„ํžˆ ์šฉ๊ฐํ•˜๊ฒŒ ๋˜์ฃ .
15:31
Lose those skills,
268
931175
1615
๊ธฐ์ˆ ์— ๊ทธ๋งŒ ์ง‘์ฐฉ ํ•˜์„ธ์š”.
15:33
and we are adrift.
269
933810
1722
๊ทธ๋ฆฌ๊ณ  ์šฐ๋ฆฌ๋Š” ๋ฐฉํ™ฉํ•˜๊ฒ ์ง€๋งŒ
15:36
But hone and develop them,
270
936384
2725
๊ทธ๊ฒƒ๋“ค์„ ๋ฐœ์ „์‹œํ‚ค๊ณ  ๊ฐˆ๊ณ  ๋‹ฆ์œผ์„ธ์š”.
15:40
we can make any future we choose.
271
940498
2458
์šฐ๋ฆฌ๊ฐ€ ์„ ํƒํ•œ ์–ด๋–ค ๋ฏธ๋ž˜๋ผ๋„ ๋งŒ๋“ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
15:44
Thank you.
272
944382
1174
๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค.
15:45
(Applause)
273
945580
6086
(๋ฐ•์ˆ˜)
์ด ์›น์‚ฌ์ดํŠธ ์ •๋ณด

์ด ์‚ฌ์ดํŠธ๋Š” ์˜์–ด ํ•™์Šต์— ์œ ์šฉํ•œ YouTube ๋™์˜์ƒ์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ „ ์„ธ๊ณ„ ์ตœ๊ณ ์˜ ์„ ์ƒ๋‹˜๋“ค์ด ๊ฐ€๋ฅด์น˜๋Š” ์˜์–ด ์ˆ˜์—…์„ ๋ณด๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ฐ ๋™์˜์ƒ ํŽ˜์ด์ง€์— ํ‘œ์‹œ๋˜๋Š” ์˜์–ด ์ž๋ง‰์„ ๋”๋ธ” ํด๋ฆญํ•˜๋ฉด ๊ทธ๊ณณ์—์„œ ๋™์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค. ๋น„๋””์˜ค ์žฌ์ƒ์— ๋งž์ถฐ ์ž๋ง‰์ด ์Šคํฌ๋กค๋ฉ๋‹ˆ๋‹ค. ์˜๊ฒฌ์ด๋‚˜ ์š”์ฒญ์ด ์žˆ๋Š” ๊ฒฝ์šฐ ์ด ๋ฌธ์˜ ์–‘์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฌธ์˜ํ•˜์‹ญ์‹œ์˜ค.

https://forms.gle/WvT1wiN1qDtmnspy7