Carl Schoonover: How to look inside the brain

75,301 views ใƒป 2012-05-17

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Orr Schlesinger ืžื‘ืงืจ: Ido Dekkers
00:15
This is a thousand-year-old drawing of the brain.
0
15619
3996
ื–ื”ื• ืฉืจื˜ื•ื˜ ื‘ืŸ ืืœืฃ ืฉื ื” ืฉืœ ื”ืžื•ื—.
00:19
It's a diagram of the visual system.
1
19615
1912
ื–ื• ื“ื™ืื’ืจืžื” ืฉืœ ืžืขืจื›ืช ื”ืจืื™ื™ื”.
00:21
And some things look very familiar today.
2
21527
2750
ื”ืฆื™ื•ืจ ืžืื•ื“ ื“ื•ืžื” ืœื“ื™ืื’ืจืžื•ืช ืฉืžืฆื•ื™ื™ืจื•ืช ื›ื™ื•ื.
00:24
Two eyes at the bottom, optic nerve flowing out from the back.
3
24277
4367
ืฉืชื™ ืขื™ื ื™ื™ื ื‘ืชื—ืชื™ืช ื”ืชืžื•ื ื” ื•ืขืฆื‘ ื”ืจืื™ื™ื” ืฉื™ื•ืฆื ืžื”ืŸ ืžืื—ื•ืจ.
00:28
There's a very large nose
4
28644
2120
ื•ื™ืฉ ืืฃ ื’ื“ื•ืœ ืžืื•ื“
00:30
that doesn't seem to be connected to anything in particular.
5
30764
3317
ืฉืœื ื ืจืื” ืžื—ื•ื‘ืจ ืœืฉื•ื ื“ื‘ืจ.
00:34
And if we compare this
6
34081
1700
ื•ืื ื ืฉื•ื•ื” ืืช ื–ื”
00:35
to more recent representations of the visual system,
7
35781
2074
ืœืฉืจื˜ื•ื˜ื™ื ืฉืœ ืžืขืจื›ืช ื”ืจืื™ื™ื” ืžื”ืชืงื•ืคื” ื”ืื—ืจื•ื ื”,
00:37
you'll see that things have gotten substantially more complicated
8
37855
2957
ืชื•ื›ืœื• ืœืจืื•ืช ืฉื“ื‘ืจื™ื ื ืขืฉื• ื”ืจื‘ื” ื™ื•ืชืจ ืžื•ืจื›ื‘ื™ื
00:40
over the intervening thousand years.
9
40812
1573
ื‘ืžื”ืœืš ืืœืฃ ื”ืฉื ื™ื ืฉืขื‘ืจื•.
00:42
And that's because today we can see what's inside of the brain,
10
42385
2965
ื•ื–ื” ื‘ื’ืœืœ ืฉื›ื™ื•ื ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืจืื•ืช ืžื” ืงื•ืจื” ื‘ืชื•ืš ื”ืžื•ื—,
00:45
rather than just looking at its overall shape.
11
45350
2481
ื‘ื ื™ื’ื•ื“ ืœื”ืกืชื›ืœื•ืช ืจืง ืขืœ ืฆื•ืจืชื• ื”ื ืจืื™ืช ืœืขื™ืŸ.
00:47
Imagine you wanted to understand how a computer works
12
47831
3979
ื“ืžื™ื™ื ื• ืฉืืชื ืจื•ืฆื™ื ืœื“ืขืช ื›ื™ืฆื“ ืคื•ืขืœ ืžื—ืฉื‘
00:51
and all you could see was a keyboard, a mouse, a screen.
13
51810
3179
ื•ื›ืœ ืžื” ืฉืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ื”ื ืžืงืœื“ืช, ืขื›ื‘ืจ ื•ืžืกืš ื”ืžื—ืฉื‘.
00:54
You really would be kind of out of luck.
14
54989
2396
ืกื•ื’ ืฉืœ ื—ื•ืกืจ ืื•ื ื™ื...
00:57
You want to be able to open it up, crack it open,
15
57385
2042
ืืชื ืจื•ืฆื™ื ืœื”ื™ื•ืช ื™ื›ื•ืœื™ื ืœืคืชื•ื— ืื•ืชื•,
00:59
look at the wiring inside.
16
59427
1844
ื•ืœื”ืกืชื›ืœ ืขืœ ื›ืœ ื”ื—ื•ื˜ื™ื ืฉื‘ืคื ื™ื.
01:01
And up until a little more than a century ago,
17
61271
1864
ืขื“ ืœืคื ื™ ืงืฆืช ื™ื•ืชืจ ืžืžืื” ืฉื ื”,
01:03
nobody was able to do that with the brain.
18
63135
2000
ืืฃ ืื—ื“ ืœื ื”ื™ื” ื™ื›ื•ืœ ืœืขืฉื•ืช ืืช ื–ื” ืขื ื”ืžื•ื—.
01:05
Nobody had had a glimpse of the brain's wiring.
19
65135
1880
ืืฃ ืื—ื“ ืœื ื”ื™ื” ื™ื›ื•ืœ ืœืจืื•ืช ืืช ื”"ื—ื™ื•ื•ื˜" ื‘ืžื•ื—.
01:07
And that's because if you take a brain out of the skull
20
67015
2952
ื–ื” ื‘ื’ืœืœ ืฉืื ืชื™ืงื— ืžื•ื—, ืชื•ืฆื™ื ืื•ืชื• ืžื”ื’ื•ืœื’ื•ืœืช
01:09
and you cut a thin slice of it,
21
69967
1689
ืชื—ืชื•ืš ืคืจื•ืกื” ื“ืงื” ืžืžื ื•,
01:11
put it under even a very powerful microscope,
22
71656
2498
ื•ืชืฉื™ื ืื•ืชื” ืชื—ืช ืžื™ืงืจื•ืกืงื•ืค ื—ื–ืง,
01:14
there's nothing there.
23
74154
1181
ืื™ืŸ ืฉื ื›ืœื•ื.
01:15
It's gray, formless.
24
75335
1613
ื–ื” ืืคื•ืจ ื•ื—ืกืจ ืฆื•ืจื”.
01:16
There's no structure. It won't tell you anything.
25
76948
2604
ืื™ืŸ ืžื‘ื ื” ืžื•ื’ื“ืจ, ื–ื” ืœื ื™ื’ื™ื“ ืœืš ื›ืœื•ื.
01:19
And this all changed in the late 19th century.
26
79552
2854
ื›ืœ ื–ื” ื”ืฉืชื ื” ืœืงืจืืช ืกื•ืฃ ื”ืžืื” ื”-19.
01:22
Suddenly, new chemical stains for brain tissue were developed
27
82406
3875
ืคืชืื•ื ื”ื—ืœื• ืœืคืชื— ื›ืœ ืžื™ื ื™ ืฆื‘ืขื™ื ื›ื™ืžื™ื™ื ืœืฆื‘ื™ืขืช ืจืงืžืช ื”ืžื•ื—
01:26
and they gave us our first glimpses at brain wiring.
28
86281
2812
ืฉื ืชื ื• ืœื ื• ื”ืฆืฆื” ืจืืฉื•ื ื” ืœืžื” ืฉืงื•ืจื” ื‘ืชื•ื›ื•.
01:29
The computer was cracked open.
29
89093
2013
ืคืชื—ื ื• ืืช ื”ืžื—ืฉื‘ ืœืจื•ื•ื—ื”.
01:31
So what really launched modern neuroscience
30
91106
2856
ืื– ืžื” ืฉื‘ืืžืช ืงื™ื“ื ืืช ืžื“ืขื™ ื”ืžื•ื— ื”ืžื•ื“ืจื ื™ื
01:33
was a stain called the Golgi stain.
31
93962
1965
ื”ื•ื ืฆื‘ืขืŸ ืฉื ืงืจื ืฆื‘ืขืŸ ื’ื•ืœื’'ื™.
01:35
And it works in a very particular way.
32
95927
1881
ื•ื”ื•ื ืคื•ืขืœ ื‘ืฆื•ืจื” ื”ื‘ืื”.
01:37
Instead of staining all of the cells inside of a tissue,
33
97808
3110
ื‘ืžืงื•ื ืœืฆื‘ื•ืข ืืช ื›ืœ ื”ืชืื™ื ื‘ืชื•ืš ืจืงืžื” ืžืกื•ื™ื™ืžืช,
01:40
it somehow only stains about one percent of them.
34
100918
3032
ื”ื•ื ืฆื•ื‘ืข ืจืง ื›ืื—ื•ื– ืื—ื“ ืžื”ื.
01:43
It clears the forest, reveals the trees inside.
35
103950
3342
ืžื ืงื” ืืช ื”ืชืžื•ื ื”, ื›ืš ืฉื ื™ืชืŸ ืœืจืื•ืช ืžื” ืฉืงื•ืจื” ื‘ืคื ื™ื.
01:47
If everything had been labeled, nothing would have been visible.
36
107292
2672
ืื ื›ืœ ื”ืจืงืžื” ื”ื™ืชื” ื ืฆื‘ืขืช ืœื ื”ื™ื” ื ื™ืชืŸ ืœืจืื•ืช ื›ืœื•ื.
01:49
So somehow it shows what's there.
37
109964
2046
ื›ืš ืฉื‘ืฆื•ืจื” ื”ื–ืืช ื ื™ืชืŸ ืœืจืื•ืช ืžื” ืงื•ืจื” ืฉื.
01:52
Spanish neuroanatomist Santiago Ramon y Cajal,
38
112010
2667
ื”ืžื•ืžื—ื” ื”ืกืคืจื“ื™ ืœืื ื˜ื•ืžื™ื” ืฉืœ ืžืขืจื›ืช ื”ืขืฆื‘ื™ื ืกื ื˜ื™ืื’ื• ืจืžื•ืŸ ื ื›ื”ืœ,
01:54
who's widely considered the father of modern neuroscience,
39
114677
2845
ืฉื ื—ืฉื‘ ืœืื‘ื™ ืžื“ืขื™ ื”ืžื•ื— ื”ืžื•ื“ืจื ื™ื,
01:57
applied this Golgi stain, which yields data which looks like this,
40
117522
3897
ื”ืฉืชืžืฉ ื‘ืฆื‘ืขืŸ ื”ื’ื•ืœื’'ื™ ื”ื–ื”, ืฉื ืชืŸ ืœื• ืชืžื•ื ื” ืฉื ืจืื™ืช ื›ืš,
02:01
and really gave us the modern notion of the nerve cell, the neuron.
41
121419
3758
ื•ื ืชืŸ ืœื ื• ืืช ื”ื‘ืกื™ืก ืœื”ื‘ื ื” ืฉืœ ืชื ื”ืขืฆื‘, ื”ื ื•ื™ืจื•ืŸ.
02:05
And if you're thinking of the brain as a computer,
42
125177
2614
ื•ืื ื ื—ืฉื•ื‘ ืขืœ ื”ืžื•ื— ื›ืขืœ ืžื—ืฉื‘,
02:07
this is the transistor.
43
127791
2011
ืื– ื–ื” ื”ื˜ืจื ืกื™ืกื˜ื•ืจ.
02:09
And very quickly Cajal realized
44
129802
2075
ืžื”ืจ ืžืื•ื“ ื›ื”ืœ ื”ื‘ื™ืŸ
02:11
that neurons don't operate alone,
45
131877
2337
ืฉื”ื ื•ื™ืจื•ืŸ ืœื ืคืฉื•ื˜ ืขื•ื‘ื“ ืœื‘ื“,
02:14
but rather make connections with others
46
134214
1838
ืืœื ื™ื•ืฆืจ ืงืฉืจื™ื ืขื ื ื•ื™ืจื•ื ื™ื ืื—ืจื™ื
02:16
that form circuits just like in a computer.
47
136052
2506
ืฉื‘ื™ื—ื“ ื™ื•ืฆืจื™ื ืžืขื’ืœื™ื, ืžืžืฉ ื‘ื“ื•ืžื” ืœืžื” ืฉื™ืฉ ื‘ืžื—ืฉื‘.
02:18
Today, a century later, when researchers want to visualize neurons,
48
138558
3391
ื›ื™ื•ื, ืžืื” ืฉื ื” ืžืื•ื—ืจ ื™ื•ืชืจ, ื›ืืฉืจ ื—ื•ืงืจื™ื ืจื•ืฆื™ื ืœื”ืกืชื›ืœ ืขืœ ื ื•ื™ืจื•ื ื™ื,
02:21
they light them up from the inside rather than darkening them.
49
141949
2767
ื”ื "ืžืื™ืจื™ื" ืื•ืชื ืžื‘ืคื ื™ื, ื‘ืžืงื•ื ืœื”ื›ื”ื•ืช ืื•ืชื ื‘ืฆื‘ืข ื›ืœืฉื”ื•.
02:24
And there's several ways of doing this.
50
144716
1150
ื•ื™ืฉ ื›ืžื” ืฉื™ื˜ื•ืช ืœืขืฉื•ืช ื–ืืช,
02:25
But one of the most popular ones
51
145866
1727
ืื‘ืœ ืื—ืช ื”ืฉื™ื˜ื•ืช ื”ืคื•ืคื•ืœืจื™ื•ืช ื‘ื™ื•ืชืจ
02:27
involves green fluorescent protein.
52
147593
2092
ืžืฉืชืžืฉืช ื‘ื—ืœื‘ื•ืŸ ืคืœื•ืจืกื ื˜ื™ ื™ืจื•ืง (Green Fluorescent protein)
02:29
Now green fluorescent protein,
53
149685
1659
ื”ื—ืœื‘ื•ืŸ ื”ืคืœื•ืจืกื ื˜ื™ ื”ื–ื”,
02:31
which oddly enough comes from a bioluminescent jellyfish,
54
151344
3145
ืฉืžืงื•ืจื• ืžืžื“ื•ื–ื” ื‘ืขืœืช ื™ื›ื•ืœืช ื”ืืจื” ื‘ื™ื•ืœื•ื’ื™ืช (ื‘ื™ื•ืœื•ืžื™ื ื™ืกื ืฆื™ื”)
02:34
is very useful.
55
154489
1238
ืžืื•ื“ ืžื•ืขื™ืœ,
02:35
Because if you can get the gene for green fluorescent protein
56
155727
2638
ื›ื™ื•ื•ืŸ ืฉืื ืืชื” ื™ื›ื•ืœ ืœืงื—ืช ืืช ื”ื’ืŸ ืœื—ืœื‘ื•ืŸ ื”ื–ื”
02:38
and deliver it to a cell,
57
158365
1675
ื•ืœื”ื›ื ื™ืก ืืช ืื•ืชื• ืœืชื,
02:40
that cell will glow green --
58
160040
1747
ื”ืชื ื™ืชื—ื™ืœ ืœื–ื”ื•ืจ ื‘ืฆื‘ืข ื™ืจื•ืง,
02:41
or any of the many variants now of green fluorescent protein,
59
161787
3746
ืื• ื‘ืฆื‘ืขื™ื ืื—ืจื™ื, ืชืœื•ื™ ื‘ื•ื•ืจื™ืืฆื™ื” ืฉืœ ื”ื—ืœื‘ื•ืŸ ื‘ื” ื”ืฉืชืžืฉืช,
02:45
you get a cell to glow many different colors.
60
165533
1664
ืืชื” ื™ื›ื•ืœ ืœื’ืจื•ื ืœื›ืš ืฉื”ืชื ื™ื—ืœ ืœื–ื”ื•ืจ ื‘ืฆื‘ืขื™ื ืฉื•ื ื™ื.
02:47
And so coming back to the brain,
61
167197
1521
ืื– ื ื—ื–ื•ืจ ืื ื›ืŸ ืœืžื•ื—,
02:48
this is from a genetically engineered mouse called "Brainbow."
62
168718
3800
ื–ื•ื”ื™ ืชืžื•ื ื” ืžืขื›ื‘ืจ ืžื”ื•ื ื“ืก ื’ื ื˜ื™ืช ืฉื ืงืจื "ื‘ืจื™ื™ืŸ-ื‘ื•ืื•" (ืžื•ื—-ืงืฉืช ื‘ืขื ืŸ).
02:52
And it's so called, of course,
63
172518
1550
ื•ื”ื•ื ื ืงืจื ื›ืš, ื›ืžื•ื‘ืŸ,
02:54
because all of these neurons are glowing different colors.
64
174068
3612
ื‘ื’ืœืœ ื›ืœ ื”ื ื•ื™ืจื•ื ื™ื ื”ืœืœื• ืฉื–ื•ืจื—ื™ื ื‘ืฆื‘ืขื™ื ืฉื•ื ื™ื.
02:57
Now sometimes neuroscientists need to identify
65
177680
3451
ืœืคืขืžื™ื ื—ื•ืงืจื™ื ืฆืจื™ื›ื™ื ืœื–ื”ื•ืช
03:01
individual molecular components of neurons, molecules,
66
181131
3044
ืจื›ื™ื‘ ืžื•ืœืงื•ืœืจื™ ื‘ื•ื“ื“ ืฉืœ ื ื•ื™ืจื•ื ื™ื, ืžื•ืœืงื•ืœื•ืช,
03:04
rather than the entire cell.
67
184175
1798
ื•ืœืื• ื“ื•ื•ืงื ืชื ืฉืœื.
03:05
And there's several ways of doing this,
68
185973
1706
ื•ื™ืฉ ืžืกืคืจ ื“ืจื›ื™ื ืœืขืฉื•ืช ื–ืืช,
03:07
but one of the most popular ones
69
187679
1469
ืื‘ืœ ื”ืคื•ืคื•ืœืจื™ื•ืช ื‘ื™ื•ืชืจ
03:09
involves using antibodies.
70
189148
2195
ืžืขืจื‘ื•ืช ืฉื™ืžื•ืฉ ื‘ื ื•ื’ื“ื ื™ื.
03:11
And you're familiar, of course,
71
191343
1337
ืืชื ืžื›ื™ืจื™ื ื‘ื˜ื—
03:12
with antibodies as the henchmen of the immune system.
72
192680
2951
ืืช ื”ื ื•ื’ื“ื ื™ื ื›"ืคื•ืขืœื™ื ื”ืฉื—ื•ืจื™ื" ืฉืœ ืžืขืจื›ืช ื”ื—ื™ืกื•ืŸ.
03:15
But it turns out that they're so useful to the immune system
73
195631
2418
ืื‘ืœ ืžืกืชื‘ืจ ืฉื”ื ื•ื’ื“ื ื™ื ื›ืœ ื›ืš ื™ืขื™ืœื™ื ื›ื—ืœืง ืžืžืขืจื›ืช ื”ื—ื™ืกื•ืŸ
03:18
because they can recognize specific molecules,
74
198049
2550
ื›ื™ื•ื•ืŸ ืฉื”ื ืžืกื•ื’ืœื™ื ืœื–ื”ื•ืช ืžื•ืœืงื•ืœื•ืช ืกืคืฆื™ืคื™ื•ืช,
03:20
like, for example, the coat protein
75
200599
2119
ื›ืžื• ืœืžืฉืœ ื—ืœื‘ื•ืŸ ืžืกื•ื™ื™ื,
03:22
of a virus that's invading the body.
76
202718
2388
ืฉื”ื•ื ื—ืœืง ืžื•ื™ืจื•ืก ืฉื—ื•ื“ืจ ืœื’ื•ืฃ.
03:25
And researchers have used this fact
77
205106
2045
ื”ื—ื•ืงืจื™ื ืžืฉืชืžืฉื™ื ื‘ืขื•ื‘ื“ื” ื–ื•
03:27
in order to recognize specific molecules inside of the brain,
78
207151
4325
ืขืœ ืžื ืช ืœื–ื”ื•ืช ืžื•ืœืงื•ืœื•ืช ืกืคืฆื™ืคื™ื•ืช ื‘ืชื•ืš ื”ืžื•ื—,
03:31
recognize specific substructures of the cell
79
211476
2640
ืœื–ื”ื•ืช ืžื‘ื ื™ื ืžืกื•ื™ื™ืžื™ื ื‘ืชื•ืš ื”ืชื,
03:34
and identify them individually.
80
214116
2244
ื•ืœื–ื”ื•ืช ืื•ืชื ื‘ืฆื•ืจื” ืคืจื˜ื ื™ืช.
03:36
And a lot of the images I've been showing you here are very beautiful,
81
216360
3025
ื”ืจื‘ื” ืžื”ืชืžื•ื ื•ืช ืฉื”ืจืื™ืชื™ ืœื›ื ื›ืืŸ ื”ืŸ ืžืื•ื“ ื™ืคื•ืช,
03:39
but they're also very powerful.
82
219385
1906
ืื‘ืœ ื”ืŸ ื’ื ื‘ืขืœ ืขืจืš ืจื‘.
03:41
They have great explanatory power.
83
221291
1636
ื™ืฉ ืœื”ืŸ ืืช ื”ื™ื›ื•ืœืช ืœื”ืกื‘ื™ืจ ืœื ื• ืžื” ืื ื—ื ื• ืจื•ืื™ื.
03:42
This, for example, is an antibody staining
84
222927
2090
ืœืžืฉืœ, ื–ื•ื”ื™ ืชืžื•ื ื” ืฉืœ ืฆื‘ื™ืขื” ื‘ืขื–ืจืช ื ื•ื’ื“ื ื™ื
03:45
against serotonin transporters in a slice of mouse brain.
85
225017
3520
ืฉืžื–ื”ื™ื ื˜ืจื ืกืคื•ืจื˜ืจ ืฉืœ ืกืจื•ื˜ื•ื ื™ืŸ ื‘ื“ื’ื™ืžื” ืžืžื•ื— ืฉืœ ืขื›ื‘ืจ.
03:48
And you've heard of serotonin, of course,
86
228537
1681
ื‘ื˜ื— ืฉืžืขืชื ื‘ืขื‘ืจ ืขืœ ืกืจื•ื˜ื•ื ื™ืŸ,
03:50
in the context of diseases like depression and anxiety.
87
230218
2827
ื‘ื”ืงืฉืจ ืฉืœ ื“ื™ื›ืื•ืŸ ื•ืœื—ืฅ.
03:53
You've heard of SSRIs,
88
233045
1408
ืฉืžืขืชื ืขืœ ืžืขื›ื‘ื™ ืงืœื™ื˜ื” ื—ื•ื–ืจืช ืฉืœ ืกืจื•ื˜ื•ื ื™ืŸ (SSRI's),
03:54
which are drugs that are used to treat these diseases.
89
234453
2897
ืฉืžืฉืžืฉื™ื ื›ืชืจื•ืคื•ืช ื›ื ื’ื“ ื”ืคืจืขื•ืช ืืœื•.
03:57
And in order to understand how serotonin works,
90
237350
2890
ื•ืขืœ ืžื ืช ืœื”ื‘ื™ืŸ ื›ื™ืฆื“ ืกืจื•ื˜ื•ื ื™ืŸ ืคื•ืขืœ,
04:00
it's critical to understand where the serontonin machinery is.
91
240240
3076
ืงืจื™ื˜ื™ ืœื“ืขืช ื”ื™ื›ืŸ ื ืžืฆื ืžื ื’ื ื•ืŸ ื”ืคืขื•ืœื” ืฉืœื•.
04:03
And antibody stainings like this one
92
243316
1596
ืฆื‘ื™ืขื•ืช ื‘ืขื–ืจืช ื ื•ื’ื“ื ื™ื ื›ืžื• ื–ื•
04:04
can be used to understand that sort of question.
93
244912
3546
ื™ื›ื•ืœื•ืช ืœืขื–ื•ืจ ืœืคืขื ื— ื•ืœืขื ื•ืช ืขืœ ืฉืืœื•ืช ื›ืืœื•.
04:08
I'd like to leave you with the following thought:
94
248458
2558
ืื ื™ ืจื•ืฆื”, ืื ื›ืŸ, ืœื”ืฉืื™ืจ ืืชื›ื ืขื ื”ืžื—ืฉื‘ื” ื”ื‘ืื”:
04:11
Green fluorescent protein and antibodies
95
251016
2610
ื—ืœื‘ื•ืŸ ืคืœื•ืจืกื ื˜ื™ ื™ืจื•ืง ื•ื ื•ื’ื“ื ื™ื
04:13
are both totally natural products at the get-go.
96
253626
3007
ื”ื ืžืœื›ืชื—ื™ืœื” ื—ื•ืžืจื™ื ื˜ื‘ืขื™ื™ื ืœื—ืœื•ื˜ื™ืŸ,
04:16
They were evolved by nature
97
256633
2779
ื”ื ืคื•ืชื—ื• ืขืœ ื™ื“ื™ ื”ื˜ื‘ืข
04:19
in order to get a jellyfish to glow green for whatever reason,
98
259412
2567
ืขืœ ืžื ืช ืœืืคืฉืจ ืœืžื“ื•ื–ื” ืœื–ื”ื•ืจ ืžื›ืœ ืกื™ื‘ื” ืฉืœื ืชื”ื™ื”,
04:21
or in order to detect the coat protein of an invading virus, for example.
99
261979
4383
ืื• ืขืœ ืžื ืช ืœื–ื”ื•ืช ื—ืœื‘ื•ืŸ ืฉืœ ื•ื™ืจื•ืก ื›ืœืฉื”ื•.
04:26
And only much later did scientists come onto the scene
100
266362
3017
ื•ืจืง ื”ืจื‘ื” ื™ื•ืชืจ ืžืื•ื—ืจ ืžื“ืขื ื™ื ื’ื™ืœื• ืืช ื”ื“ื‘ืจื™ื ื”ืœืœื•,
04:29
and say, "Hey, these are tools,
101
269379
2023
ื•ืื– ื”ื ืืžืจื•, "ื”ื™ื™, ืืœื” ื›ืœื™ื,
04:31
these are functions that we could use
102
271402
2113
ืืœื” ื™ื›ื•ืœื•ืช ืฉืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื”ืฉืชืžืฉ ื‘ื”ืŸ
04:33
in our own research tool palette."
103
273515
2008
ื‘"ืืจื’ื–" ื”ื›ืœื™ื ื”ืžื“ืขื™ื™ื ื”ืขื•ืžื“ื™ื ืœืจืฉื•ืชื™ื ื•".
04:35
And instead of applying feeble human minds
104
275523
3628
ื•ื‘ืžืงื•ื ืœื”ืฉืชืžืฉ ื‘ืžื•ื— ื”ืื ื•ืฉื™
04:39
to designing these tools from scratch,
105
279151
1884
ื•ืœืชื›ื ืŸ ืืช ื”ื›ืœื™ื ื”ืœืœื• ืžืืคืก,
04:41
there were these ready-made solutions right out there in nature
106
281035
2904
ื™ืฉ ืœื ื• ืคืชืจื•ื ื•ืช ืžื•ื›ื ื™ื ืฉื ื‘ื—ื•ืฅ
04:43
developed and refined steadily for millions of years
107
283939
3236
ืฉืคื•ืชื—ื• ื•ืฉื•ืคืจื• ื‘ืžืฉืš ืžืœื™ื•ื ื™ ืฉื ื™ื
04:47
by the greatest engineer of all.
108
287175
1700
ืขืœ ื™ื“ื™ ื”ืžื”ื ื“ืก ื”ื’ื“ื•ืœ ืžื›ื•ืœื.
04:48
Thank you.
109
288875
1262
ืชื•ื“ื” ืจื‘ื”.
04:50
(Applause)
110
290137
2538
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7