Read Montague: What we're learning from 5,000 brains

47,029 views ใƒป 2012-09-24

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

00:00
Translator: Joseph Geni Reviewer: Morton Bast
0
0
7000
ืžืชืจื’ื: benyamin zinshtein ืžื‘ืงืจ: Sigal Tifferet
00:15
Other people. Everyone is interested in other people.
1
15734
2809
ืื ืฉื™ื ืื—ืจื™ื. ื›ื•ืœื ืžืชืขื ื™ื™ื ื™ื ื‘ืื ืฉื™ื ืื—ืจื™ื.
00:18
Everyone has relationships with other people,
2
18543
2123
ืœื›ื•ืœื ื™ืฉ ื™ื—ืกื™ื ืขื ืื ืฉื™ื ืื—ืจื™ื,
00:20
and they're interested in these relationships
3
20666
1592
ื•ื”ื ืžืชืขื ื™ื™ื ื™ื ื‘ื™ื—ืกื™ื ื”ืืœื”
00:22
for a variety of reasons.
4
22258
1855
ืžืกื™ื‘ื•ืช ืฉื•ื ื•ืช.
00:24
Good relationships, bad relationships,
5
24113
2012
ื™ื—ืกื™ื ื˜ื•ื‘ื™ื, ื™ื—ืกื™ื ืจืขื™ื,
00:26
annoying relationships, agnostic relationships,
6
26125
3146
ื™ื—ืกื™ื ืžืขืฆื‘ื ื™ื, ื™ื—ืกื™ื ืื’ื ื•ืกื˜ื™ื,
00:29
and what I'm going to do is focus on the central piece
7
29271
3424
ืžื” ืฉืื ื™ ืžืชื›ื•ื•ืŸ ืœืขืฉื•ืช ื–ื” ืœื”ืชืžืงื“ ื‘ืžืจื›ื™ื‘ ื”ืžืจื›ื–ื™
00:32
of an interaction that goes on in a relationship.
8
32695
3303
ืฉืœ ื”ืื™ื ื˜ืจืืงืฆื™ื” ืฉืžืชืจื—ืฉืช ื‘ื™ื—ืกื™ื.
00:35
So I'm going to take as inspiration the fact that we're all
9
35998
2336
ืื ื™ ืขื•ืžื“ ืœืงื—ืช ื›ื”ืฉืจืื” ืืช ื”ืขื•ื‘ื“ื” ืฉื›ื•ืœื ื•
00:38
interested in interacting with other people,
10
38334
2425
ืžืขื•ื ื™ื™ื ื™ื ื‘ืงืฉืจ ืขื ืื ืฉื™ื ืื—ืจื™ื,
00:40
I'm going to completely strip it of all its complicating features,
11
40759
3832
ืื ื™ ืขื•ืžื“ ืœื”ืคืฉื™ื˜ ืื•ืชื• ืžื›ืœ ื”ืชื›ื•ื ื•ืช ื”ืžืกื•ื‘ื›ื•ืช,
00:44
and I'm going to turn that object, that simplified object,
12
44591
3894
ื•ืื ื™ ืขื•ืžื“ ืœื”ืคื•ืš ืื•ืชื•, ืืช ื”ืžื•ืฉื’ ื”ืžื•ืคืฉื˜ ื”ื–ื”
00:48
into a scientific probe, and provide the early stages,
13
48485
4150
ืœื—ืงืจ ืžื“ืขื™, ื•ืœื”ืฆื™ื’ ืืช ื”ืฉืœื‘ื™ื ื”ืจืืฉื•ื ื™ื™ื
00:52
embryonic stages of new insights into what happens
14
52635
2449
ื”ืฉืœื‘ื™ื ื”ืขื•ื‘ืจื™ื™ื ืฉืœ ืชื’ืœื™ื•ืช ื—ื“ืฉื•ืช ืœื’ื‘ื™ ืžื” ืงื•ืจื”
00:55
in two brains while they simultaneously interact.
15
55084
3650
ื‘ืฉื ื™ ืžื•ื—ื•ืช ืฉื ืžืฆืื™ื ื‘ืงืฉืจ ืžืฉื•ืชืฃ.
00:58
But before I do that, let me tell you a couple of things
16
58734
2293
ืื‘ืœ ืœืคื ื™ ืฉืืขืฉื” ื–ืืช, ื”ืจืฉื• ืœื™ ืœืกืคืจ ืœื›ื ืฉื ื™ ื“ื‘ืจื™ื
01:01
that made this possible.
17
61027
1699
ืฉืžืืคืฉืจื™ื ืืช ื–ื”.
01:02
The first is we can now eavesdrop safely
18
62726
2781
ื”ืจืืฉื•ืŸ ื”ื•ื ืฉืื ื• ืžืกื•ื’ืœื™ื ืœื‘ื—ื•ืŸ ื‘ืฆื•ืจื” ื‘ื˜ื•ื—ื”
01:05
on healthy brain activity.
19
65507
2711
ืืช ื”ืคืขื™ืœื•ืช ืฉืœ ืžื•ื— ื‘ืจื™ื.
01:08
Without needles and radioactivity,
20
68218
2577
ืœืœื ืžื—ื˜ื™ื ืื• ืงืจื™ื ื” ืจื“ื™ื•ืืงื˜ื™ื‘ื™ืช,
01:10
without any kind of clinical reason, we can go down the street
21
70795
2863
ืœืœื ืฉื•ื ืกื™ื‘ื” ืจืคื•ืื™ืช, ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืœื›ืช ื‘ืจื—ื•ื‘
01:13
and record from your friends' and neighbors' brains
22
73658
3127
ืœื”ืงืœื™ื˜ ืืช ื”ืžื•ื—ื•ืช ืฉืœ ื”ื—ื‘ืจื™ื ื•ื”ืฉื›ื ื™ื ืฉืœื›ื
01:16
while they do a variety of cognitive tasks, and we use
23
76785
2538
ื‘ื–ืžืŸ ืฉื”ื ืžื‘ืฆืขื™ื ืคืขื•ืœื•ืช ืงื•ื’ื ื™ื˜ื™ื‘ื™ื•ืช ืฉื•ื ื•ืช, ื•ืื ื• ืžืฉืชืžืฉื™ื
01:19
a method called functional magnetic resonance imaging.
24
79323
3734
ื‘ืฉื™ื˜ื” ืฉื ืงืจืืช ื”ื“ืžื™ื” ื‘ืชื”ื•ื“ื” ืžื’ื ื˜ื™ืช ืชืคืงื•ื“ื™ืช.
01:23
You've probably all read about it or heard about in some
25
83057
2325
ื‘ื•ื“ืื™ ืงืจืืชื ืื• ืฉืžืขืชื ืขืœ ื›ืš ื‘ื”ืงืฉืจ
01:25
incarnation. Let me give you a two-sentence version of it.
26
85382
4378
ืžืกื•ื™ื. ื”ืจืฉื• ืœื™ ืœืชืช ืœื›ื ืืช ื’ืจืกืช ืฉื ื™ ื”ืžืฉืคื˜ื™ื ืฉืœื”.
01:29
So we've all heard of MRIs. MRIs use magnetic fields
27
89760
3484
ื›ื•ืœื ื• ืฉืžืขื ื• ืขืœ MRI. MRI ืžืฉืชืžืฉ ื‘ืฉื“ื•ืช ืžื’ื ื˜ื™ื™ื
01:33
and radio waves and they take snapshots of your brain
28
93244
2029
ื•ื’ืœื™ ืจื“ื™ื• ื•ื”ื ืžืฆืœืžื™ื ืืช ื”ืžื•ื— ืฉืœื›ื
01:35
or your knee or your stomach,
29
95273
2361
ืื• ื”ื‘ืจื›ื™ื™ื ืฉืœื›ื ืื• ื”ื‘ื˜ืŸ ืฉืœื›ื,
01:37
grayscale images that are frozen in time.
30
97634
2045
ื‘ืชืžื•ื ื•ืช ื‘ื’ื•ื•ื ื™ ืืคื•ืจ ื”ืงืคื•ืื•ืช ื‘ื–ืžืŸ.
01:39
In the 1990s, it was discovered you could use
31
99679
2321
ื‘ืฉื ืช 1990, ื”ืชื’ืœื” ืฉื ื™ืชืŸ ืœื”ืฉืชืžืฉ
01:42
the same machines in a different mode,
32
102000
2659
ื‘ืื•ืชืŸ ืžื›ื•ื ื•ืช ื‘ืžืฆื‘ ืฉื•ื ื”,
01:44
and in that mode, you could make microscopic blood flow
33
104659
2346
ื•ื‘ืžืฆื‘ ื–ื” ื ื™ืชืŸ ืœืฆืœื ืกืจื˜ื™ื ืฉืœ ื–ืจื™ืžืช ื“ื ืžื™ืงืจื•ืกืงื•ืคื™ืช
01:47
movies from hundreds of thousands of sites independently in the brain.
34
107005
3300
ื‘ืขืฉืจื•ืช ืืœืคื™ ืžืงื•ืžื•ืช ืฉื•ื ื™ื ื•ืขืฆืžืื™ื™ื ื‘ืžื•ื—.
01:50
Okay, so what? In fact, the so what is, in the brain,
35
110305
3200
ืื– ืžื”? ื›ืš ื ื™ืชืŸ ืœื”ื‘ื™ืŸ ื‘ืชื•ืš ื”ืžื•ื—,
01:53
changes in neural activity, the things that make your brain work,
36
113505
3832
ื‘ืฉื™ื ื•ื™ื™ื ืฉืœ ืคืขื™ืœื•ืช ืขืฆื‘ื™ืช, ื”ื“ื‘ืจ ืฉื’ื•ืจื ืœืžื•ื— ืฉืœื›ื ืœืขื‘ื•ื“,
01:57
the things that make your software work in your brain,
37
117337
2010
ื”ื“ื‘ืจ ืฉื’ื•ืจื ืœืชื•ื›ื ื” ืœืขื‘ื•ื“ ื‘ืชื•ืš ื”ืžื•ื— ืฉืœื›ื,
01:59
are tightly correlated with changes in blood flow.
38
119347
2489
ื”ื ืžืื“ ืงืฉื•ืจื™ื ืœืฉื™ื ื•ื™ื™ื ื‘ื–ืจื™ืžืช ื”ื“ื.
02:01
You make a blood flow movie, you have an independent
39
121836
1973
ืืชื ืขื•ืฉื™ื ืกืจื˜ ืฉืœ ื–ืจื™ืžืช ื”ื“ื, ื•ื™ืฉ ืœื›ื
02:03
proxy of brain activity.
40
123809
2339
ืงื™ืจื•ื‘ ืขืฆืžืื™ ืฉืœ ืคืขื™ืœื•ืช ื”ืžื•ื—.
02:06
This has literally revolutionized cognitive science.
41
126148
3034
ื–ื” ื’ืจื ืคืฉื•ื˜ ืœืžื”ืคื›ื” ื‘ืžื—ืงืจ ื”ืžื•ื—.
02:09
Take any cognitive domain you want, memory,
42
129182
1991
ืงื—ื• ื›ืœ ืคืขื•ืœื” ืžื•ื—ื™ืช ืฉืชืจืฆื•, ื–ื™ื›ืจื•ืŸ,
02:11
motor planning, thinking about your mother-in-law,
43
131173
2141
ืชื›ื ื•ืŸ ืžื•ื˜ื•ืจื™, ืžื—ืฉื‘ื•ืช ืขืœ ื”ื—ืžื•ืช,
02:13
getting angry at people, emotional response, it goes on and on,
44
133314
3715
ื”ืชืจื’ื–ื•ืช ืขืœ ืื ืฉื™ื, ืชื’ื•ื‘ื•ืช ืจื’ืฉื™ื•ืช, ื•ื›ืŸ ื”ืœืื” ื•ื›ืŸ ื”ืœืื”,
02:17
put people into functional MRI devices, and
45
137029
3089
ืฉื™ืžื• ืื ืฉื™ื ื‘ืžื›ืฉื™ืจื™ MRI ืชืคืงื•ื“ื™ื™ื
02:20
image how these kinds of variables map onto brain activity.
46
140118
3383
ื•ืชืจืื• ืื™ืš ื”ืžืฉืชื ื™ื ื”ืืœื” ืžืชืžืคื™ื ืœืคืขื™ืœื•ืช ืžื•ื—ื™ืช.
02:23
It's in its early stages, and it's crude by some measures,
47
143501
2849
ื–ื” ื‘ืฉืœื‘ื™ื ืจืืฉื•ื ื™ื™ื, ื•ืœื ืžื“ื•ื™ืง ื‘ืžืกืคืจ ืžื“ื“ื™ื,
02:26
but in fact, 20 years ago, we were at nothing.
48
146350
2568
ืื‘ืœ ืœืคื ื™ 20 ืฉื ื” ืœื ื”ื™ื” ืœื ื• ื›ืœื•ื.
02:28
You couldn't do people like this. You couldn't do healthy people.
49
148918
2359
ืœื ื™ื›ื•ืœืชื ืœื‘ื“ื•ืง ืื ืฉื™ื ื›ืš. ืœื ื™ื›ื•ืœืชื ืœื‘ื“ื•ืง ืื ืฉื™ื ื‘ืจื™ืื™ื.
02:31
That's caused a literal revolution, and it's opened us up
50
151277
2488
ื–ื” ื™ืฆืจ ืžื”ืคื›ื” ืืžื™ืชื™ืช, ื•ืคืชื— ื‘ืคื ื™ื ื•
02:33
to a new experimental preparation. Neurobiologists,
51
153765
2818
ืขื•ืœื ื ื™ืกื™ื•ื ื™ ื—ื“ืฉ. ืœื ื•ื™ืจื•ื‘ื™ื•ืœื•ื’ื™ื”,
02:36
as you well know, have lots of experimental preps,
52
156583
3760
ื›ืคื™ ืฉืืชื ื™ื•ื“ืขื™ื ื”ื™ื˜ื‘, ื™ืฉ ื”ืจื‘ื” ืื•ื‘ื™ื™ืงื˜ื™ื ืœื ื™ืกื•ื™ื™ื,
02:40
worms and rodents and fruit flies and things like this.
53
160343
3141
ืชื•ืœืขื™ื, ื•ืžื›ืจืกืžื™ื, ื–ื‘ื•ื‘ื™ ืคื™ืจื•ืช ื•ื“ื‘ืจื™ื ื“ื•ืžื™ื.
02:43
And now, we have a new experimental prep: human beings.
54
163484
3397
ื•ืขื›ืฉื™ื• ืืคืฉืจ ืœื‘ื—ื•ืŸ ื“ื‘ืจื™ื ื—ื“ืฉื™ื: ื‘ื ื™ ืื“ื.
02:46
We can now use human beings to study and model
55
166881
3761
ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื”ืฉืชืžืฉ ื‘ืื ืฉื™ื ืœืœืžื•ื“ ื•ืœืžื“ืœ
02:50
the software in human beings, and we have a few
56
170642
2950
ืืช ื”ืชื•ื›ื ื” ืฉืœ ื‘ื ื™ ื”ืื“ื, ื•ื™ืฉ ืœื ื• ืžืกืคืจ
02:53
burgeoning biological measures.
57
173592
2835
ืžื“ื“ื™ื ื‘ื™ื•ืœื•ื’ื™ื™ื ืžืชืคืชื—ื™ื.
02:56
Okay, let me give you one example of the kinds of experiments that people do,
58
176427
3887
ื”ืจืฉื• ืœื™ ืœืชืช ืœื›ื ื“ื•ื’ืžื ืœืกื•ื’ื™ ื”ื ื™ืกื•ื™ื™ื ืฉืื ืฉื™ื ืขื•ืฉื™ื,
03:00
and it's in the area of what you'd call valuation.
59
180314
2677
ื‘ืชื—ื•ื ืฉืœ ืžื” ืฉื ืงืจื ื”ืขืจื›ื”.
03:02
Valuation is just what you think it is, you know?
60
182991
2135
ื”ืขืจื›ื” ื–ื” ื‘ื“ื™ื•ืง ืžื” ืฉืืชื ื—ื•ืฉื‘ื™ื, ืืชื ื™ื•ื“ืขื™ื?
03:05
If you went and you were valuing two companies against
61
185126
2804
ืื ื”ื™ื™ืชื ื”ื•ืœื›ื™ื ื•ืžืขืจื™ื›ื™ื ืฉืชื™ ื—ื‘ืจื•ืช ืื—ืช ืžื•ืœ
03:07
one another, you'd want to know which was more valuable.
62
187930
2736
ื”ืฉื ื™ื”, ื”ื™ื™ืชื ืจื•ืฆื™ื ืœื“ืขืช ืœืื™ื–ื• ืžื”ืŸ ื™ืฉ ื™ื•ืชืจ ืขืจืš.
03:10
Cultures discovered the key feature of valuation thousands of years ago.
63
190666
3879
ืชืจื‘ื•ื™ื•ืช ื’ื™ืœื• ืืช ืชื›ื•ื ื•ืช ื”ืžืคืชื— ืœืงื‘ื™ืขืช ืขืจืš ืœืคื ื™ ืืœืคื™ ืฉื ื™ื.
03:14
If you want to compare oranges to windshields, what do you do?
64
194545
2690
ืื ืืชื ืจื•ืฆื™ื ืœื”ืฉื•ื•ืช ื‘ื™ืŸ ืชืคื•ื–ื™ื ืœืฉืžืฉื•ืช, ืžื” ืืชื ืขื•ืฉื™ื?
03:17
Well, you can't compare oranges to windshields.
65
197235
2356
ื•ื‘ื›ืŸ, ืืชื ืœื ื™ื›ื•ืœื™ื ืœื”ืฉื•ื•ืช ื‘ื™ืŸ ืชืคื•ื–ื™ื ืœืฉืžืฉื•ืช.
03:19
They're immiscible. They don't mix with one another.
66
199591
2255
ื”ื ื‘ืœืชื™ ื ื™ืชื ื™ื ืœื”ืฉื•ื•ืื”, ื”ื ืœื ืžืชืขืจื‘ื‘ื™ื.
03:21
So instead, you convert them to a common currency scale,
67
201846
2351
ื‘ืžืงื•ื, ืืชื ืžืžื™ืจื™ื ืื•ืชื ืœืžื˜ื‘ืข ืžืฉื•ืชืฃ
03:24
put them on that scale, and value them accordingly.
68
204197
2706
ืžื•ื“ื“ื™ื ืืช ืขืจื›ื, ื•ืžืขืจื™ื›ื™ื ืื•ืชื ืœืคื™ ืฉื•ื•ื™ื
03:26
Well, your brain has to do something just like that as well,
69
206903
3436
ื•ื‘ื›ืŸ, ื”ืžื•ื— ืฉืœื›ื ืฆืจื™ืš ืœืขืฉื•ืช ืžืฉื”ื• ื‘ื“ื™ื•ืง ื›ืžื• ื–ื”,
03:30
and we're now beginning to understand and identify
70
210339
2488
ื•ืขื›ืฉื™ื• ืื ื—ื ื• ืžืชื—ื™ืœื™ื ืœื”ื‘ื™ืŸ ื•ืœื–ื”ื•ืช
03:32
brain systems involved in valuation,
71
212827
2137
ืžืขืจื›ื•ืช ื‘ืžื•ื— ื”ืžืฉืชืชืคื•ืช ื‘ื”ืขืจื›ื”
03:34
and one of them includes a neurotransmitter system
72
214964
2632
ื•ืื—ืช ืžื”ื ื›ื•ืœืœืช ืžืขืจื›ืช ื ื•ื™ืจื•ื˜ืจื ืกืžื™ื˜ืจื™ื
03:37
whose cells are located in your brainstem
73
217596
2632
ืฉื”ืชืื™ื ืฉืœื” ื ืžืฆืื™ื ืœื™ื“ ื’ื–ืข ื”ืžื•ื—
03:40
and deliver the chemical dopamine to the rest of your brain.
74
220228
3175
ื•ืžืขื‘ื™ืจื™ื ืืช ื”ื›ื™ืžื™ืงืœ ื“ื•ืคืžื™ืŸ ืœืฉืืจ ื”ืžื•ื—.
03:43
I won't go through the details of it, but that's an important
75
223403
2442
ืœื ืืคืจื˜, ืื‘ืœ ื–ื•ื”ื™ ืชื’ืœื™ืช ื—ืฉื•ื‘ื”
03:45
discovery, and we know a good bit about that now,
76
225845
2157
ื•ืื ื—ื ื• ื™ื•ื“ืขื™ื ืขืœ ื–ื” ืงืฆืช ืขื›ืฉื™ื•
03:48
and it's just a small piece of it, but it's important because
77
228002
2230
ื•ื–ื• ืจืง ื—ืชื™ื›ื” ืงื˜ื ื” ืฉืœ ื–ื”, ืื‘ืœ ื–ื” ื—ืฉื•ื‘ ื›ื™
03:50
those are the neurons that you would lose if you had Parkinson's disease,
78
230232
3275
ืืœื” ื”ื ื•ื™ืจื•ื ื™ื ืฉืชืื‘ื“ื• ืื ื™ื”ื™ื” ืœื›ื ืคืจืงื™ื ืกื•ืŸ,
03:53
and they're also the neurons that are hijacked by literally
79
233507
2016
ื•ื”ื ื’ื ื ื•ื™ืจื•ื ื™ื ืืฉืจ ื ื—ื˜ืคื™ื ืขืœ ื™ื“ื™
03:55
every drug of abuse, and that makes sense.
80
235523
2232
ื›ืœ ื”ืกืžื™ื ื”ืžืžื›ืจื™ื, ื•ื–ื” ื”ื’ื™ื•ื ื™
03:57
Drugs of abuse would come in, and they would change
81
237755
2336
ืกืžื™ื ืžืžื›ืจื™ื ื”ื™ื• ืžื’ื™ืขื™ื ื•ืžืฉื ื™ื ืืช
04:00
the way you value the world. They change the way
82
240091
1789
ื”ื“ืจืš ืฉืืชื ืžืขืจื™ื›ื™ื ืืช ื”ืขื•ืœื. ื”ื ืžืฉื ื™ื ืืช ื”ืฆื•ืจื”
04:01
you value the symbols associated with your drug of choice,
83
241880
3199
ื‘ื” ืืชื ืžืขืจื™ื›ื™ื ืืช ื”ืกืžืžื ื™ื ืฉืœ ื”ืกื ืฉืฆืจื›ืชื,
04:05
and they make you value that over everything else.
84
245079
2514
ื•ื’ื•ืจืžื™ื ืœื›ื ืœื”ืขืจื™ืš ื–ืืช ืขืœ ืคื ื™ ื›ืœ ื“ื‘ืจ ืื—ืจ.
04:07
Here's the key feature though. These neurons are also
85
247593
3021
ื”ื ื” ืชื›ื•ื ืช ื”ืžืคืชื—, ื”ื ื•ื™ืจื•ื ื™ื ื”ืืœื” ื”ื ื’ื
04:10
involved in the way you can assign value to literally abstract ideas,
86
250614
3501
ืžืขื•ืจื‘ื™ื ื‘ื“ืจืš ืฉื‘ื” ืืชื ืžืงืฆื™ื ืขืจืš ืœืขืจื›ื™ื ืžื•ืคืฉื˜ื™ื
04:14
and I put some symbols up here that we assign value to
87
254115
2041
ื•ืฉืžืชื™ ื›ืžื” ืกืžืœื™ื ื›ืืŸ ืฉืื ื• ืžืงืฆื™ื ืœื”ื ืขืจืš
04:16
for various reasons.
88
256156
2720
ืžืกื™ื‘ื•ืช ืฉื•ื ื•ืช.
04:18
We have a behavioral superpower in our brain,
89
258876
2689
ื™ืฉ ืœื ื• ืžืขืฆืžื” ื”ืชื ื”ื’ื•ืชื™ืช ื‘ืžื•ื— ืฉืœื ื•,
04:21
and it at least in part involves dopamine.
90
261565
1753
ื•ื”ื•ื ื›ืจื•ืš ืœืคื—ื•ืช ื‘ื—ืœืงื• ื‘ื“ื•ืคืžื™ืŸ.
04:23
We can deny every instinct we have for survival for an idea,
91
263318
4189
ืื ื• ื™ื›ื•ืœื™ื ืœื”ืชื ื’ื“ ืœื›ืœ ืื™ื ืกื˜ื™ื ืงื˜ ืฉื™ืฉ ืœื ื• ืœื”ื™ืฉืจื“ื•ืช ืขื‘ื•ืจ ืจืขื™ื•ืŸ,
04:27
for a mere idea. No other species can do that.
92
267507
4005
ืขื‘ื•ืจ ืจืขื™ื•ืŸ ื’ืจื™ื“ื. ืื™ืŸ ืžื™ื ื™ื ืื—ืจื™ื ืฉื™ื›ื•ืœื™ื ืœืขืฉื•ืช ื–ืืช.
04:31
In 1997, the cult Heaven's Gate committed mass suicide
93
271512
3606
ื‘ืฉื ืช 1997, ื”ื›ืช "ืฉืขืจ ื’ืŸ ืขื“ืŸ" ื‘ื™ืฆืขื” ื”ืชืื‘ื“ื•ืช ื”ืžื•ื ื™ืช
04:35
predicated on the idea that there was a spaceship
94
275118
2215
ื‘ื”ืชื‘ืกืก ืขืœ ื”ืจืขื™ื•ืŸ ืฉื—ืœืœื™ืช
04:37
hiding in the tail of the then-visible comet Hale-Bopp
95
277333
3785
ืืฉืจ ืžืกืชืชืจืช ื‘ืฉื•ื‘ืœ ืฉืœ ื”ืฉื‘ื™ื˜ Hale-Bopp ืฉื ืจืื” ืื–
04:41
waiting to take them to the next level. It was an incredibly tragic event.
96
281118
4272
ืžืžืชื™ื ื” ื›ื“ื™ ืœืงื—ืช ืื•ืชื ืœืฉืœื‘ ื”ื‘ื. ื–ื” ื”ื™ื” ืื™ืจื•ืข ื˜ืจื’ื™ ืœื”ืคืœื™ื.
04:45
More than two thirds of them had college degrees.
97
285390
3485
ืœื™ื•ืชืจ ืžืฉื ื™ ืฉืœื™ืฉ ืžื”ื ื”ื™ื• ืชืืจื™ื ืืงื“ืžืื™ื.
04:48
But the point here is they were able to deny their instincts for survival
98
288875
3723
ืื‘ืœ ื”ื ืงื•ื“ื” ื›ืืŸ, ื”ื™ื ืฉื”ื ื™ื›ืœื• ืœื”ืชื ื’ื“ ืœืื™ื ืกื˜ื™ื ืงื˜ ืฉืœื”ื ืœื”ื™ืฉืจื“ื•ืช
04:52
using exactly the same systems that were put there
99
292598
2866
ืขืœ ื™ื“ื™ ืื•ืชืŸ ืžืขืจื›ื•ืช ืฉื ืžืฆืื•ืช ืฉื
04:55
to make them survive. That's a lot of control, okay?
100
295464
4042
ืขืœ ืžื ืช ืœื’ืจื•ื ืœื”ื ืœืฉืจื•ื“, ื–ื” ื”ืจื‘ื” ืฉืœื™ื˜ื”, ืื•ืงื™ื™?
04:59
One thing that I've left out of this narrative
101
299506
2089
ื“ื‘ืจ ืื—ื“ ืฉื”ืฉืžื˜ืชื™ ืžื”ื ืจื˜ื™ื‘ ื”ื–ื”
05:01
is the obvious thing, which is the focus of the rest of my
102
301595
2234
ื”ื•ื ื”ื“ื‘ืจ ื”ื‘ืจื•ืจ, ืฉื”ื•ื ื”ืžื•ืงื“ ื‘ืฉืืจ
05:03
little talk, and that is other people.
103
303829
2159
ื”ืฉื™ื—ื” ืฉืœื™, ื•ื–ื” ืื ืฉื™ื ืื—ืจื™ื.
05:05
These same valuation systems are redeployed
104
305988
2996
ืื•ืชืŸ ืžืขืจื›ื•ืช ื”ืขืจื›ื” ื ืคืจืฉื•ืช ืžื—ื“ืฉ
05:08
when we're valuing interactions with other people.
105
308984
2492
ื›ืืฉืจ ืื ื—ื ื• ืžืขืจื™ื›ื™ื ืื™ื ื˜ืจืืงืฆื™ื•ืช ืขื ืื ืฉื™ื ืื—ืจื™ื.
05:11
So this same dopamine system that gets addicted to drugs,
106
311476
3271
ืื– ืื•ืชื” ืžืขืจื›ืช ื“ื•ืคืžื™ืŸ ืฉืžืชืžื›ืจืช ืœืกืžื™ื,
05:14
that makes you freeze when you get Parkinson's disease,
107
314747
2524
ืฉื’ื•ืจืžืช ืœื›ื "ืœืงืคื•ื" ื›ืฉื™ืฉ ืœื›ื ืคืจืงื™ื ืกื•ืŸ,
05:17
that contributes to various forms of psychosis,
108
317271
3077
ืฉืชื•ืจืžืช ืœืฆื•ืจื•ืช ืจื‘ื•ืช ืฉืœ ืคืกื™ื›ื•ื–ื”,
05:20
is also redeployed to value interactions with other people
109
320348
3920
ื’ื ื ืคืจืฉืช ืžื—ื“ืฉ ื›ื“ื™ ืœื”ืขืจื™ืš ืงืฉืจื™ื ืขื ืื ืฉื™ื ืื—ืจื™ื
05:24
and to assign value to gestures that you do
110
324268
2896
ื•ื›ื“ื™ ืœื”ืงืฆื•ืช ืขืจืš ืœืžื—ื•ื•ืช ืฉืืชื ืขื•ืฉื™ื
05:27
when you're interacting with somebody else.
111
327164
2574
ื›ืืฉืจ ืืชื ืžืชืงืฉืจื™ื ืขื ืžื™ืฉื”ื• ืื—ืจ.
05:29
Let me give you an example of this.
112
329738
2577
ืืชืŸ ืœื›ื ื“ื•ื’ืžื.
05:32
You bring to the table such enormous processing power
113
332315
2967
ื™ืฉ ืœื›ื ื›ื•ื— ืขื™ื‘ื•ื“ ื’ื“ื•ืœ ื›ืœ ื›ืš
05:35
in this domain that you hardly even notice it.
114
335282
2624
ื‘ืชื—ื•ื ื–ื” ืฉืืชื ื‘ืงื•ืฉื™ ืฉืžื™ื ืœื‘ ืืœื™ื•.
05:37
Let me just give you a few examples. So here's a baby.
115
337906
1467
ื•ืืชืŸ ืœืš ื›ืžื” ื“ื•ื’ืžืื•ืช. ืื– ื”ื ื” ืชื™ื ื•ืงืช.
05:39
She's three months old. She still poops in her diapers and she can't do calculus.
116
339373
3730
ื”ื™ื ื‘ืช ืฉืœื•ืฉื” ื—ื•ื“ืฉื™ื. ื”ื™ื ื ืžืฆืืช ืขื“ื™ื™ืŸ ื‘ื—ื™ืชื•ืœื™ื, ื•ื”ื™ื ืœื ื™ื•ื“ืขืช ืœืขืฉื•ืช ื—ืฉื‘ื•ืŸ
05:43
She's related to me. Somebody will be very glad that she's up here on the screen.
117
343103
3353
ื”ื™ื ืงืฉื•ืจื” ืืœื™. ืžื™ืฉื”ื• ื™ื”ื™ื” ืžืื•ื“ ืฉืžื— ืฉื”ื™ื ื›ืืŸ ืขืœ ื”ืžืกืš.
05:46
You can cover up one of her eyes, and you can still read
118
346456
2376
ื ื™ืชืŸ ืœื›ืกื•ืช ืื—ืช ืžืขื™ื ื™ื”, ื•ืขื“ื™ื™ืŸ ืœื–ื”ื•ืช
05:48
something in the other eye, and I see sort of curiosity
119
348832
2755
ืžืฉื”ื• ื‘ืขื™ืŸ ื”ืฉื ื™ื™ื”, ืื ื™ ืจื•ืื” ืกื•ื’ ืฉืœ ืกืงืจื ื•ืช
05:51
in one eye, I see maybe a little bit of surprise in the other.
120
351587
3597
ื‘ืขื™ืŸ ืื—ืช, ืื ื™ ืจื•ืื” ืื•ืœื™ ืงืฆืช ื”ืคืชืขื” ื‘ืฉื ื™ื™ื”.
05:55
Here's a couple. They're sharing a moment together,
121
355184
3179
ื”ื ื” ื–ื•ื’. ื”ื ื—ื•ืœืงื™ื ืจื’ืข ื™ื—ื“ื™ื•,
05:58
and we've even done an experiment where you can cut out
122
358363
1318
ื•ืืคื™ืœื• ืขืฉื™ื ื• ื ื™ืกื•ื™ ืฉืืชื ื™ื›ื•ืœื™ื ืœื’ื–ื•ืจ
05:59
different pieces of this frame and you can still see
123
359681
3007
ื—ืœืงื™ื ืฉื•ื ื™ื ืฉืœ ื”ืชืžื•ื ื” ื•ืืชื ืขื“ื™ื™ืŸ ื™ื›ื•ืœื™ื ืœืจืื•ืช
06:02
that they're sharing it. They're sharing it sort of in parallel.
124
362688
2504
ืฉื”ื ืฉื•ืชืคื™ื ืœื•. ื”ื ื—ื•ืœืงื™ื ืื•ืชื• ื‘ื• ื–ืžื ื™ืช.
06:05
Now, the elements of the scene also communicate this
125
365192
2463
ืขื›ืฉื™ื•, ื”ืจื›ื™ื‘ื™ื ืฉืœ ื”ืกืฆื ื” ื’ื ืžืฉื“ืจื™ื
06:07
to us, but you can read it straight off their faces,
126
367655
2235
ืœื ื•, ืื‘ืœ ืืคืฉืจ ืœื”ื‘ื™ืŸ ื–ืืช ื™ืฉืจ ืžื”ืคื ื™ื ืฉืœื”ื,
06:09
and if you compare their faces to normal faces, it would be a very subtle cue.
127
369890
3503
ื•ืื ืืชื ืžืฉื•ื•ื™ื ืืช ื”ืคื ื™ื ืฉืœื”ื ืœืคื ื™ื ืจื’ื™ืœื•ืช, ื–ื” ื™ื”ื™ื” ืจืžื– ืžืื•ื“ ืขื“ื™ืŸ.
06:13
Here's another couple. He's projecting out at us,
128
373393
3347
ื”ื ื” ื–ื•ื’ ืื—ืจ. ื”ื•ื ืžืงืจื™ืŸ ื”ื—ื•ืฆื” ืขืœื™ื ื•,
06:16
and she's clearly projecting, you know,
129
376740
2888
ื•ื”ื™ื ื‘ื‘ื™ืจื•ืจ ืžืงืจื™ื ื”, ืืชื ืžื‘ื™ื ื™ื,
06:19
love and admiration at him.
130
379628
2263
ืื”ื‘ื” ื•ื”ืขืจืฆื” ืœืขื‘ืจื•
06:21
Here's another couple. (Laughter)
131
381891
3635
ื”ื ื” ื–ื•ื’ ืื—ืจ. (ืฆื—ื•ืง)
06:25
And I'm thinking I'm not seeing love and admiration on the left. (Laughter)
132
385526
5150
ื•ืื ื™ ื—ื•ืฉื‘ ืฉืื ื™ ืœื ืจื•ืื” ืื”ื‘ื” ื•ื”ืขืจืฆื” ืžืฉืžืืœ (ืฆื—ื•ืง)
06:30
In fact, I know this is his sister, and you can just see
133
390676
2560
ืœืžืขืฉื”, ืื ื™ ื™ื•ื“ืขืช ื›ื™ ื”ื™ื ืื—ื•ืชื•, ื•ืืชื ื™ื›ื•ืœื™ื ืคืฉื•ื˜ ืœืจืื•ืช
06:33
him saying, "Okay, we're doing this for the camera,
134
393236
2513
ืื•ืชื• ืื•ืžืจ: "ื‘ืกื“ืจ, ืื ื—ื ื• ืขื•ืฉื™ื ืืช ื–ื” ืขื‘ื•ืจ ื”ืžืฆืœืžื”,
06:35
and then afterwards you steal my candy and you punch me in the face." (Laughter)
135
395749
5702
ื•ืื—ืจื™ ื–ื” ืืช ืชื’ื ื‘ื™ ืืช ื”ืžืžืชืงื™ื ืฉืœื™ ื•ืชืจื‘ื™ืฆื™ ืœื™ ื‘ืคื ื™ื".(ืฆื—ื•ืง)
06:41
He'll kill me for showing that.
136
401451
2106
ื”ื•ื ื™ื”ืจื•ื’ ืื•ืชื™ ืฉื”ืฆื’ืชื™ ืืช ื–ื”
06:43
All right, so what does this mean?
137
403557
2797
ื‘ืกื“ืจ, ืื– ืžื” ื–ื” ืื•ืžืจ?
06:46
It means we bring an enormous amount of processing power to the problem.
138
406354
3350
ื–ื” ืื•ืžืจ ืฉืื ื—ื ื• ืžื‘ื™ืื™ื ื›ืžื•ืช ืขืฆื•ืžื” ืฉืœ ื›ื•ื— ืขื™ื‘ื•ื“ ืœื‘ืขื™ื”.
06:49
It engages deep systems in our brain, in dopaminergic
139
409704
3648
ื–ื” ืžืคืขื™ืœ ืžืขืจื›ื•ืช ืขืžื•ืงื•ืช ื‘ืžื•ื— ืฉืœื ื• ื”ืงืฉื•ืจื•ืช ืœื“ื•ืคืžื™ืŸ,
06:53
systems that are there to make you chase sex, food and salt.
140
413352
2818
ืžืขืจื›ื•ืช ืฉื™ืฉื ืŸ ื›ื“ื™ ืœื’ืจื•ื ืœื ื• ืœืจื“ื•ืฃ ืื—ืจื™ ืกืงืก, ืื•ื›ืœ ื•ืžืœื—.
06:56
They keep you alive. It gives them the pie, it gives
141
416170
2894
ื”ืŸ ืฉื•ืžืจื•ืช ืื•ืชืš ื‘ื—ื™ื™ื. ื”ื ื ื•ืชื ื•ืช ืœื”ื ืืช ื”ื‘ื•ื ื•ืก ื‘ื—ื™ื™ื, ื–ื” ื™ื•ืฆืจ
06:59
that kind of a behavioral punch which we've called a superpower.
142
419064
2904
ื›ืืœื• ื“ื—ืคื™ื ื—ื‘ืจืชื™ื™ื ืฉืื ื• ื ื•ื˜ื™ื ืœืงืจื•ื ืœื”ื ืžืขืฆืžืช ืขืœ
07:01
So how can we take that and arrange a kind of staged
143
421968
3654
ืื– ืื™ืš ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืงื—ืช ืืช ื–ื” ื•ืœืืจื’ืŸ ืกื•ื’ ืฉืœ
07:05
social interaction and turn that into a scientific probe?
144
425622
2698
ืื™ื ื˜ืจืืงืฆื™ื” ื—ื‘ืจืชื™ืช ืžื‘ื•ื™ืžืช ื•ืœื”ืคื•ืš ืืช ื–ื” ืœื‘ื“ื™ืงื” ืžื“ืขื™ืช?
07:08
And the short answer is games.
145
428320
2691
ื•ื”ืชืฉื•ื‘ื” ื”ืงืฆืจื” ื”ื™ื ืžืฉื—ืงื™ื.
07:11
Economic games. So what we do is we go into two areas.
146
431011
4404
ืžืฉื—ืงื™ื ื›ืœื›ืœื™ื™ื. ืžื” ืฉืื ื—ื ื• ืขื•ืฉื™ื ื–ื” ืœื’ืขืช ื‘ืฉื ื™ ืชื—ื•ืžื™ื.
07:15
One area is called experimental economics. The other area is called behavioral economics.
147
435415
3336
ื”ืื—ื“ ื ืงืจื ื›ืœื›ืœื” ื ื™ืกื™ื•ื ื™ืช. ื”ืฉื ื™ ื ืงืจื ื›ืœื›ืœื” ื”ืชื ื”ื’ื•ืชื™ืช
07:18
And we steal their games. And we contrive them to our own purposes.
148
438751
4078
ื•ืื ื—ื ื• ื’ื•ื ื‘ื™ื ืœื”ื ืืช ื”ืžืฉื—ืงื™ื, ื•ืื ื—ื ื• ืžืฉื ื™ื ืื•ืชื ืœืžื˜ืจื•ืชื™ื ื•.
07:22
So this shows you one particular game called an ultimatum game.
149
442829
2967
ื–ื” ืžืจืื” ืœื›ื ืžืฉื—ืง ืžืกื•ื™ื ืฉื ืงืจื "ืžืฉื—ืง ื”ืื•ืœื˜ื™ืžื˜ื•ื"
07:25
Red person is given a hundred dollars and can offer
150
445796
1845
ืœืื“ื ื”ืื“ื•ื ื ื™ืชื ื™ื 100 ื“ื•ืœืจ ื•ื™ื›ื•ืœ ืœื”ืฆื™ืข
07:27
a split to blue. Let's say red wants to keep 70,
151
447641
3723
ื—ืœื•ืงื” ืœื›ื—ื•ืœ. ื‘ื•ืื• ื ื’ื™ื“ ืฉื”ืื“ื•ื ืจื•ืฆื” ืœืฉืžื•ืจ 70
07:31
and offers blue 30. So he offers a 70-30 split with blue.
152
451364
4086
ื•ืžืฆื™ืข ืœื›ื—ื•ืœ 30. ืื– ื”ื•ื ืžืฆื™ืข ื—ืœื•ืงื” ืฉืœ 70-30 ืขื ื”ื›ื—ื•ืœ
07:35
Control passes to blue, and blue says, "I accept it,"
153
455450
2851
ื”ืฉืœื™ื˜ื” ืขื•ื‘ืจืช ืœื›ื—ื•ืœ, ื•ื”ื•ื ืื•ืžืจ, "ืื ื™ ืžืงื‘ืœ"
07:38
in which case he'd get the money, or blue says,
154
458301
1956
ื•ื‘ืžืงืจื” ื›ื–ื” ื”ื•ื ืžืงื‘ืœ ืืช ื”ื›ืกืฃ, ืื• ืฉื”ื›ื—ื•ืœ ืื•ืžืจ,
07:40
"I reject it," in which case no one gets anything. Okay?
155
460257
4307
"ืื ื™ ื“ื•ื—ื” ืืช ื–ื”", ื•ื‘ืžืงืจื” ื›ื–ื” ืืฃ ืื—ื“ ืœื ืžืงื‘ืœ ืืช ื”ื›ืกืฃ. ืื•ืงื™ื™?
07:44
So a rational choice economist would say, well,
156
464564
3392
ืื– ื”ื”ื—ืœื˜ื” ื”ื”ื’ื™ื•ื ื™ืช ืฉื›ืœื›ืœื ื™ื ื™ืขืฉื• ื”ื™ื,
07:47
you should take all non-zero offers.
157
467956
2056
ืืชื ืฆืจื™ื›ื™ื ืœืงื—ืช ืืช ื›ืœ ื”ื”ืฆืขื•ืช ืฉื”ืŸ ืœื ืืคืก.
07:50
What do people do? People are indifferent at an 80-20 split.
158
470012
3762
ืžื” ืื ืฉื™ื ื™ืขืฉื•? ืื ืฉื™ื ืื“ื™ืฉื™ื ืœื—ืœื•ืงื” ืฉืœ 80-20
07:53
At 80-20, it's a coin flip whether you accept that or not.
159
473774
3524
ื‘ 80-20, ื–ื” ืžื–ืœ ื‘ืœื‘ื“ ืื ืชืกื›ื™ื ืœืงื‘ืœ ืื• ืœื.
07:57
Why is that? You know, because you're pissed off.
160
477298
2891
ืœืžื” ื–ื”? ืืชื ื™ื•ื“ืขื™ื, ื›ื™ ืืชื ืžืขื•ืฆื‘ื ื™ื.
08:00
You're mad. That's an unfair offer, and you know what an unfair offer is.
161
480189
3609
ืืชื ื›ื•ืขืกื™ื. ื–ื•ื”ื™ ื”ืฆืขื” ืœื ื”ื•ื’ื ืช, ื•ืืชื ื™ื•ื“ืขื™ื ืื™ืš ื ืจืื™ืช ื”ืฆืขื” ืœื ื”ื•ื’ื ืช.
08:03
This is the kind of game done by my lab and many around the world.
162
483798
2704
ื–ื”ื• ืกื•ื’ ืฉืœ ืžืฉื—ืง ืฉื ืขืฉื” ืืฆืœื™ ื‘ืžืขื‘ื“ื” ื•ื‘ืžืงื•ืžื•ืช ืจื‘ื™ื ื‘ืขื•ืœื.
08:06
That just gives you an example of the kind of thing that
163
486502
2544
ื–ื” ืจืง ื ื•ืชืŸ ืœื›ื ื“ื•ื’ืžื ืœืกื•ื’ ื”ื“ื‘ืจื™ื
08:09
these games probe. The interesting thing is, these games
164
489046
3738
ืฉื”ืžืฉื—ืงื™ื ื”ืืœื” ื‘ื•ื“ืงื™ื. ื”ื“ื‘ืจ ื”ืžืขื ื™ื™ืŸ ื”ื•ื, ืฉื”ืžืฉื—ืงื™ื ื”ืืœื”
08:12
require that you have a lot of cognitive apparatus on line.
165
492784
3707
ื“ื•ืจืฉื™ื ื”ืจื‘ื” ืคืขื™ืœื•ืช ืงื•ื’ื ื™ื˜ื™ื‘ื™ืช ืคืขื™ืœื”.
08:16
You have to be able to come to the table with a proper model of another person.
166
496491
2928
ืืชื ืฆืจื™ื›ื™ื ืœื”ื™ื•ืช ืžืกื•ื’ืœื™ื ืœื”ื‘ื™ืŸ ื”ืชื ื”ื’ื•ืช ืฉืœ ืื“ื ืื—ืจ.
08:19
You have to be able to remember what you've done.
167
499419
3213
ืืชื ืฆืจื™ื›ื™ื ืœื”ื™ื•ืช ืžืกื•ื’ืœื™ื ืœื–ื›ื•ืจ ืžื” ืขืฉื™ืชื.
08:22
You have to stand up in the moment to do that.
168
502632
1420
ืืชื ืฆืจื™ื›ื™ื ืœืขืžื•ื“ ืขืœ ืฉืœื›ื ื‘ืจื’ืข ืฉื ื“ืจืฉ ืžื›ื.
08:24
Then you have to update your model based on the signals coming back,
169
504052
3350
ื•ืื– ืืชื ืฆืจื™ื›ื™ื ืœืขื“ื›ืŸ ืืช ื”ื”ื‘ื ื” ื‘ื™ื—ืก ืœืชื’ื•ื‘ื•ืช ืฉืืชื ืžืงื‘ืœื™ื ื—ื–ืจื”
08:27
and you have to do something that is interesting,
170
507402
2972
ื•ืืชื ืฆืจื™ื›ื™ื ืœืขืฉื•ืช ืžืฉื”ื• ืฉื”ื•ื ืžืขื ื™ื™ืŸ,
08:30
which is you have to do a kind of depth of thought assay.
171
510374
2597
ืืชื ืฆืจื™ื›ื™ื ืœืขืฉื•ืช ืกื•ื’ ืฉืœ ื”ืขืจื›ื” ืžื—ืฉื‘ืชื™ืช ืขืžื•ืงื”.
08:32
That is, you have to decide what that other person expects of you.
172
512971
3333
ื–ืืช ืื•ืžืจืช, ืืชื ืฆืจื™ื›ื™ื ืœื”ื—ืœื™ื˜ ืžื” ื”ื‘ื ืื“ื ื”ืฉื ื™ ืžืฆืคื” ืžื›ื.
08:36
You have to send signals to manage your image in their mind.
173
516304
2954
ืืชื ืฆืจื™ื›ื™ื ืœืฉืœื•ื— ืจืžื–ื™ื ืขืœ ืžื ืช ืœืฉืงืฃ ืืช ืขืฆืžื›ื ื‘ืขื™ื ื™ื•.
08:39
Like a job interview. You sit across the desk from somebody,
174
519258
2853
ื›ืžื• ื‘ืจื™ืื™ื•ืŸ ืขื‘ื•ื“ื”. ืืชื ื™ื•ืฉื‘ื™ื ืžืขื‘ืจ ืœืฉื•ืœื—ืŸ
08:42
they have some prior image of you,
175
522111
1369
ื•ื™ืฉ ืœื”ื ืื™ื–ื• ื”ื‘ื ื” ืจืืฉื•ื ื™ืช ืขืœื™ื›ื,
08:43
you send signals across the desk to move their image
176
523480
2751
ืืชื ืฉื•ืœื—ื™ื ืจืžื–ื™ื ืžืขื‘ืจ ืœืฉื•ืœื—ืŸ ืขืœ ืžื ืช ืœืฉื ื•ืช ืืช ื”ื”ื‘ื ื”
08:46
of you from one place to a place where you want it to be.
177
526231
3920
ืขืœื™ื›ื ืžืžืงื•ื ืื—ื“ ืœืžืงื•ื ืฉืืชื ืจื•ืฆื™ื ืฉื”ื•ื ื™ื”ื™ื”.
08:50
We're so good at this we don't really even notice it.
178
530151
3385
ืื ื—ื ื• ื›ืœ ื›ืš ื˜ื•ื‘ื™ื ื‘ื–ื” ืฉืื ื—ื ื• ืืคื™ืœื• ืœื ืฉืžื™ื ืœื‘ ืœื–ื”.
08:53
These kinds of probes exploit it. Okay?
179
533536
3767
ื ื™ืกื•ื™ื™ื ืžืกื•ื’ ื–ื” ืžื ืฆืœื™ื ืืช ื–ื”. ืื•ืงื™ื™?
08:57
In doing this, what we've discovered is that humans
180
537303
1807
ื‘ืขืฉื•ืชื ื• ืืช ื–ื”, ืžื” ืฉื’ื™ืœื™ื ื• ื”ื•ื ืฉื‘ื ื™ ืื“ื
08:59
are literal canaries in social exchanges.
181
539110
2331
ื”ื ืžืžืฉ ืงื ืจื™ื•ืช ื‘ื—ื™ืœื•ืคื™ืŸ ื—ื‘ืจืชื™ื™ื.
09:01
Canaries used to be used as kind of biosensors in mines.
182
541441
3397
ืงื ืจื™ื•ืช ื‘ืขื‘ืจ ืฉื™ืžืฉื• ืกื•ื’ ืฉืœ ื—ื™ื™ืฉื ื™ื ื—ื™ื™ื ื‘ืžื›ืจื•ืช.
09:04
When methane built up, or carbon dioxide built up,
183
544838
3560
ื›ืฉื”ืฆื˜ื‘ืจ ืžืชืืŸ ืื• ื“ื• ืชื—ืžื•ืฆืช ื”ืคื—ืžืŸ,
09:08
or oxygen was diminished, the birds would swoon
184
548398
4186
ืื• ืฉื”ืชื“ืœื“ืœ ื”ื—ืžืฆืŸ, ื”ืฆื™ืคื•ืจื™ื ื”ืชืขืœืคื•
09:12
before people would -- so it acted as an early warning system:
185
552584
2326
ืœืคื ื™ ื‘ื ื™ ื”ืื“ื -- ืื– ื–ื” ืฉื™ืžืฉ ื‘ืžืขืจื›ืช ื”ืชืจืื” ืžื•ืงื“ืžืช:
09:14
Hey, get out of the mine. Things aren't going so well.
186
554910
2980
ื”ื™ื™, ืฆืื• ืžื”ืžื›ืจื”. ื”ืขื ื™ื™ื ื™ื ืœื ืœื’ืžืจื™ ื‘ืกื“ืจ.
09:17
People come to the table, and even these very blunt,
187
557890
2954
ืื ืฉื™ื ื ื™ื’ืฉื™ื, ื•ืืคื™ืœื• ื‘ื ื™ืกื•ื™ื™ื ื—ื‘ืจืชื™ื™ื
09:20
staged social interactions, and they, and there's just
188
560844
2990
ืžืื•ื“ ื’ืกื™ื, ื•ื™ืฉ ืคืฉื•ื˜
09:23
numbers going back and forth between the people,
189
563834
3016
ืžืกืคืจื™ื ืฉืขื•ื‘ืจื™ื ื”ืœื•ืš ื—ื–ื•ืจ ื‘ื™ืŸ ื”ืื ืฉื™ื,
09:26
and they bring enormous sensitivities to it.
190
566850
2199
ื•ื”ื ืžื‘ื™ืื™ื ื”ืžื•ืŸ ืจื’ื™ืฉื•ืช ืœื–ื”
09:29
So we realized we could exploit this, and in fact,
191
569049
2689
ืื– ืื ื—ื ื• ืžื‘ื™ื ื™ื ืฉืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื ืฆืœ ืืช ื–ื”, ืœืžืขืฉื”,
09:31
as we've done that, and we've done this now in
192
571738
2556
ืขืฉื™ื ื• ื–ืืช, ื•ืขืฉื™ื ื• ื–ืืช ืขื›ืฉื™ื•
09:34
many thousands of people, I think on the order of
193
574294
2694
ืืฆืœ ืืœืคื™ ืื ืฉื™ื, ืœืคื™ ื“ืขืชื™ ื‘ืกื“ืจ ื’ื•ื“ืœ
09:36
five or six thousand. We actually, to make this
194
576988
2165
ืฉืœ 5 ืื• 6 ืืœืฃ. ืื ื—ื ื• ืœืžืขืฉื”, ื›ื“ื™ ืœื™ืฆื•ืจ
09:39
a biological probe, need bigger numbers than that,
195
579153
2224
ื—ื™ื™ืฉืŸ ื‘ื™ื•ืœื•ื’ื™, ืฆืจื™ื›ื™ื ืžืกืคืจื™ื ื’ื“ื•ืœื™ื ืžื–ื”,
09:41
remarkably so. But anyway,
196
581377
3674
ืœืžืจื‘ื” ื”ืคืœื. ื‘ื›ืœ ืžืงืจื”,
09:45
patterns have emerged, and we've been able to take
197
585051
2004
ื”ืชืงื‘ืœื• ื“ืคื•ืกื™ื, ื•ืื ื—ื ื• ื”ื™ื™ื ื• ืžืกื•ื’ืœื™ื ืœืงื—ืช
09:47
those patterns, convert them into mathematical models,
198
587055
3836
ืืช ื”ื“ืคื•ืกื™ื ื”ืืœื”, ืœื”ืžื™ืจ ืื•ืชื ืœืžื•ื“ืœื™ื ืžืชืžื˜ื™ื™ื,
09:50
and use those mathematical models to gain new insights
199
590891
2689
ื•ืœื”ืฉืชืžืฉ ื‘ืžื•ื“ืœื™ื ื”ืืœื” ืขืœ ืžื ืช ืœืงื‘ืœ ืชื•ื‘ื ื•ืช ื—ื“ืฉื•ืช
09:53
into these exchanges. Okay, so what?
200
593580
2131
ืœื—ื™ืœื•ืคื™ื ื”ืืœื”. ืื•ืงื™ื™, ืื– ืžื”?
09:55
Well, the so what is, that's a really nice behavioral measure,
201
595711
3313
ืื– ืžื” ืฉืงื™ื‘ืœื ื• ื”ื•ื ื›ืœื™ ืžื“ื™ื“ื” ื—ื‘ืจืชื™ ื™ืคื” ืžืื•ื“
09:59
the economic games bring to us notions of optimal play.
202
599024
3319
ืืช ื”ืžืฉื—ืงื™ื ื”ื›ืœื›ืœื™ื™ื ื ื•ืชื ื™ื ืœื ื• ืžื•ืฉื’ื™ื ืฉืœ ืžืฉื—ืง ืื•ืคื˜ื™ืžืœื™.
10:02
We can compute that during the game.
203
602343
2484
ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื—ืฉื‘ ื–ืืช ืชื•ืš ื›ื“ื™ ื”ืžืฉื—ืง.
10:04
And we can use that to sort of carve up the behavior.
204
604827
2953
ื•ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื”ืฉืชืžืฉ ื‘ื–ื” ื›ื“ื™ ืœื ืชื— ืืช ื”ื”ืชื ื”ื’ื•ืช.
10:07
Here's the cool thing. Six or seven years ago,
205
607780
4330
ื•ื–ื” ื”ื“ื‘ืจ ื”ืžื’ื ื™ื‘. ืœืคื™ 6 ืื• 7 ืฉื ื™ื,
10:12
we developed a team. It was at the time in Houston, Texas.
206
612110
2550
ืคื™ืชื—ื ื• ืงื‘ื•ืฆื”. ื‘ื–ืžื ื• ื–ื” ื”ื™ื” ื‘ื™ื•ืกื˜ื•ืŸ, ื˜ืงืกืก.
10:14
It's now in Virginia and London. And we built software
207
614660
3394
ืขื›ืฉื™ื• ื–ื” ื‘ื•ื™ืจื’'ื™ื ื™ื” ื•ืœื•ื ื“ื•ืŸ. ื•ื‘ื ื™ื ื• ืชื•ื›ื ื”
10:18
that'll link functional magnetic resonance imaging devices
208
618054
3207
ืฉืžืงืฉืจืช ืžื›ืฉื™ืจื™ ืชื”ื•ื“ื” ืžื’ื ื˜ื™ืช ืคื•ื ืงืฆื™ื•ื ืœื™ืช
10:21
up over the Internet. I guess we've done up to six machines
209
621261
4035
ื“ืจืš ื”ืื™ื ื˜ืจื ื˜. ืื ื™ ืžื ื™ื— ืฉืขืฉื™ื ื• ื–ืืช ืœืฉื™ืฉื” ืžื›ืฉื™ืจื™ื
10:25
at a time, but let's just focus on two.
210
625296
1981
ื‘ื–ืžื ื•, ืื‘ืœ ื ืชืจื›ื– ืจืง ื‘ืฉื ื™ื™ื.
10:27
So it synchronizes machines anywhere in the world.
211
627277
3058
ืื– ื–ื” ืžืกื ื›ืจืŸ ืžื›ืฉื™ืจื™ื ื‘ื›ืœ ืžืงื•ื ื‘ืขื•ืœื
10:30
We synchronize the machines, set them into these
212
630335
3169
ืื ื—ื ื• ืกื ื›ืจื ื• ืืช ื”ืžื›ืฉื™ืจื™ื, ื”ืคืขืœื ื• ื‘ื”ื ืืช
10:33
staged social interactions, and we eavesdrop on both
213
633504
1983
ื”ืžืฉื—ืงื™ื ื”ื—ื‘ืจืชื™ื™ื ื”ืืœื”, ื•ืฆื•ืชืชื ื• ืœืฉื ื™
10:35
of the interacting brains. So for the first time,
214
635487
1666
ื”ืžื•ื—ื•ืช ื”ืžืชืงืฉืจื™ื. ืื– ื‘ืคืขื ื”ืจืืฉื•ื ื”,
10:37
we don't have to look at just averages over single individuals,
215
637153
3607
ืื ื—ื ื• ืœื ืฆืจื™ื›ื™ื ืจืง ืœื”ืกืชื›ืœ ืขืœ ืžืžื•ืฆืขื™ื ืฉืœ ื™ื—ื™ื“ื™ื,
10:40
or have individuals playing computers, or try to make
216
640760
2897
ืื• ืฉื™ื—ื™ื“ื™ื ื™ืฉื—ืงื• ืžื•ืœ ืžื—ืฉื‘ื™ื, ืื• ืœื ืกื•ืช ืœืขืฉื•ืช
10:43
inferences that way. We can study individual dyads.
217
643657
2763
ืžืžืฉืงื™ื ืฉื™ืขืฉื• ื–ืืช. ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื—ืงื•ืจ ื–ื•ื’ื•ืช.
10:46
We can study the way that one person interacts with another person,
218
646420
2785
ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืœืžื•ื“ ืืช ื”ื“ืจืš ืฉื‘ื” ื‘ื ืื“ื ืžืชืงืฉืจ ืขื ื‘ื ืื“ื ืื—ืจ,
10:49
turn the numbers up, and start to gain new insights
219
649205
2564
ืœืคืชื— ืืช ื”ืชื•ืฆืื•ืช, ื•ืœื”ืชื—ื™ืœ ืœืงื‘ืœ ืชื•ื‘ื ื•ืช ื—ื“ืฉื•ืช
10:51
into the boundaries of normal cognition,
220
651769
2515
ืœื’ื‘ื™ ื’ื‘ื•ืœื•ืช ื”ืงื•ื’ื ื™ืฆื™ื” ื”ื ื•ืจืžืœื™ืช,
10:54
but more importantly, we can put people with
221
654284
2732
ืื‘ืœ ื™ื•ืชืจ ื—ืฉื•ื‘ ืžื›ืš, ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืฉื™ื ืื ืฉื™ื ืขื
10:57
classically defined mental illnesses, or brain damage,
222
657016
3337
ืžื—ืœื•ืช ื ืคืฉ ืงืœืืกื™ื•ืช, ืื• ื ื–ืง ืžื•ื—ื™,
11:00
into these social interactions, and use these as probes of that.
223
660353
3551
ืœืชื•ืš ื”ืžืฉื—ืงื™ื ื”ื—ื‘ืจืชื™ื™ื ื”ืืœื”, ื•ืœื—ืงื•ืจ ืืช ื”ื“ื‘ืจื™ื ื”ืืœื•.
11:03
So we've started this effort. We've made a few hits,
224
663904
2350
ืื– ื”ืชื—ืœื ื• ืืช ื”ืžืืžืฅ ื”ื–ื”. ื”ื’ืขื ื• ืœื›ืžื” ืชื’ืœื™ื•ืช ืžืฉืžืขื•ืชื™ื•ืช,
11:06
a few, I think, embryonic discoveries.
225
666254
2449
ื—ืœืงืŸ, ืื ื™ ื—ื•ืฉื‘, ืชื’ืœื™ื•ืช ื—ื“ืฉื•ืช ืœื’ืžืจื™.
11:08
We think there's a future to this. But it's our way
226
668703
2812
ืื ื—ื ื• ื—ื•ืฉื‘ื™ื ืฉื™ืฉ ืœื–ื” ืขืชื™ื“. ืื‘ืœ ื–ื• ื“ืจื›ื ื•
11:11
of going in and redefining, with a new lexicon,
227
671515
2560
ืœื”ื™ื›ื ืก ื•ืœื”ื’ื“ื™ืจ, ืขื ืœืงืกื™ืงื•ืŸ ื—ื“ืฉ
11:14
a mathematical one actually, as opposed to the standard
228
674075
4022
ืœืžืขืฉื” ืœืงืกื™ืงื•ืŸ ืžืชืžื˜ื™, ื‘ื ื™ื’ื•ื“ ืœื“ืจื›ื™ื
11:18
ways that we think about mental illness,
229
678097
2578
ื”ืžืงื•ื‘ืœื•ืช ื‘ื”ืŸ ืื ื• ื—ื•ืฉื‘ื™ื ืขืœ ืžื—ืœื•ืช ื ืคืฉื™ื•ืช,
11:20
characterizing these diseases, by using the people
230
680675
2067
ืœืืคื™ื™ืŸ ืืช ื”ืžื—ืœื•ืช ื”ืœืœื•, ืขืœ ื™ื“ื™ ืฉื™ืžื•ืฉ ื‘ืื ืฉื™ื
11:22
as birds in the exchanges. That is, we exploit the fact
231
682742
3007
ื›ืžื• ื‘ืฆื™ืคื•ืจื™ื ื‘ืžืฉื—ืงื™ื. ื›ืœื•ืžืจ, ืื ื• ืžื ืฆืœื™ื ืืช ื”ืขื•ื‘ื“ื”
11:25
that the healthy partner, playing somebody with major depression,
232
685749
4244
ืฉื‘ื ืื“ื ื‘ืจื™ื ืžืฉื—ืง ืขื ืื“ื ื‘ืขืœ ื“ื™ื›ืื•ืŸ ืขืžื•ืง,
11:29
or playing somebody with autism spectrum disorder,
233
689993
2910
ืื• ืžืฉื—ืง ืขื ื‘ื ืื“ื ืขืœ ื”ืจืฆืฃ ื”ืื•ื˜ื™ืกื˜ื™,
11:32
or playing somebody with attention deficit hyperactivity disorder,
234
692903
3850
ืื• ืžืฉื—ืง ืขื ื‘ื ืื“ื ื‘ืขืœ ื”ืคืจืขืช ืงืฉื‘ ื•ืจื™ื›ื•ื–,
11:36
we use that as a kind of biosensor, and then we use
235
696753
3219
ืื ื• ืžืฉืชืžืฉื™ื ื‘ืื“ื ื›ืžื• ื‘ื—ื™ื™ืฉืŸ ื—ื™, ื•ืื– ืื ื—ื ื• ืžืฉืชืžืฉื™ื
11:39
computer programs to model that person, and it gives us
236
699972
2644
ื‘ืชื•ื›ื ื•ืช ืžื—ืฉื‘ ืœืžื“ืœ ืืช ื”ื‘ื ืื“ื, ื•ื–ื” ื ื•ืชืŸ ืœื ื•
11:42
a kind of assay of this.
237
702616
2470
ืกื•ื’ ืฉืœ ืื™ืคื™ื•ืŸ ืฉืœ ื”ื‘ื ืื“ื.
11:45
Early days, and we're just beginning, we're setting up sites
238
705086
2131
ื™ืžื™ื ืจืืฉื•ื ื™ื, ืื ื—ื ื• ืจืง ืžืชื—ื™ืœื™ื, ืื ื—ื ื• ืžืงื™ืžื™ื ืชื—ื ื•ืช
11:47
around the world. Here are a few of our collaborating sites.
239
707217
3410
ืžืกื‘ื™ื‘ ืœืขื•ืœื. ื”ื ื” ื›ืžื” ืžื”ืชื—ื ื•ืช ื”ืžืฉืชืคื•ืช ืคืขื•ืœื” ืื™ืชื ื•.
11:50
The hub, ironically enough,
240
710627
2309
ื”ืžืจื›ื–, ื‘ืื•ืคืŸ ืื™ืจื•ื ื™,
11:52
is centered in little Roanoke, Virginia.
241
712936
2889
ืžืžื•ืงื ื‘ืœื™ื˜ืœ ืจื•ืื ื•ืงื”, ื•ื™ืจื’'ื™ื ื™ื”
11:55
There's another hub in London, now, and the rest
242
715825
2269
ื™ืฉ ืขื›ืฉื™ื• ืžืจื›ื– ื ื•ืกืฃ ื‘ืœื•ื ื“ื•ืŸ, ื•ื”ืฉืืจ
11:58
are getting set up. We hope to give the data away
243
718094
4009
ืžื•ืงืžื™ื ื›ืขืช. ืื ื—ื ื• ืžืงื•ื•ื™ื ืœื—ืœื•ืง ืืช ื”ืžื™ื“ืข
12:02
at some stage. That's a complicated issue
244
722103
3673
ื‘ืฉืœื‘ ื›ืœืฉื”ื•. ื–ื” ื ื•ืฉื ืžื•ืจื›ื‘
12:05
about making it available to the rest of the world.
245
725776
2994
ืœื—ืœื•ืง ืืช ื”ืžื™ื“ืข ืœืฉืืจ ื”ืขื•ืœื
12:08
But we're also studying just a small part
246
728770
1847
ืื‘ืœ ืื ื—ื ื• ื—ื•ืงืจื™ื ืจืง ื—ืœืง ืงื˜ืŸ
12:10
of what makes us interesting as human beings, and so
247
730617
2267
ืžืžื” ืฉืขื•ืฉื” ืื•ืชื ื• ืžืขื ื™ื™ื ื™ื ื›ื‘ื ื™ ืื ื•ืฉ, ื•ืœื›ืŸ
12:12
I would invite other people who are interested in this
248
732884
2041
ืื ื™ ืจื•ืฆื” ืœื”ื–ืžื™ืŸ ืื ืฉื™ื ืฉืžืชืขื ื™ื™ื ื™ื ื‘ื–ื”
12:14
to ask us for the software, or even for guidance
249
734925
2569
ืœื‘ืงืฉ ืžืื™ืชื ื• ืืช ื”ืชื•ื›ื ื”, ืื• ืืคื™ืœื• ืืช ื”ื”ื›ื•ื•ื ื”
12:17
on how to move forward with that.
250
737494
2219
ืขืœ ืื™ืš ืœื”ืชืงื“ื ืขื ื–ื”.
12:19
Let me leave you with one thought in closing.
251
739713
2341
ืชื ื• ืœื™ ืœื”ืฉืื™ืจ ืœื›ื ื“ื‘ืจ ืื—ื“ ืœืกื™ื•ื.
12:22
The interesting thing about studying cognition
252
742054
1942
ื”ื“ื‘ืจ ื”ืžืขื ื™ื™ืŸ ื‘ื—ืงืจ ื”ื—ืฉื™ื‘ื”
12:23
has been that we've been limited, in a way.
253
743996
3732
ื”ื™ื” ืฉื”ื™ื™ื ื• ืžื•ื’ื‘ืœื™ื, ื‘ืฆื•ืจื” ืžืกื•ื™ื™ืžืช.
12:27
We just haven't had the tools to look at interacting brains
254
747728
2943
ืคืฉื•ื˜ ืœื ื”ื™ื• ืœื ื• ื”ื›ืœื™ื ืœื”ืกืชื›ืœ ืขืœ ืžื•ื—ื•ืช ืžืชืงืฉืจื™ื
12:30
simultaneously.
255
750671
1200
ื‘ื• ื–ืžื ื™ืช.
12:31
The fact is, though, that even when we're alone,
256
751871
2470
ื”ืขื•ื‘ื“ื” ื”ื™ื, ืฉืืคื™ืœื• ื›ืฉืื ื• ืœื‘ื“,
12:34
we're a profoundly social creature. We're not a solitary mind
257
754341
4111
ืื ื—ื ื• ื™ืฆื•ืจื™ื ื—ื‘ืจืชื™ื™ื ืœื”ืคืœื™ื. ืื ื—ื ื• ืœื ืžื•ื—ื•ืช ื‘ื•ื“ื“ื™ื.
12:38
built out of properties that kept it alive in the world
258
758452
4373
ื‘ื ื•ื™ื™ื ืžืžืืคื™ื™ื ื™ื ืฉืฉืžืจื• ืขืœื™ื• ื—ื™ ื‘ืขื•ืœื
12:42
independent of other people. In fact, our minds
259
762825
3948
ืขืฆืžืื™ ืžืื ืฉื™ื ืื—ืจื™ื. ืœืžืขืฉื” ื”ืžื•ื—ื•ืช ืฉืœื ื•
12:46
depend on other people. They depend on other people,
260
766773
2870
ืชืœื•ื™ื™ื ื‘ืื ืฉื™ื ืื—ืจื™ื. ื”ื ืชืœื•ื™ื™ื ื‘ืื ืฉื™ื ืื—ืจื™ื,
12:49
and they're expressed in other people,
261
769643
1541
ื•ื”ื ืžื‘ื•ื˜ืื™ื ืืฆืœ ืื ืฉื™ื ืื—ืจื™ื,
12:51
so the notion of who you are, you often don't know
262
771184
3652
ืื– ื”ืžื—ืฉื‘ื” ืขืœ ืžื™ ืืชื”, ืืชื” ืœืจื•ื‘ ืœื ื™ื•ื“ืข
12:54
who you are until you see yourself in interaction with people
263
774836
2688
ืžื™ ืืชื” ืขื“ ืฉืืชื” ืจื•ืื” ืืช ืขืฆืžืš ืžืชืงืฉืจ ืขื ืื ืฉื™ื ืื—ืจื™ื
12:57
that are close to you, people that are enemies of you,
264
777524
2406
ืฉืงืจื•ื‘ื™ื ืืœื™ืš, ืขื ื”ืื•ื™ื‘ื™ื ืฉืœืš,
12:59
people that are agnostic to you.
265
779930
2545
ืื ืฉื™ื ืฉืžืคืงืคืงื™ื ื‘ืš.
13:02
So this is the first sort of step into using that insight
266
782475
3776
ืื– ื–ื”ื• ืกื•ื’ ื”ืฆืขื“ ื”ืจืืฉื•ืŸ ื‘ืฉื™ืžื•ืฉ ื‘ืชื•ื‘ื ื” ื”ื–ื•
13:06
into what makes us human beings, turning it into a tool,
267
786251
3295
ืœืชื•ืš ืžื” ืฉืขื•ืฉื” ืื•ืชื ื• ื‘ื ื™ ืื“ื, ื”ืคื™ื›ืชื• ืœื›ืœื™,
13:09
and trying to gain new insights into mental illness.
268
789546
1978
ื•ืœื ืกื•ืช ืœืงื‘ืœ ืชื•ื‘ื ื•ืช ื—ื“ืฉื•ืช ืœื’ื‘ื™ ืžื—ืœื•ืช ื ืคืฉ
13:11
Thanks for having me. (Applause)
269
791524
3121
ืชื•ื“ื” ืจื‘ื” ืขืœ ื”ื”ืงืฉื‘ื” (ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
13:14
(Applause)
270
794645
3089
(ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7