Electrical experiments with plants that count and communicate | Greg Gage

3,240,647 views ใƒป 2017-11-01

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: hila scherba ืžื‘ืงืจ: Ido Dekkers
00:12
I'm a neuroscientist,
0
12760
1256
ืื ื™ ื ื•ื™ืจื•ืœื•ื’,
00:14
and I'm the co-founder of Backyard Brains,
1
14040
2296
ื•ืื ื™ ืื—ื“ ื”ืžื™ื™ืกื“ื™ื ืฉืœ 'ืžื•ื—ื•ืช ื‘ื—ืฆืจ ื”ืื—ื•ืจื™ืช',
00:16
and our mission is to train the next generation of neuroscientists
2
16360
3856
ื•ื”ืžืฉื™ืžื” ืฉืœื ื• ื”ื™ื ืœืืžืŸ ืืช ื”ื“ื•ืจ ื”ื‘ื ืฉืœ ื”ื ื•ื™ืจื•ืœื•ื’ื™ื
00:20
by taking graduate-level neuroscience research equipment
3
20240
3016
ืขืœ ื™ื“ื™ ืœืงื™ื—ืช ืฆื™ื•ื“ ืœืžื—ืงืจ ื ื•ื™ืจื•ืœื•ื’ื™ ื‘ืจืžื” ืืงื“ืžื™ืช
00:23
and making it available for kids in middle schools and high schools.
4
23280
3440
ื•ื”ืคื™ื›ืชื• ืœื–ืžื™ืŸ ืขื‘ื•ืจ ื™ืœื“ื™ื ื‘ื—ื˜ื™ื‘ื•ืช ื”ื‘ื™ื ื™ื™ื ื•ื‘ืชื™ื›ื•ื ื™ื.
00:27
And so when we go into the classroom,
5
27520
1856
ืื– ื›ืฉืื ื—ื ื• ื ื›ื ืกื™ื ืœืชื•ืš ื”ื›ื™ืชื”,
00:29
one way to get them thinking about the brain, which is very complex,
6
29400
3896
ืื—ืช ื”ื“ืจื›ื™ื ืœื’ืจื•ื ืœื”ื ืœื—ืฉื•ื‘ ืขืœ ื”ืžื•ื—, ื“ื‘ืจ ืฉื”ื•ื ืžืื•ื“ ืžืกื•ื‘ืš,
00:33
is to ask them a very simple question about neuroscience,
7
33320
2936
ื”ื™ื ืœืฉืื•ืœ ืื•ืชื ืฉืืœื” ืžืื•ื“ ืคืฉื•ื˜ื” ืขืœ ืžื“ืขื™ ื”ืžื•ื—,
00:36
and that is, "What has a brain?"
8
36280
2040
ื•ื”ื™ื, "ืœ-ืžื” ื™ืฉ ืžื•ื—?"
00:39
When we ask that,
9
39040
1256
ื›ืฉืื ื—ื ื• ืฉื•ืืœื™ื ืืช ื–ื”,
00:40
students will instantly tell you that their cat or dog has a brain,
10
40320
4055
ืชืœืžื™ื“ื™ื ืžื™ื“ ื™ื’ื™ื“ื• ืœืš ืฉืœื—ืชื•ืœ ืื• ืœื›ืœื‘ ืฉืœื”ื ื™ืฉ ืžื•ื—,
00:44
and most will say that a mouse or even a small insect has a brain,
11
44400
4576
ื•ื”ืจื•ื‘ ื™ื’ื™ื“ื• ืฉืœืขื›ื‘ืจ ืื• ืืคื™ืœื• ืœื—ืจืง ืงื˜ืŸ ื™ืฉ ืžื•ื—,
00:49
but almost nobody says that a plant or a tree
12
49000
2816
ืื‘ืœ ื›ืžืขื˜ ืืฃ ืื—ื“ ืœื ืื•ืžืจ ืฉืœืฆืžื— ืื• ืขืฅ
00:51
or a shrub has a brain.
13
51840
2176
ืื• ืฉื™ื—, ื™ืฉ ืžื•ื—.
00:54
And so when you push --
14
54040
2496
ื•ืื– ื›ืฉืืชื” ืœื•ื—ืฅ --
00:56
because this could actually help describe a little bit
15
56560
2576
ื›ื™ ื–ื” ืœืžืขืฉื” ื™ื›ื•ืœ ืœืขื–ื•ืจ ืœืชืืจ ืงืฆืช
00:59
how the brain actually functions --
16
59160
2176
ืื™ืš ื”ืžื•ื— ื‘ืืžืช ืžืชืคืงื“ --
01:01
so you push and say,
17
61360
1216
ืื– ืืชื” ืœื•ื—ืฅ ื•ืื•ืžืจ,
01:02
"Well, what is it that makes living things have brains versus not?"
18
62600
3536
"ืื–, ืžื” ื–ื” ืžื” ืฉื’ื•ืจื ืœื›ืš ืฉืœื™ืฆื•ืจื™ื ื—ื™ื™ื ืžืกื•ื™ืžื™ื ื™ืฉ ืžื•ื— ื•ืœืื—ืจื™ื ืœื?"
01:06
And often they'll come back with the classification
19
66160
2456
ื•ื‘ื“ืจืš ื›ืœืœ ื”ื ื—ื•ื–ืจื™ื ืขื ื”ื”ื’ื“ืจื”
01:08
that things that move tend to have brains.
20
68640
3776
ืฉืœื“ื‘ืจื™ื ืฉื–ื–ื™ื ื‘ื“ืจืš ื›ืœืœ ื™ื”ื™ื” ืžื•ื—.
01:12
And that's absolutely correct.
21
72440
1616
ื•ื–ื” ืœื’ืžืจื™ ื ื›ื•ืŸ.
01:14
Our nervous system evolved because it is electrical.
22
74080
2456
ืžืขืจื›ืช ื”ืขืฆื‘ื™ื ืฉืœื ื• ื”ืชืคืชื—ื” ื›ื™ื•ื•ืŸ ืฉื”ื™ื ื—ืฉืžืœื™ืช.
01:16
It's fast, so we can quickly respond to stimuli in the world
23
76560
3136
ื”ื™ื ืžื”ื™ืจื”, ืื– ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื”ื’ื™ื‘ ื‘ืžื”ื™ืจื•ืช ืœื’ื™ืจื•ื™ ืžื”ืขื•ืœื
01:19
and move if we need to.
24
79720
2216
ื•ืœื–ื•ื– ืื ืื ื—ื ื• ืฆืจื™ื›ื™ื.
01:21
But you can go back and push back on a student,
25
81960
2216
ืื‘ืœ ืืคืฉืจ ืœื—ื–ื•ืจ ื•ืœืœื—ื•ืฅ ืขืœ ื”ืชืœืžื™ื“,
01:24
and say, "Well, you know, you say that plants don't have brains,
26
84200
3056
ื•ืœื”ื’ื™ื“, "ื˜ื•ื‘, ืืชื” ื™ื•ื“ืข, ืืชื” ืื•ืžืจ ืฉืœืฆืžื—ื™ื ืื™ืŸ ืžื•ื—,
01:27
but plants do move."
27
87280
1456
ืื‘ืœ ืฆืžื—ื™ื ื–ื–ื™ื."
01:28
Anyone who has grown a plant
28
88760
1856
ื›ืœ ืื—ื“ ืฉื’ื™ื“ืœ ืฆืžื—
01:30
has noticed that the plant will move
29
90640
1976
ื”ื‘ื—ื™ืŸ ืฉื”ืฆืžื— ื™ื–ื•ื–
01:32
and face the sun.
30
92640
1816
ื•ื™ืคื ื” ืœืฉืžืฉ.
01:34
But they'll say, "But that's a slow movement.
31
94480
2136
ืื‘ืœ ื”ื ื™ื’ื™ื“ื•, "ืื‘ืœ ื–ื• ืชื ื•ืขื” ืื™ื˜ื™ืช.
01:36
You know, that doesn't count. That could be a chemical process."
32
96640
3016
ืืชื” ื™ื•ื“ืข, ื–ื” ืœื ื ื—ืฉื‘. ื–ื” ื™ื›ื•ืœ ืœื”ื™ื•ืช ืชื”ืœื™ืš ื›ื™ืžื™."
01:39
But what about fast-moving plants?
33
99680
2376
ืื‘ืœ ืžื” ืœื’ื‘ื™ ืฆืžื—ื™ื ืฉื–ื–ื™ื ืžื”ืจ?
01:42
Now, in 1760, Arthur Dobbs, the Royal Governor of North Carolina,
34
102080
5096
ื‘-1760, ืืจืชื•ืจ ื“ื•ื‘ืก, ื”ืฉืœื™ื˜ ื”ืžืœื›ื•ืชื™ ื‘ืฆืคื•ืŸ ืงืจื•ืœื™ื ื”,
01:47
made a pretty fascinating discovery.
35
107200
2536
ื’ื™ืœื” ืชื’ืœื™ืช ืžืจืชืงืช.
01:49
In the swamps behind his house,
36
109760
2856
ื‘ื‘ื™ืฆื•ืช ืฉืžืื—ื•ืจื™ ื”ื‘ื™ืช ืฉืœื•,
01:52
he found a plant that would spring shut
37
112640
3656
ื”ื•ื ืžืฆื ืฆืžื— ืฉื ืกื’ืจ ื›ืงืคื™ืฅ
01:56
every time a bug would fall in between it.
38
116320
2680
ื‘ื›ืœ ืคืขื ืฉื—ืจืง ื ื—ืช ืขืœื™ื•.
01:59
He called this plant the flytrap,
39
119720
2936
ื”ื•ื ืงืจื ืœืฆืžื— ื”ื–ื” ื“ื™ื•ื ืืช ื”ื–ื‘ื•ื‘ื™ื,
02:02
and within a decade, it made its way over to Europe,
40
122680
2936
ื•ื‘ืชื•ืš ืขืฉื•ืจ, ื”ื•ื ืขืฉื” ืืช ื“ืจื›ื• ืœืื™ืจื•ืคื”,
02:05
where eventually the great Charles Darwin got to study this plant,
41
125640
3536
ืื™ืคื” ืฉืฆ'ืจืœืก ื“ืจื•ื•ื™ืŸ ื”ื’ื“ื•ืœ ื™ื›ืœ ืœื—ืงื•ืจ ืืช ื”ืฆืžื— ื”ื–ื”,
02:09
and this plant absolutely blew him away.
42
129200
2016
ื•ื”ืฆืžื— ื”ื–ื” ืคืฉื•ื˜ ื”ื“ื”ื™ื ืื•ืชื•.
02:11
He called it the most wonderful plant in the world.
43
131240
2536
ื”ื•ื ืงืจื ืœื• ื”ืฆืžื— ื”ืžื•ืคืœื ื‘ื™ื•ืชืจ ื‘ืขื•ืœื.
02:13
This is a plant that was an evolutionary wonder.
44
133800
2256
ื–ื”ื• ืฆืžื— ืฉื”ื™ื” ืคืœื ืื‘ื•ืœื•ืฆื™ื•ื ื™.
02:16
This is a plant that moves quickly,
45
136080
1976
ื–ื” ืฆืžื— ืฉื ืข ื‘ืžื”ื™ืจื•ืช,
02:18
which is rare,
46
138080
1296
ืฉื–ื” ื“ื‘ืจ ื ื“ื™ืจ,
02:19
and it's carnivorous, which is also rare.
47
139400
1976
ื•ื”ื•ื ืงืจื ื™ื‘ื•ืจ, ืฉื–ื” ื’ื ื ื“ื™ืจ.
02:21
And this is in the same plant.
48
141400
1456
ื•ื–ื” ื‘ืื•ืชื• ืฆืžื—.
02:22
But I'm here today to tell you
49
142880
1456
ืื‘ืœ ืื ื™ ื›ืืŸ ื”ื™ื•ื ื›ื“ื™ ืœื”ื’ื™ื“ ืœื›ื
02:24
that's not even the coolest thing about this plant.
50
144360
2416
ืฉื–ื” ืืคื™ืœื• ืœื ื”ื“ื‘ืจ ื”ืžื’ื ื™ื‘ ื‘ื™ื•ืชืจ ื‘ืฆืžื— ื”ื–ื”.
02:26
The coolest thing is that the plant can count.
51
146800
2520
ื”ื“ื‘ืจ ื”ืžื’ื ื™ื‘ ื‘ื™ื•ืชืจ ื”ื•ื ืฉื”ืฆืžื— ื”ื–ื” ื™ื›ื•ืœ ืœืกืคื•ืจ.
02:30
So in order to show that,
52
150560
1376
ืื– ื‘ืฉื‘ื™ืœ ืœื”ืจืื•ืช ืœื›ื ืืช ื–ื”,
02:31
we have to get some vocabulary out of the way.
53
151960
2176
ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœื”ืกื‘ื™ืจ ืงืฆืช ืื•ืฆืจ ืžื™ืœื™ื.
02:34
So I'm going to do what we do in the classroom with students.
54
154160
3256
ืื– ืื ื™ ื”ื•ืœืš ืœืขืฉื•ืช ืžื” ืฉืื ื—ื ื• ืขื•ืฉื™ื ื‘ื›ื™ืชื” ืขื ืชืœืžื™ื“ื™ื.
02:37
We're going to do an experiment on electrophysiology,
55
157440
3856
ืื ื—ื ื• ื”ื•ืœื›ื™ื ืœืขืฉื•ืช ื ื™ืกื•ื™ ื‘ืืœืงื˜ืจื•ืคื™ื–ื™ื•ืœื•ื’ื™ื”,
02:41
which is the recording of the body's electrical signal,
56
161320
3136
ืฉื–ื• ื”ื”ืงืœื˜ื” ืฉืœ ื”ืื•ืชื•ืช ื”ื—ืฉืžืœื™ื™ื ืฉืœ ื”ื’ื•ืฃ,
02:44
either coming from neurons or from muscles.
57
164480
2296
ืฉืžื’ื™ืขื™ื ืื• ืžื”ื ื•ื™ืจื•ื ื™ื ืื• ืžื”ืฉืจื™ืจื™ื.
02:46
And I'm putting some electrodes here on my wrists.
58
166800
2336
ื•ืื ื™ ืฉื ื›ืžื” ืืœืงื˜ืจื•ื“ื•ืช ืขืœ ื”ื–ืจื•ืขื•ืช ืฉืœื™.
02:49
As I hook them up,
59
169160
1336
ื‘ื–ืžืŸ ืฉืื ื™ ืžื—ื‘ืจ ืื•ืชื,
02:50
we're going to be able to see a signal
60
170520
2176
ืื ื—ื ื• ื ื•ื›ืœ ืœืจืื•ืช ืื•ืช
02:52
on the screen here.
61
172720
1456
ืขืœ ื”ืžืกืš ื”ื–ื” ื›ืืŸ.
02:54
And this signal may be familiar to you.
62
174200
1896
ื•ื”ืื•ืช ื”ื–ื” ืื•ืœื™ ื™ื™ืจืื” ืœื›ื ืžื•ื›ืจ.
02:56
It's called the EKG, or the electrocardiogram.
63
176120
2176
ื–ื” ื ืงืจื ื.ืง.ื’, ืื• ืืœืงื˜ืจื•ืงืจื“ื™ื•ื’ืจืžื”.
02:58
And this is coming from neurons in my heart
64
178320
2456
ื•ื–ื” ืžื’ื™ืข ืžื ื•ื™ืจื•ื ื™ื ื‘ืœื‘ ืฉืœื™
03:00
that are firing what's called action potentials,
65
180800
2536
ืฉื™ื•ืจื™ื ืžื” ืฉื ืงืจื ืคื•ื˜ื ืฆื™ืืœ ืคืขื•ืœื”,
03:03
potential meaning voltage and action meaning it moves quickly up and down,
66
183360
3856
ืคื•ื˜ื ืฆื™ืืœ ื›ืœื•ืžืจ ืžืชื—, ื•ืคืขื•ืœื” ื›ืœื•ืžืจ ื–ื” ื ืข ืžื”ืจ ืœืžืขืœื” ื•ืœืžื˜ื”,
03:07
which causes my heart to fire,
67
187240
1456
ืžื” ืฉื’ื•ืจื ืœืœื‘ ืฉืœื™ ืœื™ืจื•ืช,
03:08
which then causes the signal that you see here.
68
188720
2816
ืฉืื– ื’ื•ืจื ืœืื•ืช ืฉืืชื ืจื•ืื™ื ื›ืืŸ.
03:11
And so I want you to remember the shape of what we'll be looking at right here,
69
191560
3736
ืื– ืื ื™ ืจื•ืฆื” ืฉืชื–ื›ืจื• ืืช ื”ืฆื•ืจื” ืฉืœ ืžื” ืฉืื ื—ื ื• ื ืจืื” ื›ืืŸ,
03:15
because this is going to be important.
70
195320
1856
ื›ื™ ื–ื” ื”ื•ืœืš ืœื”ื™ื•ืช ื—ืฉื•ื‘.
03:17
This is a way that the brain encodes information
71
197200
2416
ื–ื• ื”ื“ืจืš ืฉื‘ื” ื”ืžื•ื— ืžืงื•ื“ื“ ืžื™ื“ืข
03:19
in the form of an action potential.
72
199640
1696
ื‘ืฆื•ืจื” ืฉืœ ืคื•ื˜ื ืฆื™ืืœ ืคืขื•ืœื”.
03:21
So now let's turn to some plants.
73
201360
2320
ืื– ืขื›ืฉื™ื• ื‘ื•ืื• ื ืคื ื” ืœื›ืžื” ืฆืžื—ื™ื.
03:24
So I'm going to first introduce you to the mimosa,
74
204920
3536
ืื– ืื ื™ ืงื•ื“ื ื›ืœ ื”ื•ืœืš ืœื”ื›ื™ืจ ืœื›ื ืืช ื”ืžื™ืžื•ื–ื”,
03:28
not the drink, but the Mimosa pudica,
75
208480
3216
ืœื ื”ืžืฉืงื”, ืืœื ืžื™ืžื•ื–ื” ืคื•ื“ื™ืงื”,
03:31
and this is a plant that's found in Central America and South America,
76
211720
3336
ื•ื–ื” ืฆืžื— ืฉื ืžืฆื ื‘ืžืจื›ื– ืืžืจื™ืงื” ื•ื‘ื“ืจื•ื ืืžืจื™ืงื”,
03:35
and it has behaviors.
77
215080
1976
ื•ื™ืฉ ืœื• ื”ืชื ื”ื’ื•ื™ื•ืช.
03:37
And the first behavior I'm going to show you
78
217080
2096
ื•ื”ื”ืชื ื”ื’ื•ืช ื”ืจืืฉื•ื ื” ืฉืื ื™ ืขื•ืžื“ ืœื”ืจืื•ืช ืœื›ื
03:39
is if I touch the leaves here,
79
219200
2096
ื–ื” ืื ืื ื™ ืื’ืข ื‘ืขืœื™ื ื›ืืŸ,
03:41
you get to see that the leaves tend to curl up.
80
221320
2200
ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืฉื”ืขืœื™ื ื ื•ื˜ื™ื ืœื”ืชืงืคืœ ืคื ื™ืžื”.
03:45
And then the second behavior is,
81
225280
2256
ื•ื”ื”ืชื ื”ื’ื•ืช ื”ืฉื ื™ื” ื”ื™ื,
03:47
if I tap the leaf,
82
227560
2176
ืื ืื ื™ ื˜ื•ืคื— ืขืœ ื”ืขืœื”,
03:49
the entire branch seems to fall down.
83
229760
1816
ื ืจืื” ืฉื›ืœ ื”ืขื ืฃ ื ื•ืคืœ.
03:51
So why does it do that?
84
231600
1536
ืื– ืœืžื” ื”ืฆืžื— ืขื•ืฉื” ืืช ื–ื”?
03:53
It's not really known to science.
85
233160
1616
ื–ื” ืœื ืžืžืฉ ื™ื“ื•ืข ืœืžื“ืข.
03:54
One of the reasons why could be that it scares away insects
86
234800
3216
ืื—ืช ื”ืกื™ื‘ื•ืช ืœืžื” ื™ื›ื•ืœื” ืœื”ื™ื•ืช ืฉื–ื” ืžืจื—ื™ืง ื—ืจืงื™ื
03:58
or it looks less appealing to herbivores.
87
238040
2176
ืื• ืฉื–ื” ื ืจืื” ืคื—ื•ืช ืžื•ืฉืš ืœืื•ื›ืœื™ ืขืฉื‘.
04:00
But how does it do that? Now, that's interesting.
88
240240
2496
ืื‘ืœ ืื™ืš ื”ื•ื ืขื•ืฉื” ืืช ื–ื”? ืื– ื–ื” ืžืขื ื™ื™ืŸ.
04:02
We can do an experiment to find out.
89
242760
2136
ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ื ื™ืกื•ื™ ื‘ืฉื‘ื™ืœ ืœื’ืœื•ืช.
04:04
So what we're going to do now,
90
244920
1456
ืื– ืžื” ืฉืื ื—ื ื• ื”ื•ืœื›ื™ื ืœืขืฉื•ืช ืขื›ืฉื™ื•,
04:06
just like I recorded the electrical potential from my body,
91
246400
3416
ื‘ื“ื™ื•ืง ื›ืžื• ืฉื”ืงืœื˜ืชื™ ืืช ื”ืคื•ื˜ื ืฆื™ืืœ ื”ื—ืฉืžืœื™ ืžื”ื’ื•ืฃ ืฉืœื™,
04:09
we're going to record the electrical potential from this plant, this mimosa.
92
249840
3816
ืื ื—ื ื• ื”ื•ืœื›ื™ื ืœื”ืงืœื™ื˜ ืืช ื”ืคื•ื˜ื ืฆื™ืืœ ื”ื—ืฉืžืœื™ ืžื”ืฆืžื— ื”ื–ื”, ื”ืžื™ืžื•ื–ื”.
04:13
And so what we're going to do is I've got a wire wrapped around the stem,
93
253680
5496
ืื– ืžื” ืฉืื ื—ื ื• ื”ื•ืœื›ื™ื ืœืขืฉื•ืช ื–ื” ืฉื™ืฉ ืœื™ ื—ื•ื˜ ืฉืžืœื•ืคืฃ ืกื‘ื™ื‘ ื”ื’ื‘ืขื•ืœ,
04:19
and I've got the ground electrode where?
94
259200
2080
ื•ื™ืฉ ืœื™ ืืช ื”ืืœืงื˜ืจื•ื“ื” ืฉืœ ื”ืงืจืงืข ืื™ืคื”?
04:22
In the ground. It's an electrical engineering joke. Alright.
95
262360
2936
ื‘ืื“ืžื”. ื–ื• ื‘ื“ื™ื—ืช ืžื”ื ื“ืกื™ ื—ืฉืžืœ. ื‘ืกื“ืจ.
04:25
(Laughter)
96
265320
1336
(ืฆื—ื•ืง)
04:26
Alright. So I'm going to go ahead and tap the leaf here,
97
266680
2736
ื‘ืกื“ืจ. ืื– ืื ื™ ื”ื•ืœืš ืœื”ืžืฉื™ืš ื•ืœื˜ืคื•ื— ืขืœ ื”ืขืœื” ื›ืืŸ,
04:29
and I want you to look at the electrical recording
98
269440
2375
ื•ืื ื™ ืจื•ืฆื” ืฉืชืกืชื›ืœื• ืขืœ ื”ื”ืงืœื˜ื” ื”ื—ืฉืžืœื™ืช
04:31
that we're going to see inside the plant.
99
271839
1961
ืฉืื ื—ื ื• ื”ื•ืœื›ื™ื ืœืจืื•ืช ื‘ืชื•ืš ื”ืฆืžื—.
04:34
Whoa. It is so big, I've got to scale it down.
100
274520
2896
ื•ื•ืื•. ื–ื” ื›ืœ ื›ืš ื’ื“ื•ืœ ืฉืื ื™ ืฆืจื™ืš ืงื ื” ืžื™ื“ื” ืงื˜ืŸ ื™ื•ืชืจ.
04:37
Alright. So what is that?
101
277440
1416
ื‘ืกื“ืจ. ืื– ืžื” ื–ื”?
04:38
That is an action potential that is happening inside the plant.
102
278880
2976
ื–ื” ืคื•ื˜ื ืฆื™ืืœ ืคืขื•ืœื” ืฉืžืชืจื—ืฉ ื‘ืชื•ืš ื”ืฆืžื—.
04:41
Why was it happening?
103
281880
1256
ืœืžื” ื–ื” ืงืจื”?
04:43
Because it wanted to move. Right?
104
283160
1616
ื›ื™ ื”ื•ื ืจืฆื” ืœื–ื•ื–. ื ื›ื•ืŸ?
04:44
And so when I hit the touch receptors,
105
284800
3016
ืื– ื›ืฉืื ื™ ืคื’ืขืชื™ ื‘ื—ื™ื™ืฉื ื™ื ืฉืœ ื”ืžื’ืข,
04:47
it sent a voltage all the way down to the end of the stem,
106
287840
3176
ื–ื” ืฉืœื— ืžืชื— ื›ืœ ื”ื“ืจืš ืœืžื˜ื” ืœืชื—ืชื™ืช ื”ื’ื‘ืขื•ืœ,
04:51
which caused it to move.
107
291040
1256
ืžื” ืฉื’ืจื ืœื–ื” ืœื–ื•ื–.
04:52
And now, in our arms, we would move our muscles,
108
292320
2256
ืขื›ืฉื™ื•, ื‘ื™ื“ื™ื™ื ืฉืœื ื•, ืื ื—ื ื• ื ื–ื™ื– ืืช ื”ืฉืจื™ืจื™ื ืฉืœื ื•,
04:54
but the plant doesn't have muscles.
109
294600
1696
ืื‘ืœ ืœืฆืžื— ืื™ืŸ ืฉืจื™ืจื™ื.
04:56
What it has is water inside the cells
110
296320
2256
ืžื” ืฉื™ืฉ ืœื• ื–ื” ืžื™ื ื‘ืชื•ืš ื”ืชืื™ื ืฉืœื•
04:58
and when the voltage hits it, it opens up, releases the water,
111
298600
2936
ื•ื›ืฉื”ืžืชื— ื”ื—ืฉืžืœื™ ืคื•ื’ืข ื‘ื•, ื”ืชื ื ืคืชื—, ื•ืžืฉื—ืจืจ ืืช ื”ืžื™ื,
05:01
changes the shape of the cells, and the leaf falls.
112
301560
2434
ืžืฉื ื” ืืช ื”ืฆื•ืจื” ืฉืœ ื”ืชืื™ื, ื•ื”ืขืœื” ื ื•ืคืœ.
05:04
OK. So here we see an action potential encoding information to move. Alright?
113
304480
4936
ืื•ืงื™ื™, ืื– ื›ืืŸ ืื ื—ื ื• ืจื•ืื™ื ืคื•ื˜ื ืฆื™ืืœ ืคืขื•ืœื” ืฉืžืงื•ื“ื“ ืžื™ื“ืข ื‘ืฉื‘ื™ืœ ืœื–ื•ื–. ื‘ืกื“ืจ?
05:09
But can it do more?
114
309440
1496
ืื‘ืœ ื”ืื ื–ื” ื™ื›ื•ืœ ืœืขืฉื•ืช ื™ื•ืชืจ?
05:10
So let's go to find out.
115
310960
1256
ืื– ื‘ื•ืื• ื ืœืš ืœื’ืœื•ืช.
05:12
We're going to go to our good friend, the Venus flytrap here,
116
312240
3056
ืื ื—ื ื• ื”ื•ืœื›ื™ื ืœื’ืฉืช ืœื—ื‘ืจ ื”ื˜ื•ื‘ ืฉืœื ื•, ื“ื™ื•ื ืืช ื”ื–ื‘ื•ื‘ื™ื ื›ืืŸ,
05:15
and we're going to take a look at what happens inside the leaf
117
315320
4416
ื•ืื ื—ื ื• ื”ื•ืœื›ื™ื ืœื”ืกืชื›ืœ ืขืœ ืžื” ืžืชืจื—ืฉ ื‘ืชื•ืš ื”ืขืœื”
05:19
when a fly lands on here.
118
319760
1936
ื›ืฉื–ื‘ื•ื‘ ื ื•ื—ืช ืขืœื™ื•.
05:21
So I'm going to pretend to be a fly right now.
119
321720
2696
ืื– ืื ื™ ื”ื•ืœืš ืœื”ืขืžื™ื“ ืคื ื™ื ืฉืื ื™ ื–ื‘ื•ื‘ ืขื›ืฉื™ื•.
05:24
And now here's my Venus flytrap,
120
324440
1656
ื•ืขื›ืฉื™ื• ื”ื ื” ื“ื™ื•ื ืืช ื”ื–ื‘ื•ื‘ื™ื,
05:26
and inside the leaf, you're going to notice
121
326120
2016
ื•ื‘ืชื•ืš ื”ืขืœื”, ืืชื ืขื•ืžื“ื™ื ืœื”ื‘ื—ื™ืŸ
05:28
that there are three little hairs here, and those are trigger hairs.
122
328160
3216
ืฉื™ืฉ ืคื” ืฉืœื•ืฉ ืฉื™ืขืจื•ืช ืงื˜ื ื•ืช ื›ืืŸ, ืืœื• ื”ืŸ ืฉืขืจื•ืช ืœื’ื™ืจื•ื™ ืœื”ืชื—ืœืช ืคืขื•ืœื”.
05:31
And so when a fly lands --
123
331400
1376
ืื– ื›ืฉื–ื‘ื•ื‘ ื ื•ื—ืช --
05:32
I'm going to touch one of the hairs right now.
124
332800
2496
ืื ื™ ื”ื•ืœืš ืœื’ืขืช ื‘ืื—ืช ื”ืฉื™ืขืจื•ืช ืขื›ืฉื™ื•.
05:35
Ready? One, two, three.
125
335320
1440
ืžื•ื›ื ื™ื? ืื—ืช, ืฉืชื™ื™ื, ืฉืœื•ืฉ.
05:39
What do we get? We get a beautiful action potential.
126
339000
2456
ืžื” ืื ื—ื ื• ืžืงื‘ืœื™ื? ืื ื—ื ื• ืžืงื‘ืœื™ื ืคื•ื˜ื ืฆื™ืืœ ืคืขื•ืœื” ื™ืคื”.
05:41
However, the flytrap doesn't close.
127
341480
2520
ื•ืขื“ื™ื™ืŸ, ื“ื™ื•ื ืืช ื”ื–ื‘ื•ื‘ื™ื ืœื ื ืกื’ืจืช.
05:44
And to understand why that is,
128
344640
1456
ื•ื‘ืฉื‘ื™ืœ ืœื”ื‘ื™ืŸ ืœืžื” ื–ื”,
05:46
we need to know a little bit more about the behavior of the flytrap.
129
346120
3216
ืื ื—ื  ื•ืฆืจื™ื›ื™ื ืœื“ืขืช ืงืฆืช ื™ื•ืชืจ ืขืœ ื”ื”ืชื ื”ื’ื•ืช ืฉืœ ื“ื™ื•ื ืืช ื”ื–ื‘ื•ื‘ื™ื.
05:49
Number one is that it takes a long time to open the traps back up --
130
349360
3296
ืžืกืคืจ ืื—ื“ ื”ื•ื ืฉืœื•ืงื— ื”ืจื‘ื” ื–ืžืŸ ืœืคืชื•ื— ืืช ื”ืžืœื›ื•ื“ื•ืช ื‘ื—ื–ืจื” --
05:52
you know, about 24 to 48 hours if there's no fly inside of it.
131
352680
4176
ื‘ื™ืŸ 24 ืœ-48 ืฉืขื•ืช ืื ืื™ืŸ ื–ื‘ื•ื‘ ื‘ืคื ื™ื.
05:56
And so it takes a lot of energy.
132
356880
1696
ืื– ื–ื” ืœื•ืงื— ื”ืจื‘ื” ืื ืจื’ื™ื”.
05:58
And two, it doesn't need to eat that many flies throughout the year.
133
358600
3216
ื•ื“ื‘ืจ ืฉื ื™, ื”ื•ื ืœื ืฆืจื™ืš ืœืื›ื•ืœ ื›ืœ ื›ืš ื”ืจื‘ื” ื–ื‘ื•ื‘ื™ื ื‘ืžื”ืœืš ื”ืฉื ื”.
06:01
Only a handful. It gets most of its energy from the sun.
134
361840
2656
ืจืง ืงื•ืžืฅ. ื”ื•ื ืžืงื‘ืœ ืืช ืจื•ื‘ ื”ืื ืจื’ื™ื” ืฉืœื• ืžื”ืฉืžืฉ.
06:04
It's just trying to replace some nutrients in the ground with flies.
135
364520
3216
ื”ื•ื ืจืง ืžื ืกื” ืœื”ื—ืœื™ืฃ ื—ืœืง ืžื”ื—ื•ืžืจื™ื ื”ืžื–ื™ื ื™ื ืžื”ืงืจืงืข ื‘ื–ื‘ื•ื‘ื™ื.
06:07
And the third thing is,
136
367760
1256
ื•ื”ื“ื‘ืจ ื”ืฉืœื™ืฉื™ ื”ื•ื,
06:09
it only opens then closes the traps a handful of times
137
369040
2976
ื”ื•ื ืคื•ืชื— ื•ืกื•ื’ืจ ืืช ื”ืžืœื›ื•ื“ื•ืช ืžืกืคืจ ืžื•ืขื˜ ืฉืœ ืคืขืžื™ื.
06:12
until that trap dies.
138
372040
1640
ืขื“ ืฉื”ืžืœื›ื•ื“ืช ื”ื–ื• ืžืชื”.
06:14
So therefore, it wants to make really darn sure
139
374120
2696
ืื– ืžื›ืืŸ, ื”ื•ื ืจื•ืฆื” ืœื”ื™ื•ืช ืœื’ืžืจื™ ื‘ื˜ื•ื—
06:16
that there's a meal inside of it before the flytrap snaps shut.
140
376840
4416
ืฉื™ืฉ ืืจื•ื—ื” ื‘ืชื•ื›ื• ืœืคื ื™ ืฉืžืœื›ื•ื“ืช ื”ื–ื‘ื•ื‘ื™ื ื ืกื’ืจืช ื‘ืžื”ื™ืจื•ืช.
06:21
So how does it do that?
141
381280
1200
ืื– ืื™ืš ื”ื•ื ืขื•ืฉื” ืืช ื–ื”?
06:23
It counts the number of seconds
142
383280
2616
ื”ื•ื ืกื•ืคืจ ืืช ืžืกืคืจ ื”ืฉื ื™ื•ืช
06:25
between successive touching of those hairs.
143
385920
3216
ื‘ื™ืŸ ื ื’ื™ืขื•ืช ืจืฆื•ืคื•ืช ื‘ืฉืขืจื•ืช ื”ืืœื•.
06:29
And so the idea is that there's a high probability,
144
389160
2416
ื•ืื– ื”ืจืขื™ื•ืŸ ื”ื•ื ืฉื™ืฉ ื”ืกืชื‘ืจื•ืช ื’ื‘ื•ื”ื”,
06:31
if there's a fly inside of there, they're going to be quick together,
145
391600
3456
ืื ื™ืฉ ื–ื‘ื•ื‘ ืฉื ื‘ืคื ื™ื, ืฉื”ื•ื ื”ื•ืœืš ืœื”ื™ืชืคืก,
06:35
and so when it gets the first action potential,
146
395080
2216
ื•ืื– ื›ืฉื”ื•ื ืžืงื‘ืœ ืืช ืคื•ื˜ื ืฆื™ืืœ ื”ืคืขื•ืœื” ื”ืจืืฉื•ืŸ,
06:37
it starts counting, one, two,
147
397320
1416
ื”ื•ื ืžืชื—ื™ืœ ืœืกืคื•ืจ, ืื—ืช, ืฉืชื™ื™ื,
06:38
and if it gets to 20 and it doesn't fire again,
148
398760
2216
ื•ืื ื–ื” ืžื’ื™ืข ืœ-20 ื•ื”ื•ื ืœื ื™ื•ืจื” ืฉื•ื‘,
06:41
then it's not going to close,
149
401000
1416
ืื– ื”ื•ื ืœื ื”ื•ืœืš ืœื”ื™ืกื’ืจ,
06:42
but if it does it within there, then the flytrap will close.
150
402440
2856
ืื‘ืœ ืื ื”ื•ื•ื ืขื•ืฉื” ืืช ื–ื” ืฉื ื‘ืคื ื™ื, ืื– ืžืœื›ื•ื“ืช ื”ื–ื‘ื•ื‘ื™ื ื”ื•ืœื›ืช ืœื”ื™ืกื’ืจ.
06:45
So we're going to go back now.
151
405320
1456
ืื– ืื ื—ื ื• ื”ื•ืœื›ื™ื ืœื—ื–ื•ืจ ืขื›ืฉื™ื•.
06:46
I'm going to touch the Venus flytrap again.
152
406800
2016
ืื ื™ ื”ื•ืœืš ืœื’ืขืช ื‘ื“ื™ื•ื ืืช ื”ื–ื‘ื•ื‘ื™ื ืฉื•ื‘.
06:48
I've been talking for more than 20 seconds.
153
408840
2016
ืื ื™ ื“ื™ื‘ืจืชื™ ื‘ืžืฉืš ื™ื•ืชืจ ืž-20 ืฉื ื™ื•ืช.
06:50
So we can see what happens when I touch the hair a second time.
154
410880
2960
ืื– ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืจืื•ืช ืžื” ืงื•ืจื” ื›ืฉืื ื™ ื ื•ื’ืข ื‘ืฉืขืจื” ื‘ืคืขื ื”ืฉื ื™ื”.
06:55
So what do we get? We get a second action potential,
155
415720
2456
ืื– ืžื” ืื ื—ื ื• ืžืงื‘ืœื™ื? ืื ื—ื ื• ืžืงื‘ืœื™ื ืคื•ื˜ื ืฆื™ืืœ ืคืขื•ืœื” ืฉื ื™,
06:58
but again, the leaf doesn't close.
156
418200
1896
ืื‘ืœ ืฉื•ื‘, ื”ืขืœื” ืœื ื ืกื’ืจ.
07:00
So now if I go back in there
157
420120
1936
ืื– ืขื›ืฉื™ื• ืื ืื ื—ื ื• ื ื—ื–ื•ืจ ืœืฉื
07:02
and if I'm a fly moving around,
158
422080
1896
ื•ืื ืื ื™ ื–ื‘ื•ื‘ ืฉื–ื– ืฉื,
07:04
I'm going to be touching the leaf a few times.
159
424000
2176
ืื– ืื ื™ ืื’ืข ื‘ืขืœื” ื›ืžื” ืคืขืžื™ื.
07:06
I'm going to go and brush it a few times.
160
426200
2416
ืื ื™ ื”ื•ืœืš ืœื’ืข ื‘ื–ื” ื›ืžื” ืคืขืžื™ื.
07:08
And immediately,
161
428640
1416
ื•ืžื™ื“,
07:10
the flytrap closes.
162
430080
1736
ื”ื“ื™ื•ื ืื™ืช ื ืกื’ืจืช.
07:11
So here we are seeing the flytrap actually doing a computation.
163
431840
4136
ืื– ื›ืืŸ ืื ื—ื ื• ืจื•ืื™ื ืืช ื”ื“ื™ื•ื ืื™ืช ื‘ืขืฆื ืขื•ืฉื” ื—ื™ืฉื•ื‘.
07:16
It's determining if there's a fly inside the trap,
164
436000
2496
ื”ื™ื ืงื•ื‘ืขืช ืื ื™ืฉ ื–ื‘ื•ื‘ ื‘ืชื•ืš ื”ืžืœื›ื•ื“ืช,
07:18
and then it closes.
165
438520
1496
ื•ืื– ื”ื™ื ื ืกื’ืจืช.
07:20
So let's go back to our original question.
166
440040
2400
ืื– ื‘ื•ืื• ื ื—ื–ื•ืจ ืœืฉืืœื” ื”ืžืงื•ืจื™ืช ืฉืœื ื•.
07:23
Do plants have brains?
167
443520
2296
ื”ืื ืœืฆืžื—ื™ื ื™ืฉ ืžื•ื—?
07:25
Well, the answer is no.
168
445840
1576
ืื–, ื”ืชืฉื•ื‘ื” ื”ื™ื ืœื.
07:27
There's no brains in here.
169
447440
1376
ืื™ืŸ ืžื•ื— ืคื”.
07:28
There's no axons, no neurons.
170
448840
3576
ืื™ืŸ ืืงืกื•ื ื™ื, ืื™ืŸ ื ื•ื™ืจื•ื ื™ื.
07:32
It doesn't get depressed.
171
452440
1376
ืฆืžื— ืœื ื ื”ื™ื” ืžื“ื•ื›ื.
07:33
It doesn't want to know what the Tigers' score is.
172
453840
2376
ืฆืžื— ืœื ืจื•ืฆื” ืœื“ืขืช ืžื” ื”ืชื•ืฆืื” ื‘ืžืฉื—ืง.
07:36
It doesn't have self-actualization problems.
173
456240
2096
ืœืฆืžื— ืื™ืŸ ื‘ืขื™ื™ืช ืžื™ืžื•ืฉ ืขืฆืžื™.
07:38
But what it does have is something that's very similar to us,
174
458360
3416
ืื‘ืœ ืžื” ืฉื›ืŸ ื™ืฉ ืœื• ื–ื” ืžืฉื”ื• ืฉืžืื•ื“ ื“ื•ืžื” ืœื ื•,
07:41
which is the ability to communicate using electricity.
175
461800
3056
ืฉื–ื• ื”ื™ื›ื•ืœืช ืœืชืงืฉืจ ื‘ืขื–ืจืช ื—ืฉืžืœ.
07:44
It just uses slightly different ions than we do,
176
464880
2256
ื”ื•ื ืคืฉื•ื˜ ืžืฉืชืžืฉ ื‘ื™ื•ื ื™ื ืงืฆืช ืฉื•ื ื™ื ืžืื™ืชื ื•,
07:47
but it's actually doing the same thing.
177
467160
2016
ืื‘ืœ ื”ื•ื ื‘ืขืฆื ืขื•ืฉื” ืืช ืื•ืชื• ื“ื‘ืจ.
07:49
So just to show you
178
469200
2176
ืื– ืจืง ื‘ืฉื‘ื™ืœ ืœื”ืจืื•ืช ืœื›ื
07:51
the ubiquitous nature of these action potentials,
179
471400
3296
ืืช ื”ื™ื›ื•ืœืช ื”ื˜ื‘ืขื™ืช ืœื”ื™ืžืฆื ื‘ื›ืœ ืžืงื•ื ืฉืœ ืคื•ื˜ื ืฆื™ืืœ ื”ืคืขื•ืœื”,
07:54
we saw it in the Venus flytrap,
180
474720
2216
ืจืื™ื ื• ืืช ื–ื” ื‘ื“ื™ื•ื ืืช ื”ื–ื‘ื•ื‘ื™ื,
07:56
we've seen an action potential in the mimosa.
181
476960
2136
ืจืื™ื ื• ืคื•ื˜ื ืฆื™ืืœ ืคืขื•ืœื” ื‘ืžื™ืžื•ื–ื”.
07:59
We've even seen an action potential in a human.
182
479120
2376
ืจืื™ื ื• ืืคื™ืœื• ืคื•ื˜ื ืฆื™ืืœ ืคืขื•ืœื” ื‘ืื“ื.
08:01
Now, this is the euro of the brain.
183
481520
3216
ืขื›ืฉื™ื•, ื–ื• ื”ื“ืจืš ืฉืœ ื”ืžื•ื—.
08:04
It's the way that all information is passed.
184
484760
2136
ื–ื• ื”ื“ืจืš ืฉื‘ื” ื›ืœ ื”ืžื™ื“ืข ืขื•ื‘ืจ.
08:06
And so what we can do is we can use those action potentials
185
486920
2816
ืื– ืžื” ืฉืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ื–ื” ืฉืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื”ืฉืชืžืฉ ื‘ืคื•ื ื˜ืฆื™ืืœื™ ื”ืคืขื•ืœื” ื”ืืœื•
08:09
to pass information
186
489760
1496
ื‘ืฉื‘ื™ืœ ืœื”ืขื‘ื™ืจ ืžื™ื“ืข ื‘ื™ืŸ ืžื™ื ื™ื ืฉืœ ืฆืžื—ื™ื.
08:11
between species of plants.
187
491280
1736
08:13
And so this is our interspecies plant-to-plant communicator,
188
493040
4416
ืื– ื–ื• ื”ืชืงืฉื•ืจืช ื”ื‘ื™ืŸ ืžื™ื ื™ืช ื‘ื™ืŸ ืฆืžื—ื™ื,
08:17
and what we've done is we've created a brand new experiment
189
497480
3176
ื•ืžื” ืฉืขืฉื™ื ื• ื–ื” ืœื™ืฆื•ืจ ื ื™ืกื•ื™ ื—ื“ืฉ ืœื’ืžืจื™
08:20
where we're going to record the action potential from a Venus flytrap,
190
500680
3536
ืฉื‘ื• ืื ื—ื ื• ื”ื•ืœื›ื™ื ืœืชืขื“ ืืช ืคื•ื˜ื ืฆื™ืืœ ื”ืคืขื•ืœื” ืžื“ื™ื•ื ืืช ื”ื–ื‘ื•ื‘ื™ื,
08:24
and we're going to send it into the sensitive mimosa.
191
504240
2776
ื•ืื ื—ื ื• ื”ื•ืœื›ื™ื ืœืฉืœื•ื— ืื•ืชื• ืืœ ื”ืžื™ืžื•ื–ื” ื”ืจื’ื™ืฉื”.
08:27
So I want you to recall what happens
192
507040
1736
ืื– ืื ื™ ืจื•ืฆื” ืฉืชื–ื›ืจื• ืžื” ืงื•ืจื”
08:28
when we touch the leaves of the mimosa.
193
508800
1936
ื›ืฉืื ื—ื ื• ื ื•ื’ืขื™ื ื‘ืขืœื™ื ืฉืœ ื”ืžื™ืžื•ื–ื”.
08:30
It has touch receptors that are sending that information
194
510760
2656
ื™ืฉ ืœื–ื” ืจืฆืคื˜ื•ืจื™ื ืฉืœ ืžื’ืข ืฉืฉื•ืœื—ื™ื ืืช ื”ืžื™ื“ืข ื”ื–ื”
08:33
back down in the form of an action potential.
195
513440
2096
ื‘ื—ื–ืจื” ื‘ืฆื•ืจื” ืฉืœ ืคื•ื˜ื ืฆื™ืืœ ืคืขื•ืœื”.
08:35
And so what would happen
196
515560
1336
ื•ืื– ืžื” ืฉื™ืงืจื”
08:36
if we took the action potential from the Venus flytrap
197
516920
3616
ืื ื ื™ืงื— ืืช ืคื•ื˜ื ืฆื™ืืœ ื”ืคืขื•ืœื” ืžื“ื™ื•ื ืืช ื”ื–ื‘ื•ื‘ื™ื
08:40
and sent it into all the stems of the mimosa?
198
520560
3080
ื•ื ืฉืœื— ืื•ืชื• ืœื›ืœ ื”ืจืงืžื•ืช ืฉืœ ื”ืžื™ืžื•ื–ื”?
08:44
We should be able to create the behavior of the mimosas
199
524440
3016
ืื ื—ื ื• ืืžื•ืจื™ื ืœื”ื™ื•ืช ืžืกื•ื’ืœื™ื ืœื™ื™ืฆืจ ืืช ื”ื”ืชื ื”ื’ื•ืช ืฉืœ ื”ืžื™ืžื•ื–ื”
08:47
without actually touching it ourselves.
200
527480
1896
ื‘ืœื™ ื‘ืืžืช ืœื’ืขืช ื‘ื” ื‘ืขืฆืžื ื•.
08:49
And so if you'll allow me,
201
529400
2016
ืื– ืื ืชืจืฉื• ืœื™,
08:51
I'm going to go ahead and trigger this mimosa right now
202
531440
3455
ืื ื™ ื”ื•ืœืš ืœืœื—ื•ืฅ ื•ืœืชืช ืืช ื”ื’ื™ืจื•ื™ ืœืชื—ื™ืœืช ื”ืคืขื•ืœื” ืฉืœ ื”ืžื™ืžื•ื–ื” ืขื›ืฉื™ื•
08:54
by touching on the hairs of the Venus flytrap.
203
534919
3817
ืขืœ ื™ื“ื™ ื ื’ื™ืขื” ื‘ืื—ืช ื”ืฉืขืจื•ืช ืฉืœ ื“ื™ื•ื ืืช ื”ื–ื‘ื•ื‘ื™ื.
08:58
So we're going to send information about touch from one plant to another.
204
538760
3600
ืื– ืื ื—ื ื• ื”ื•ืœื›ื™ื ืœืฉืœื•ื— ืžื™ื“ืข ืขืœ ืžื’ืข ืžืฆืžื— ืื—ื“ ืœืื—ืจ.
09:06
So there you see it.
205
546640
1696
ืื– ื”ื ื” ืืชื ืจื•ืื™ื ืืช ื–ื”.
09:08
So --
206
548360
1216
ืื– --
09:09
(Applause)
207
549600
6016
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
09:15
So I hope you learned a little bit, something about plants today,
208
555640
3056
ืื– ืื ื™ ืžืงื•ื•ื” ืฉืœืžื“ืชื ืงืฆืช, ืขืœ ืœืฆืžื—ื™ื ื”ื™ื•ื,
09:18
and not only that.
209
558720
1216
ื•ืœื ืจืง ื–ื”.
09:19
You learned that plants could be used to help teach neuroscience
210
559960
3016
ืœืžื“ืชื ืฉื ื™ืชืŸ ืœื”ื™ืขื–ืจ ื‘ืฆืžื—ื™ื ื‘ืฉื‘ื™ืœ ืœืœืžื“ ืขืœ ืžืขืจื›ืช ื”ืขืฆื‘ื™ื ื•ื”ืžื•ื—
09:23
and bring along the neurorevolution.
211
563000
1736
ื•ืœืงื“ื ืืช ื”ืžื”ืคื›ื” ื”ืขืฆื‘ื™ืช.
09:24
Thank you.
212
564760
1216
ืชื•ื“ื” ืจื‘ื”.
09:26
(Applause)
213
566000
2720
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7