Read Montague: What we're learning from 5,000 brains

47,029 views ・ 2012-09-24

TED


Dvaput kliknite na engleske titlove ispod za reprodukciju videozapisa.

00:00
Translator: Joseph Geni Reviewer: Morton Bast
0
0
7000
Prevoditelj: Senzos Osijek Recezent: Tilen Pigac - EFZG
00:15
Other people. Everyone is interested in other people.
1
15734
2809
Drugi ljudi. Svi su zainteresirani za druge ljude.
00:18
Everyone has relationships with other people,
2
18543
2123
Svi imaju odnose s drugim ljudima
00:20
and they're interested in these relationships
3
20666
1592
i zainteresirani su za te odnose
00:22
for a variety of reasons.
4
22258
1855
iz brojnih razloga.
00:24
Good relationships, bad relationships,
5
24113
2012
Dobri odnosi, loši odnosi,
00:26
annoying relationships, agnostic relationships,
6
26125
3146
dosadni odnosi, agnostični odnosi,
00:29
and what I'm going to do is focus on the central piece
7
29271
3424
a ono na što ću se ja fokusirati je središnji komad
00:32
of an interaction that goes on in a relationship.
8
32695
3303
interakcije koji se odvija u odnosu.
00:35
So I'm going to take as inspiration the fact that we're all
9
35998
2336
Kao inspiraciju ću uzeti činjenicu da smo svi
00:38
interested in interacting with other people,
10
38334
2425
zainteresirani za interakciju s drugim ljudima.
00:40
I'm going to completely strip it of all its complicating features,
11
40759
3832
Potpuno ću ogoliti sva komplicirana svojstva
00:44
and I'm going to turn that object, that simplified object,
12
44591
3894
i formirati taj predmet, taj pojednostavljen predmet
00:48
into a scientific probe, and provide the early stages,
13
48485
4150
u znanstveno istraživanje i omogućiti rane faze,
00:52
embryonic stages of new insights into what happens
14
52635
2449
embrionalne faze novih spoznaja o tome što se događa
00:55
in two brains while they simultaneously interact.
15
55084
3650
u dva mozga za vrijeme njihove simultane interakcije.
00:58
But before I do that, let me tell you a couple of things
16
58734
2293
No prije no što to učinim, dopustite mi da vam ispričam nekoliko stvari
01:01
that made this possible.
17
61027
1699
koje su ovo učinile mogućim.
01:02
The first is we can now eavesdrop safely
18
62726
2781
Prva je da sada možemo sa sigurnošću osluškivati
01:05
on healthy brain activity.
19
65507
2711
aktivnost zdravog mozga.
01:08
Without needles and radioactivity,
20
68218
2577
Bez igala i radioaktivnosti,
01:10
without any kind of clinical reason, we can go down the street
21
70795
2863
bez ikakvog kliničkog razloga
01:13
and record from your friends' and neighbors' brains
22
73658
3127
možemo ići niz ulicu i snimiti mozgove vaših prijatelja
01:16
while they do a variety of cognitive tasks, and we use
23
76785
2538
i susjeda dok obavljaju niz kognitivnih zadataka i koristimo
01:19
a method called functional magnetic resonance imaging.
24
79323
3734
metodu pod nazivom funkcionalna magnetska rezonanca.
01:23
You've probably all read about it or heard about in some
25
83057
2325
Svi ste vjerojatno čitali o tome ili čuli u nekom
01:25
incarnation. Let me give you a two-sentence version of it.
26
85382
4378
obliku. Dat ću vam verziju toga u dvije rečenice.
01:29
So we've all heard of MRIs. MRIs use magnetic fields
27
89760
3484
Dakle, svi smo čuli za MR. MR koristi magnetska polja
01:33
and radio waves and they take snapshots of your brain
28
93244
2029
i radio valove kojima se uzimaju snimci vašeg mozga,
01:35
or your knee or your stomach,
29
95273
2361
koljena ili želuca,
01:37
grayscale images that are frozen in time.
30
97634
2045
sive slike koje su zamrznute u vremenu.
01:39
In the 1990s, it was discovered you could use
31
99679
2321
U devedesetima je otkriveno da možete koristiti
01:42
the same machines in a different mode,
32
102000
2659
iste aparate na drugačiji način
01:44
and in that mode, you could make microscopic blood flow
33
104659
2346
i na taj način možete napraviti filmove mikroskopskog protoka krvi
01:47
movies from hundreds of thousands of sites independently in the brain.
34
107005
3300
iz stotinu i tisuću samostalnih dijelova u mozgu.
01:50
Okay, so what? In fact, the so what is, in the brain,
35
110305
3200
U redu, pa što onda? Zapravo, stvar je u tome da se u mozgu
01:53
changes in neural activity, the things that make your brain work,
36
113505
3832
mijenja neurološka aktivnost, stvari koje tjeraju vaš mozak na rad,
01:57
the things that make your software work in your brain,
37
117337
2010
stvari koje tjeraju vaš software na rad u vašem mozgu
01:59
are tightly correlated with changes in blood flow.
38
119347
2489
usko su povezane s promjenama u krvotoku.
02:01
You make a blood flow movie, you have an independent
39
121836
1973
Snimite film o protoku krvi i imate nezavisnog
02:03
proxy of brain activity.
40
123809
2339
zastupnika aktivnosti mozga.
02:06
This has literally revolutionized cognitive science.
41
126148
3034
Ovo je doslovno revolucionaliziralo kognitivnu znanost.
02:09
Take any cognitive domain you want, memory,
42
129182
1991
Uzmite bilo koje kognitivno područje koje želite, pamćenje,
02:11
motor planning, thinking about your mother-in-law,
43
131173
2141
motoričko planiranje, razmišljanje o vašoj punici,
02:13
getting angry at people, emotional response, it goes on and on,
44
133314
3715
ljutnja na ljude, emocionalni odgovor, to jednostavno traje
02:17
put people into functional MRI devices, and
45
137029
3089
i stavite ljude u uređaje za funkcionalni MR i
02:20
image how these kinds of variables map onto brain activity.
46
140118
3383
vidjet ćete kako se ove vrste varijabli mapiraju u moždanu aktivnost.
02:23
It's in its early stages, and it's crude by some measures,
47
143501
2849
To je u svojim ranim stadijima i veoma je primitivno u nekim mjerama,
02:26
but in fact, 20 years ago, we were at nothing.
48
146350
2568
ali zapravo prije 20 godina nismo bili nigdje.
02:28
You couldn't do people like this. You couldn't do healthy people.
49
148918
2359
Niste mogli ovako obraditi ljude. Niste mogli obraditi zdrave ljude.
02:31
That's caused a literal revolution, and it's opened us up
50
151277
2488
To je uzrokovalo doslovnu revoluciju i otvorilo nas
02:33
to a new experimental preparation. Neurobiologists,
51
153765
2818
novim eksperimentalnim pripravcima. Neurobiolozi,
02:36
as you well know, have lots of experimental preps,
52
156583
3760
kao što dobro znate, imaju mnogo eksperimentalnih pripravaka,
02:40
worms and rodents and fruit flies and things like this.
53
160343
3141
crva, glodavaca, vinskih mušica i stvari poput toga.
02:43
And now, we have a new experimental prep: human beings.
54
163484
3397
A sada mi imamo nove eksperimentalne pripravke: ljudska bića.
02:46
We can now use human beings to study and model
55
166881
3761
Sada možemo upotrijebiti ljudska bića kako bismo proučili i modelirali
02:50
the software in human beings, and we have a few
56
170642
2950
software u ljudskim bićima i imamo nekoliko
02:53
burgeoning biological measures.
57
173592
2835
rastućih bioloških mjera.
02:56
Okay, let me give you one example of the kinds of experiments that people do,
58
176427
3887
U redu, dopustite mi da vam dam jedan primjer načina eksperimenata koji ljudi rade
03:00
and it's in the area of what you'd call valuation.
59
180314
2677
i on je u području koje biste nazvali procjenom.
03:02
Valuation is just what you think it is, you know?
60
182991
2135
Procjena je upravo ono što mislite da je, znate?
03:05
If you went and you were valuing two companies against
61
185126
2804
Ako ste procjenjivali dvije tvrtke jednu naspram druge,
03:07
one another, you'd want to know which was more valuable.
62
187930
2736
voljeli biste znati koja je cjenjenija.
03:10
Cultures discovered the key feature of valuation thousands of years ago.
63
190666
3879
Kulture su otkrile ključno svojstvo procjene prije mnogo tisuća godina.
03:14
If you want to compare oranges to windshields, what do you do?
64
194545
2690
Ukoliko želite usporediti naranče s vjetrobranima, što ćete učiniti?
03:17
Well, you can't compare oranges to windshields.
65
197235
2356
Pa, ne možete usporediti naranče s vjetrobranima.
03:19
They're immiscible. They don't mix with one another.
66
199591
2255
Neusporedivi su. Ne miješaju se jedni s drugima.
03:21
So instead, you convert them to a common currency scale,
67
201846
2351
Umjesto toga, pretvorite ih u zajedničku novčanu ljestvicu,
03:24
put them on that scale, and value them accordingly.
68
204197
2706
stavite ih na tu ljestvicu i procjenjujete ih na odgovarajući način.
03:26
Well, your brain has to do something just like that as well,
69
206903
3436
Vaš mozak mora učiniti nešto poput toga
03:30
and we're now beginning to understand and identify
70
210339
2488
i sada počinjemo razumijevati i identificirati
03:32
brain systems involved in valuation,
71
212827
2137
sustave u mozgu uključene u procjenu,
03:34
and one of them includes a neurotransmitter system
72
214964
2632
a jedan od njih uključuje sustav neurotransmitera
03:37
whose cells are located in your brainstem
73
217596
2632
čije su stanice smještene u vašem moždanom deblu
03:40
and deliver the chemical dopamine to the rest of your brain.
74
220228
3175
i dostavljaju kemikaliju dopamin u ostatak vašeg mozga.
03:43
I won't go through the details of it, but that's an important
75
223403
2442
Neću ići u detalje što se toga tiče, no to je važno
03:45
discovery, and we know a good bit about that now,
76
225845
2157
otkriće i sada dosta znamo o tome,
03:48
and it's just a small piece of it, but it's important because
77
228002
2230
no to je samo mali dio, ali je važan zato
03:50
those are the neurons that you would lose if you had Parkinson's disease,
78
230232
3275
što su to neuroni koje biste izgubili da imate Parkinsonovu bolest
03:53
and they're also the neurons that are hijacked by literally
79
233507
2016
i to su također neuroni koji su doslovce ukradeni
03:55
every drug of abuse, and that makes sense.
80
235523
2232
prilikom svake zlouporabe droge i to ima smisla.
03:57
Drugs of abuse would come in, and they would change
81
237755
2336
Oni mijenjaju način
04:00
the way you value the world. They change the way
82
240091
1789
na koji vrednujete simbole
04:01
you value the symbols associated with your drug of choice,
83
241880
3199
udružene s drogom koju ste izabrali
04:05
and they make you value that over everything else.
84
245079
2514
i oni vas više od ičega tjeraju da to vrednujete.
04:07
Here's the key feature though. These neurons are also
85
247593
3021
Međutim, ovdje je ključno svojstvo. Ovi neuroni su također
04:10
involved in the way you can assign value to literally abstract ideas,
86
250614
3501
uključeni u način na koji možete raspodijeliti procjenu na doslovno apstraktne ideje
04:14
and I put some symbols up here that we assign value to
87
254115
2041
i staviti neke simbole ovdje gore gdje raspodjeljujemo procjenu
04:16
for various reasons.
88
256156
2720
iz raznih razloga.
04:18
We have a behavioral superpower in our brain,
89
258876
2689
Imamo bihevioralnu supermoć u svom mozgu
04:21
and it at least in part involves dopamine.
90
261565
1753
i ona barem dijelom uključuje dopamin.
04:23
We can deny every instinct we have for survival for an idea,
91
263318
4189
Možemo demantirati svaki instinkt koji imamo za preživljavanjem za idejom,
04:27
for a mere idea. No other species can do that.
92
267507
4005
za pukom idejom. Nijedna vrsta to ne može učiniti.
04:31
In 1997, the cult Heaven's Gate committed mass suicide
93
271512
3606
1997. kult Heaven's Gate (Rajska vrata) počinio je masovno samoubojstvo
04:35
predicated on the idea that there was a spaceship
94
275118
2215
izričeno idejom da postoji svemirski brod
04:37
hiding in the tail of the then-visible comet Hale-Bopp
95
277333
3785
koji se skriva na repu tada vidljivog kometa Hale-Bopp
04:41
waiting to take them to the next level. It was an incredibly tragic event.
96
281118
4272
koji tamo čeka ne bi li ih odveo na sljedeću razinu. To je bio nevjerojatno tragičan događaj.
04:45
More than two thirds of them had college degrees.
97
285390
3485
Više od dvije trećine tih ljudi bilo je visoko obrazovano.
04:48
But the point here is they were able to deny their instincts for survival
98
288875
3723
No poanta je u tome da su bili u mogućnosti negirati svoje instinkte za preživljavanjem
04:52
using exactly the same systems that were put there
99
292598
2866
koristeći upravo jednake sustave koji su tamo postavljeni
04:55
to make them survive. That's a lot of control, okay?
100
295464
4042
da im omoguće preživljavanje. To je mnogo kontrole, u redu?
04:59
One thing that I've left out of this narrative
101
299506
2089
Jedna stvar koju sam izostavio za vrijeme ovog pričanja
05:01
is the obvious thing, which is the focus of the rest of my
102
301595
2234
je očigledna stvar koja je centar ostatka
05:03
little talk, and that is other people.
103
303829
2159
mog malog govora, a to su drugi ljudi.
05:05
These same valuation systems are redeployed
104
305988
2996
Isti su procjenjivački sustavi pregrupirani
05:08
when we're valuing interactions with other people.
105
308984
2492
kad procjenjujemo interakcije s drugim ljudima.
05:11
So this same dopamine system that gets addicted to drugs,
106
311476
3271
Isti ovaj sustav dopamina koji nas čini ovisnima o drogama,
05:14
that makes you freeze when you get Parkinson's disease,
107
314747
2524
koji vas zamrzne kad obolite od Parkinsonove bolesti,
05:17
that contributes to various forms of psychosis,
108
317271
3077
koji pridonosi brojnim oblicima psihoza
05:20
is also redeployed to value interactions with other people
109
320348
3920
također je pregrupiran u vrijednost interakcija s drugim ljudima
05:24
and to assign value to gestures that you do
110
324268
2896
na dodijeljenu vrijednost pokreta koju činite
05:27
when you're interacting with somebody else.
111
327164
2574
kad komunicirate s nekim drugim.
05:29
Let me give you an example of this.
112
329738
2577
Da vam dam primjer ovoga.
05:32
You bring to the table such enormous processing power
113
332315
2967
Vi donosite nezamislivo korisnu ogromnu obrađenu moć
05:35
in this domain that you hardly even notice it.
114
335282
2624
u ovo područje da to teško uopće zamjećujete.
05:37
Let me just give you a few examples. So here's a baby.
115
337906
1467
Dat ću vam nekoliko primjera. Ovo je dijete.
05:39
She's three months old. She still poops in her diapers and she can't do calculus.
116
339373
3730
Ima tri mjeseca. Još uvijek kaka u svoje pelene i ne može računati.
05:43
She's related to me. Somebody will be very glad that she's up here on the screen.
117
343103
3353
Povezana je sa mnom. Netko će biti veoma sretan što je ona ovdje na ekranu.
05:46
You can cover up one of her eyes, and you can still read
118
346456
2376
Možete pokriti jedno njeno oko i još uvijek iščitati
05:48
something in the other eye, and I see sort of curiosity
119
348832
2755
nešto u drugom oku, a ja vidim neku vrstu znatiželje
05:51
in one eye, I see maybe a little bit of surprise in the other.
120
351587
3597
u jednom oku, možda vidim malo iznenađenja u drugom.
05:55
Here's a couple. They're sharing a moment together,
121
355184
3179
Ovdje je jedan par. Dijele zajednički trenutak
05:58
and we've even done an experiment where you can cut out
122
358363
1318
i čak smo napravili eksperiment gdje možete izvaditi
05:59
different pieces of this frame and you can still see
123
359681
3007
različite komadiće ovog okvira i još uvijek možete vidjeti
06:02
that they're sharing it. They're sharing it sort of in parallel.
124
362688
2504
da ga dijele. Dijele ga u nekoj vrsti paralele.
06:05
Now, the elements of the scene also communicate this
125
365192
2463
Elementi scene također komuniciraju s nama,
06:07
to us, but you can read it straight off their faces,
126
367655
2235
ali možete ih pročitati direktno s njihovih lica
06:09
and if you compare their faces to normal faces, it would be a very subtle cue.
127
369890
3503
i ako usporedite njihova lica s normalnim licima to bi bio veoma suptilan trag.
06:13
Here's another couple. He's projecting out at us,
128
373393
3347
Evo još jednog para. On se izbacuje prema nama,
06:16
and she's clearly projecting, you know,
129
376740
2888
a ona očito izbacuje, znate,
06:19
love and admiration at him.
130
379628
2263
ljubav i divljenje prema njemu.
06:21
Here's another couple. (Laughter)
131
381891
3635
Evo još jednog para. (Smijeh)
06:25
And I'm thinking I'm not seeing love and admiration on the left. (Laughter)
132
385526
5150
Mislim kako ne vidim ljubav i divljenje s lijeve strane. (Smijeh)
06:30
In fact, I know this is his sister, and you can just see
133
390676
2560
Zapravo, znam da mu je ovo sestra i možete vidjeti
06:33
him saying, "Okay, we're doing this for the camera,
134
393236
2513
kako on govori, “U redu, radimo ovo zbog slikanja,
06:35
and then afterwards you steal my candy and you punch me in the face." (Laughter)
135
395749
5702
a nakon toga ćeš mi ukrasti slatkiš i udariti me u lice.” (Smijeh)
06:41
He'll kill me for showing that.
136
401451
2106
Ubit će me zato što vam ovo pokazujem.
06:43
All right, so what does this mean?
137
403557
2797
U redu, što ovo znači?
06:46
It means we bring an enormous amount of processing power to the problem.
138
406354
3350
Znači da problemu dajemo ogromnu količinu obrađene moći.
06:49
It engages deep systems in our brain, in dopaminergic
139
409704
3648
To uključuje duboke sustave u našem mozgu, u našim dopaminskim
06:53
systems that are there to make you chase sex, food and salt.
140
413352
2818
sustavima koji su ovdje kako bi vas natjerali da želite seks, hranu i sol.
06:56
They keep you alive. It gives them the pie, it gives
141
416170
2894
Oni vas drže živima. Daju vam pitu, daju vam
06:59
that kind of a behavioral punch which we've called a superpower.
142
419064
2904
tu vrstu bihevioralnog udarca koji smo mi nazvali supermoći.
07:01
So how can we take that and arrange a kind of staged
143
421968
3654
Dakle, kako to možemo uzeti i dogovoriti neku vrstu predstavljene
07:05
social interaction and turn that into a scientific probe?
144
425622
2698
socijalne interakcije i pretvoriti to u znanstvenu sondu?
07:08
And the short answer is games.
145
428320
2691
Kratak odgovor su igrice.
07:11
Economic games. So what we do is we go into two areas.
146
431011
4404
Ekonomske igrice. Ono što radimo jest da idemo u dva područja.
07:15
One area is called experimental economics. The other area is called behavioral economics.
147
435415
3336
Jedno područje se naziva eksperimentalna ekonomija. Drugo područje se zove bihevioralna ekonomija.
07:18
And we steal their games. And we contrive them to our own purposes.
148
438751
4078
Mi krademo njihove igrice. Mi smo ih izmislili za vlastite namjene.
07:22
So this shows you one particular game called an ultimatum game.
149
442829
2967
Ovo vam pokazuje jednu određenu igricu pod nazivom igra ultimatuma.
07:25
Red person is given a hundred dollars and can offer
150
445796
1845
Crvenoj osobi ponuđeno je sto dolara i ona to može podijeliti
07:27
a split to blue. Let's say red wants to keep 70,
151
447641
3723
s plavom osobom na dva dijela. Recimo da crvena želi zadržati 70,
07:31
and offers blue 30. So he offers a 70-30 split with blue.
152
451364
4086
a plavoj nudi 30. Dakle, ona nudi dijeljenje na 70-30 s plavom.
07:35
Control passes to blue, and blue says, "I accept it,"
153
455450
2851
Kontrola prelazi na plavu i plava kaže, “Prihvaćam.”
07:38
in which case he'd get the money, or blue says,
154
458301
1956
u čijem slučaju bi onda dobila novac ili plava kaže “Odbijam.”
07:40
"I reject it," in which case no one gets anything. Okay?
155
460257
4307
u čijem slučaju nitko ne dobiva ništa. U redu?
07:44
So a rational choice economist would say, well,
156
464564
3392
Racionalan izbor, rekli bi ekonomisti,
07:47
you should take all non-zero offers.
157
467956
2056
bi bio da biste trebali prihvatiti bilo kakve ponude koje ne uključuju nulu.
07:50
What do people do? People are indifferent at an 80-20 split.
158
470012
3762
Što ljudi rade? Ljudi su nezainteresirani za dijeljenja na 80-20.
07:53
At 80-20, it's a coin flip whether you accept that or not.
159
473774
3524
Na 80-20 imate bacanje novčića bez obzira prihvatili vi to ili ne.
07:57
Why is that? You know, because you're pissed off.
160
477298
2891
Zašto je tome tako? Znate, zato što ste bijesni. Ljuti ste.
08:00
You're mad. That's an unfair offer, and you know what an unfair offer is.
161
480189
3609
To nije poštena ponuda, a vi znate što je nepoštena ponuda.
08:03
This is the kind of game done by my lab and many around the world.
162
483798
2704
To je vrsta igre koju je napravio moj laboratorij i mnogi širom svijeta.
08:06
That just gives you an example of the kind of thing that
163
486502
2544
To vam samo daje primjer na koji način ove igrice ispituju stvar.
08:09
these games probe. The interesting thing is, these games
164
489046
3738
Zanimljivo je da
08:12
require that you have a lot of cognitive apparatus on line.
165
492784
3707
te igrice trebaju mnogo simultanih kognitivnih aparata.
08:16
You have to be able to come to the table with a proper model of another person.
166
496491
2928
Morate biti u stanju doći do stola s određenim modelom druge osobe.
08:19
You have to be able to remember what you've done.
167
499419
3213
Morate biti u stanju zapamtiti što ste učinili.
08:22
You have to stand up in the moment to do that.
168
502632
1420
Morate se suprotstaviti kad je vrijeme za to.
08:24
Then you have to update your model based on the signals coming back,
169
504052
3350
Zatim morate dopuniti svoj model baziran na signalima koji se vraćaju
08:27
and you have to do something that is interesting,
170
507402
2972
i morate učiniti nešto što je zanimljivo,
08:30
which is you have to do a kind of depth of thought assay.
171
510374
2597
a to je da morate učiniti neku vrstu analize dubine vaših misli.
08:32
That is, you have to decide what that other person expects of you.
172
512971
3333
Zapravo, morate odrediti što ta druga osoba očekuje od vas.
08:36
You have to send signals to manage your image in their mind.
173
516304
2954
Morate poslati signale kako biste upravljali svojom slikom u njihovim umovima.
08:39
Like a job interview. You sit across the desk from somebody,
174
519258
2853
Poput razgovora za posao. Sjedite za stolom preko puta nekog,
08:42
they have some prior image of you,
175
522111
1369
oni imaju neku prvu sliku o vama,
08:43
you send signals across the desk to move their image
176
523480
2751
a vi šaljete signale preko stola kako biste pomaknuli njihovu sliku
08:46
of you from one place to a place where you want it to be.
177
526231
3920
vas s jednog mjesta na mjesto gdje želite da bude.
08:50
We're so good at this we don't really even notice it.
178
530151
3385
Toliko smo dobri u tome da čak ni ne primjećujemo da je tako.
08:53
These kinds of probes exploit it. Okay?
179
533536
3767
Ovakve vrste ispitivanja to iskorištavaju. U redu?
08:57
In doing this, what we've discovered is that humans
180
537303
1807
Radeći ovo, otkrili smo da su ljudi
08:59
are literal canaries in social exchanges.
181
539110
2331
doslovce kanarinci u socijalnim izmjenama.
09:01
Canaries used to be used as kind of biosensors in mines.
182
541441
3397
Kanarinci su bili poznati kao vrsta biosenzora u rudnicima.
09:04
When methane built up, or carbon dioxide built up,
183
544838
3560
Kada bi se metan nakupio ili ugljik dioksid
09:08
or oxygen was diminished, the birds would swoon
184
548398
4186
ili je ponestalo kisika, ptice bi se onesvijestile prije ljudi
09:12
before people would -- so it acted as an early warning system:
185
552584
2326
-- to je bio rani znak sustava:
09:14
Hey, get out of the mine. Things aren't going so well.
186
554910
2980
Hej, bježite iz rudnika. Stvari ne idu baš dobro.
09:17
People come to the table, and even these very blunt,
187
557890
2954
Ljudi dolaze do stola i čak i te veoma tupe,
09:20
staged social interactions, and they, and there's just
188
560844
2990
dogovorene socijalne interakcije, i oni, i tu su samo
09:23
numbers going back and forth between the people,
189
563834
3016
brojevi koji idu naprijed i natrag među ljudima,
09:26
and they bring enormous sensitivities to it.
190
566850
2199
a oni daju ogromnu osjetljivost tome.
09:29
So we realized we could exploit this, and in fact,
191
569049
2689
Shvatili smo da to možemo iskorištavati i zapravo,
09:31
as we've done that, and we've done this now in
192
571738
2556
kako smo to učinili, a učinili smo to sada mnogim
09:34
many thousands of people, I think on the order of
193
574294
2694
tisućama ljudi, mislim da govorimo
09:36
five or six thousand. We actually, to make this
194
576988
2165
o pet ili šest tisuća. Mi zapravo, kako bismo napravili
09:39
a biological probe, need bigger numbers than that,
195
579153
2224
ovo biološko ispitivanje trebamo veći broj od ovog,
09:41
remarkably so. But anyway,
196
581377
3674
baš neobično. Kako god,
09:45
patterns have emerged, and we've been able to take
197
585051
2004
modeli su izronili i bili smo u mogućnosti
09:47
those patterns, convert them into mathematical models,
198
587055
3836
uzeti sve modele
09:50
and use those mathematical models to gain new insights
199
590891
2689
kako bismo dobili nov uvid
09:53
into these exchanges. Okay, so what?
200
593580
2131
u ove razmjene. U redu, pa što onda?
09:55
Well, the so what is, that's a really nice behavioral measure,
201
595711
3313
Poanta je da je to veoma lijepo bihevioralno mjerenje,
09:59
the economic games bring to us notions of optimal play.
202
599024
3319
ekonomske igrice nam donose pojam optimalne igre.
10:02
We can compute that during the game.
203
602343
2484
Možemo to procijeniti tijekom igre.
10:04
And we can use that to sort of carve up the behavior.
204
604827
2953
To možemo upotrijebiti kako bismo na neki način isklesali ponašanje.
10:07
Here's the cool thing. Six or seven years ago,
205
607780
4330
Evo što je super stvar. Prije šest ili sedam godina
10:12
we developed a team. It was at the time in Houston, Texas.
206
612110
2550
stvorili smo ekipu. U to vrijeme nalazila se u Houstonu
10:14
It's now in Virginia and London. And we built software
207
614660
3394
u Teksasu. Sada je u Virginiji i Londonu. Napravili smo software
10:18
that'll link functional magnetic resonance imaging devices
208
618054
3207
koji će povezivati aparate za funkcionalnu magnetnu rezonancu
10:21
up over the Internet. I guess we've done up to six machines
209
621261
4035
širom interneta. Pretpostavljam da smo napravili nekih šest
10:25
at a time, but let's just focus on two.
210
625296
1981
uređaja u to vrijeme, ali usredotočimo se na samo dva.
10:27
So it synchronizes machines anywhere in the world.
211
627277
3058
Dakle, sinkronizira uređaje bilo gdje u svijetu.
10:30
We synchronize the machines, set them into these
212
630335
3169
Mi sinkroniziramo uređaje, postavljamo ih u te
10:33
staged social interactions, and we eavesdrop on both
213
633504
1983
predstavljene socijalne interakcije i prisluškujemo oba mozga
10:35
of the interacting brains. So for the first time,
214
635487
1666
koji vrše interakciju. Po prvi puta
10:37
we don't have to look at just averages over single individuals,
215
637153
3607
ne moramo gledati samo prosjek pojedinih individua
10:40
or have individuals playing computers, or try to make
216
640760
2897
ili imati individue koje igraju igrice na računalu ili pokušati
10:43
inferences that way. We can study individual dyads.
217
643657
2763
doći do zajedničkih zaključaka na taj način. Možemo proučavati individualne parove.
10:46
We can study the way that one person interacts with another person,
218
646420
2785
Možemo proučavati način na koji jedna osoba komunicira s drugom osobom,
10:49
turn the numbers up, and start to gain new insights
219
649205
2564
okrenuti brojeve i početi dobivati nove poglede
10:51
into the boundaries of normal cognition,
220
651769
2515
u granice normalne spoznaje,
10:54
but more importantly, we can put people with
221
654284
2732
no što je još važnije možemo uključiti ljude s
10:57
classically defined mental illnesses, or brain damage,
222
657016
3337
određenim mentalnim bolestima ili oštećenjima mozga
11:00
into these social interactions, and use these as probes of that.
223
660353
3551
u ove socijalne interakcije i upotrijebiti to kao ispitivanja navedenog.
11:03
So we've started this effort. We've made a few hits,
224
663904
2350
Stoga smo krenuli s ovim pokušajem. Dobili smo nekoliko pogodaka,
11:06
a few, I think, embryonic discoveries.
225
666254
2449
nekoliko, smatram ključnih otkrića.
11:08
We think there's a future to this. But it's our way
226
668703
2812
Smatramo kako to ima budućnost. No to je naš način
11:11
of going in and redefining, with a new lexicon,
227
671515
2560
ulaska unutar toga i redefiniranja s novim rječnikom,
11:14
a mathematical one actually, as opposed to the standard
228
674075
4022
zapravo s matematičkim rječnikom, nasuprot standardnim
11:18
ways that we think about mental illness,
229
678097
2578
načinima na koje razmišljamo o mentalnim bolestima,
11:20
characterizing these diseases, by using the people
230
680675
2067
karakterizirajući ih uz pomoć ljudi
11:22
as birds in the exchanges. That is, we exploit the fact
231
682742
3007
umjesto ptica, tj. izrabljujemo činjenicu
11:25
that the healthy partner, playing somebody with major depression,
232
685749
4244
da zdrav partner, igrajući se s nekim tko boluje od depresije
11:29
or playing somebody with autism spectrum disorder,
233
689993
2910
ili igrajući se s nekim tko je autističan
11:32
or playing somebody with attention deficit hyperactivity disorder,
234
692903
3850
ili igrajući se s nekim tko ima poremećaj pažnje,
11:36
we use that as a kind of biosensor, and then we use
235
696753
3219
koristimo kao neku vrstu biosenzora, a zatim
11:39
computer programs to model that person, and it gives us
236
699972
2644
koristimo računalne programe da bismo modelirali tu osobu i to nam daje
11:42
a kind of assay of this.
237
702616
2470
neku vrstu ovakve analize.
11:45
Early days, and we're just beginning, we're setting up sites
238
705086
2131
Ranije smo samo počinjali, postavljali smo web stranice
11:47
around the world. Here are a few of our collaborating sites.
239
707217
3410
širom svijeta. Ovdje je nekoliko naših suradničkih stranica.
11:50
The hub, ironically enough,
240
710627
2309
Središte je, dovoljno ironično,
11:52
is centered in little Roanoke, Virginia.
241
712936
2889
smješteno u malom gradu Roanoke u Virginiji.
11:55
There's another hub in London, now, and the rest
242
715825
2269
Postoji još jedno središte u Londonu, trenutno,
11:58
are getting set up. We hope to give the data away
243
718094
4009
a na ostalima se još radi. Nadamo se da ćemo u nekoj fazi moći dati podatke.
12:02
at some stage. That's a complicated issue
244
722103
3673
Komplicirana je stvar
12:05
about making it available to the rest of the world.
245
725776
2994
učiniti to dostupnim ostatku svijeta,
12:08
But we're also studying just a small part
246
728770
1847
no također proučavamo samo mali dio
12:10
of what makes us interesting as human beings, and so
247
730617
2267
onoga što nas čini zanimljivima kao ljudskim bićima
12:12
I would invite other people who are interested in this
248
732884
2041
pa bih želio pozvati druge ljude koji su zainteresirani
12:14
to ask us for the software, or even for guidance
249
734925
2569
za to da pitaju za software ili čak i za navođenje
12:17
on how to move forward with that.
250
737494
2219
u svezi toga kako krenuti dalje s time.
12:19
Let me leave you with one thought in closing.
251
739713
2341
Dopustite da vas za kraj ostavim s jednom mišlju.
12:22
The interesting thing about studying cognition
252
742054
1942
Zanimljiva stvar u vezi proučavanja spoznaje
12:23
has been that we've been limited, in a way.
253
743996
3732
je to da smo na neki način ograničeni.
12:27
We just haven't had the tools to look at interacting brains
254
747728
2943
Nismo imali oružje kako bismo simultano
12:30
simultaneously.
255
750671
1200
mogli gledati mozgove koji komuniciraju.
12:31
The fact is, though, that even when we're alone,
256
751871
2470
Činjenica je da čak i kada smo sami,
12:34
we're a profoundly social creature. We're not a solitary mind
257
754341
4111
potpuno smo društvena bića. Nismo usamljen um
12:38
built out of properties that kept it alive in the world
258
758452
4373
izgrađen od svojstava koji bi ga održali živim u svijetu
12:42
independent of other people. In fact, our minds
259
762825
3948
odvojenom od ostalih ljudi. Zapravo, naši umovi
12:46
depend on other people. They depend on other people,
260
766773
2870
ovise o drugim ljudima.
12:49
and they're expressed in other people,
261
769643
1541
Ovise o drugim ljudima i izraženi su kroz druge
12:51
so the notion of who you are, you often don't know
262
771184
3652
kao i pojam toga tko ste, često ne znate tko ste
12:54
who you are until you see yourself in interaction with people
263
774836
2688
dok se ne vidite kako komunicirate s bliskim ljudima,
12:57
that are close to you, people that are enemies of you,
264
777524
2406
s ljudima koji su vam neprijatelji
12:59
people that are agnostic to you.
265
779930
2545
i s ljudima koji su vam nepoznati.
13:02
So this is the first sort of step into using that insight
266
782475
3776
Ovo je prvi korak korištenja uvida
13:06
into what makes us human beings, turning it into a tool,
267
786251
3295
u to što nas čini ljudskim bićima, pretvarajući to u oruđe
13:09
and trying to gain new insights into mental illness.
268
789546
1978
i pokušavajući stvoriti nove uvide u mentalne bolesti.
13:11
Thanks for having me. (Applause)
269
791524
3121
Hvala što ste bili ovdje. (Pljesak)
13:14
(Applause)
270
794645
3089
(Pljesak)
O ovoj web stranici

Ova stranica će vas upoznati s YouTube videozapisima koji su korisni za učenje engleskog jezika. Vidjet ćete lekcije engleskog koje vode vrhunski profesori iz cijelog svijeta. Dvaput kliknite na engleske titlove prikazane na svakoj video stranici da biste reproducirali video s tog mjesta. Titlovi se pomiču sinkronizirano s reprodukcijom videozapisa. Ako imate bilo kakvih komentara ili zahtjeva, obratite nam se putem ovog obrasca za kontakt.

https://forms.gle/WvT1wiN1qDtmnspy7