The beauty of data visualization | David McCandless

392,093 views ใƒป 2010-08-23

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Guy Ernest ืžื‘ืงืจ: Ido Dekkers
00:15
It feels like we're all suffering
0
15260
2000
ื›ื•ืœื ื• ืกื•ื‘ืœื™ื
00:17
from information overload or data glut.
1
17260
3000
ืžืขื•ืžืก ืื• ืขื•ื“ืฃ ืฉืœ ืžื™ื“ืข
00:20
And the good news is there might be an easy solution to that,
2
20260
2000
ื•ื”ื—ื“ืฉื•ืช ื”ื˜ื•ื‘ื•ืช ืฉื™ืชื›ืŸ ืคืชืจื•ืŸ ืคืฉื•ื˜ ืœื–ื”
00:22
and that's using our eyes more.
3
22260
2000
ื•ื”ื•ื ืœื”ืฉืชืžืฉ ื‘ืขื™ื ื™ื™ื ืฉืœื ื• ื™ื•ืชืจ
00:24
So, visualizing information, so that we can see
4
24260
2000
ื•ื‘ื›ืŸ, ื”ืžื—ืฉืช ืžื™ื“ืข, ื›ืš ืฉื ื•ื›ืœ ืœืจืื•ืช
00:26
the patterns and connections that matter
5
26260
3000
ืืช ื”ืชื‘ื ื™ื•ืช ื•ื”ืงืฉืจื™ื ื”ื—ืฉื•ื‘ื™ื
00:29
and then designing that information so it makes more sense,
6
29260
3000
ื•ืื– ืœืขืฆื‘ ืืช ื”ืžื™ื“ืข ื›ืš ืฉื™ื”ื™ื” ื‘ืขืœ ื™ื•ืชืจ ืžืฉืžืขื•ืช
00:32
or it tells a story,
7
32260
2000
ืื• ืฉื™ืกืคืจ ืกื™ืคื•ืจ
00:34
or allows us to focus only on the information that's important.
8
34260
3000
ืื• ืœืืคืฉืจ ืœื ื• ืœื”ืชืžืงื“ ืจืง ื‘ืื™ื ืคื•ืจืžืฆื™ื” ืฉื—ืฉื•ื‘ื”
00:38
Failing that, visualized information can just look really cool.
9
38260
3000
ื’ื ืื ื ื™ื›ืฉืœ ื‘ื–ื”, ืžื™ื“ืข ืžื•ืžื—ืฉ ื™ื›ื•ืœ ืœื”ืจืื•ืช ืžืžืฉ ืžื’ื ื™ื‘
00:41
So, let's see.
10
41260
2000
ืื– ื‘ื•ืื• ื ื™ืจืื”
00:45
This is the $Billion Dollar o-Gram,
11
45260
2000
ื–ื”ื• ืชืจืฉื™ื ืžื™ืœื™ืืจื“ ื”ื“ื•ืœืจ
00:47
and this image arose
12
47260
2000
ื”ืชืžื•ื ื” ื”ื–ืืช ืฆืžื—ื”
00:49
out of frustration I had
13
49260
2000
ืžื”ืชืกื›ื•ืœ ืฉืœื™
00:51
with the reporting of billion-dollar amounts in the press.
14
51260
2000
ืžื“ื™ื•ื•ื—ื™ื ืขืœ ืกื›ื•ืžื™ื ืฉืœ ืžื™ืœื™ืืจื“ ื“ื•ืœืจ ื‘ืชืงืฉื•ืจืช
00:53
That is, they're meaningless without context:
15
53260
3000
ื”ื ื—ืกืจื™ ืžืฉืžืขื•ืช ืœืœื ื”ืงืฉืจ
00:56
500 billion for this pipeline,
16
56260
2000
500 ืžื™ืœื™ืืจื“ ืœืฆื™ื ื•ืจ ื”ื–ื”
00:58
20 billion for this war.
17
58260
2000
20 ืžื™ืœื™ืืจื“ ืœืžืœื—ืžื” ื”ื–ืืช
01:00
It doesn't make any sense, so the only way to understand it
18
60260
2000
ืื™ืŸ ืœื–ื” ืฉื•ื ืžืฉืžืขื•ืช, ืื– ื”ื“ืจืš ื”ื™ื—ื™ื“ื” ืœื”ื‘ื™ืŸ ืืช ื–ื”
01:02
is visually and relatively.
19
62260
2000
ื–ื” ืœื”ืžื—ื™ืฉ ืืช ื–ื” ื‘ืฆื•ืจื” ื™ื—ืกื™ืช
01:04
So I scraped a load of reported figures
20
64260
2000
ืื– ืืกืคืชื™ ืขืจืžื•ืช ืฉืœ ื ืชื•ื ื™ื ื“ื™ื•ื•ื—ื™ื
01:06
from various news outlets
21
66260
2000
ืžืžืงื•ืจื•ืช ื—ื“ืฉื•ืช ืฉื•ื ื™ื
01:08
and then scaled the boxes according to those amounts.
22
68260
3000
ื•ืื– ื”ื’ื“ืœืชื™ ืืช ื”ืงื•ืคืกืื•ืช ื‘ื”ืชืื ืœืกื›ื•ืžื™ื ื”ืืœื”
01:11
And the colors here represent the motivation behind the money.
23
71260
3000
ื•ื”ืฆื‘ืขื™ื ืžื™ื™ืฆื’ื™ื ืืช ื”ืžื˜ืจื” ืฉืœ ื”ื›ืกืฃ
01:14
So purple is "fighting,"
24
74260
3000
ืื– ืกื’ื•ืœ ื–ื” ืœื—ื™ืžื”
01:17
and red is "giving money away," and green is "profiteering."
25
77260
3000
ื•ืื“ื•ื ื–ื” ืžืชืŸ ื›ืกืฃ, ื•ื™ืจื•ืง ื–ื” ืœืžื˜ืจื•ืช ืจื•ื•ื—
01:20
And what you can see straight away
26
80260
2000
ืื– ื ื™ืชืŸ ืœืจืื•ืช ืžื™ื“
01:22
is you start to have a different relationship to the numbers.
27
82260
2000
ืืช ื”ื™ื—ืกื™ื ื”ืฉื•ื ื™ื ื‘ื™ืŸ ื”ืžืกืคืจื™ื
01:24
You can literally see them.
28
84260
2000
ืืชื ื™ื›ื•ืœื™ื ืžืžืฉ ืœืจืื•ืช ืืช ื–ื”
01:26
But more importantly, you start to see
29
86260
2000
ืื‘ืœ ื™ื•ืชืจ ื—ืฉื•ื‘, ืืชื ืžืชื—ื™ืœื™ื ืœืจืื•ืช
01:28
patterns and connections between numbers
30
88260
2000
ืชื‘ื ื™ื•ืช ื•ืงืฉืจื™ื ื‘ื™ืŸ ื”ืžืกืคืจื™ื
01:30
that would otherwise be scattered across multiple news reports.
31
90260
3000
ืžื” ืฉืื—ืจืช ื”ื™ื” ืžืคื•ื–ืจ ื‘ื™ืŸ ื“ื•ื—ื•ืช ื—ื“ืฉื•ืช ืžืจื•ื‘ื™ื
01:33
Let me point out some that I really like.
32
93260
3000
ื”ืจืฉื• ืœื™ ืœื”ืฆื‘ื™ืข ืขืœ ื›ืžื” ืฉืื ื™ ืžืžืฉ ืื•ื”ื‘
01:36
This is OPEC's revenue, this green box here --
33
96260
2000
ืืœื• ื”ืจื•ื•ื—ื™ื ืฉืœ OPEC, ื”ืงื•ืคืกื ื”ื™ืจื•ืงื” ื›ืืŸ
01:38
780 billion a year.
34
98260
2000
780 ืžื™ืœื™ืืจื“ ื‘ืฉื ื”
01:40
And this little pixel in the corner -- three billion --
35
100260
3000
ื•ื”ื ืงื•ื“ื” ื”ืงื˜ื ื” ื‘ืคื™ื ื” - ืฉืœื•ืฉื” ืžื™ืœื™ืืจื“
01:43
that's their climate change fund.
36
103260
3000
ื”ื™ื ื”ืงืจืŸ ืฉืœื”ื ืœืฉื™ื ื•ื™ ื”ืืงืœื™ื
01:46
Americans, incredibly generous people --
37
106260
2000
ื”ืืžืจื™ืงืื™ื, ืื ืฉื™ื ืžืื“ ื ื“ื™ื‘ื™ื -
01:48
over 300 billion a year, donated to charity every year,
38
108260
3000
ื™ื•ืชืจ ืž-300 ืžื™ืœื™ืืจื“ ื‘ืฉื ื”, ื ืชืจืžื™ื ืœืฆื“ืงื” ื‘ื›ืœ ืฉื ื”
01:51
compared with the amount of foreign aid
39
111260
2000
ื‘ื”ืฉื•ื•ืื” ืœืกื›ื•ืžื™ื ืฉืœ ืกื™ื•ืข ื”ื—ื•ืฅ
01:53
given by the top 17 industrialized nations
40
113260
2000
ื”ื ื™ืชืŸ ืขืœ ื™ื“ื™ 17 ื”ืืจืฆื•ืช ื”ืžืชื•ืขืฉื•ืช ื”ื’ื“ื•ืœื•ืช
01:55
at 120 billion.
41
115260
2000
ืฉื”ื•ื 120 ืžื™ืœื™ืืจื“
01:57
Then of course,
42
117260
2000
ื•ืื– ื›ืžื•ื‘ืŸ
01:59
the Iraq War, predicted to cost just 60 billion
43
119260
2000
ื”ืžืœื—ืžื” ื‘ืขื™ืจืืง, ืฉื”ื•ืขืจืš ืฉืชืขืœื” ืจืง 60 ืžื™ืœื™ืืจื“
02:01
back in 2003.
44
121260
3000
ืื– ื‘-2003
02:04
And it mushroomed slightly. Afghanistan and Iraq mushroomed now
45
124260
3000
ื•ื”ื™ื ืงืฆืช ื”ืชืคืฉื˜ื”. ื”ืžืœื—ืžื” ื‘ืืคื’ื ื™ืกื˜ืŸ ื›ืขืช ืขืœืชื”
02:07
to 3,000 billion.
46
127260
3000
ืœ-3,000 ืžื™ืœื™ืืจื“
02:10
So now it's great
47
130260
2000
ืื– ืขื›ืฉื™ื• ื–ื” ืžืฆื•ื™ื™ืŸ
02:12
because now we have this texture, and we can add numbers to it as well.
48
132260
2000
ื›ื™ ื™ืฉ ืœื ื• ืขื›ืฉื™ื• ืืช ื”ืžืจืงื, ื•ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื”ื•ืกื™ืฃ ืœื–ื” ืžืกืคืจื™ื
02:14
So we could say, well, a new figure comes out ... let's see African debt.
49
134260
3000
ืื– ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื”ื’ื™ื“, ื›ืฉืžืกืคืจ ื ื•ืกืฃ ... ื‘ื•ืื• ื ืจืื” ืืช ื”ื—ื•ื‘ ื”ืืคืจื™ืงืื™
02:17
How much of this diagram do you think might be taken up
50
137260
2000
ื›ืžื” ืžื”ืชืจืฉื™ื ื”ื–ื” ืืชื ื—ื•ืฉื‘ื™ื ื™ืชืคืก
02:19
by the debt that Africa owes to the West?
51
139260
2000
ืขืœ ื™ื“ื™ ื”ื—ื•ื‘ ืฉืœ ืืคืจื™ืงื” ืœืžืขืจื‘
02:21
Let's take a look.
52
141260
2000
ื‘ื•ืื• ื ืจืื”
02:23
So there it is:
53
143260
2000
ืื– ื”ื ื” ื–ื”
02:25
227 billion is what Africa owes.
54
145260
2000
227 ืžื™ืœื™ืืจื“ ื–ื”ื• ื”ื—ื•ื‘ ืฉืœ ืืคืจื™ืงื”
02:27
And the recent financial crisis,
55
147260
2000
ื•ื”ืžืฉื‘ืจ ื”ื›ืœื›ืœื™ ื”ืื—ืจื•ืŸ --
02:29
how much of this diagram might that figure take up?
56
149260
2000
ื›ืžื” ืžื”ืชืจืฉื™ื ื™ืชืคืก ื‘ืžืกืคืจ ื”ื–ื”
02:31
What has that cost the world? Let's take a look at that.
57
151260
3000
ื›ืžื” ื–ื” ืขืœื” ืœืขื•ืœื? ื‘ื•ืื• ื ืจืื” ืืช ื–ื”
02:34
Dooosh -- Which I think is the appropriate sound effect
58
154260
3000
ื“ื•ื•ื•ืฉ. ืื ื™ ื—ื•ืฉื‘ ืฉื–ื”ื• ืืคืงื˜ ื”ืงื•ืœ ื”ืžืชืื™ื
02:37
for that much money:
59
157260
2000
ืœื›ืœ ื›ืš ื”ืจื‘ื” ื›ืกืฃ
02:39
11,900 billion.
60
159260
4000
11,900 ืžื™ืœื™ืืจื“
02:45
So, by visualizing this information,
61
165260
2000
ืื– ื‘ืขื–ืจืช ื”ืžื—ืฉื” ืฉืœ ื”ืžื™ื“ืข ื”ื–ื”
02:47
we turned it into a landscape
62
167260
2000
ื”ืคื›ื ื• ืื•ืชื• ืœื ื•ืฃ
02:49
that you can explore with your eyes,
63
169260
2000
ืฉืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื—ืงื•ืจ ื‘ืขื–ืจืช ื”ืขื™ื ื™ื™ื ืฉืœื ื•
02:51
a kind of map really, a sort of information map.
64
171260
2000
ื–ื”ื• ืกื•ื’ ืฉืœ ืžืคื” ื‘ืขืฆื, ืกื•ื’ ืฉืœ ืžืคืช ืžื™ื“ืข
02:53
And when you're lost in information,
65
173260
2000
ื•ื›ืืฉืจ ืืชื ื”ื•ืœื›ื™ื ืœืื™ื‘ื•ื“ ื‘ืžื™ื“ืข
02:55
an information map is kind of useful.
66
175260
3000
ืžืคืช ืžื™ื“ืข ื”ื™ื ื“ื™ ืฉื™ืžื•ืฉื™ืช
02:58
So I want to show you another landscape now.
67
178260
2000
ืื– ืื ื™ ืจื•ืฆื” ืœื”ืจืื•ืช ืœื›ื ืขื•ื“ ืชืžื•ื ืช ื ื•ืฃ ืขื›ืฉื™ื•
03:00
We need to imagine what a landscape
68
180260
2000
ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœื“ืžื™ื™ืŸ ื›ื™ืฆื“ ืชืžื•ื ืช ื”ื ื•ืฃ
03:02
of the world's fears might look like.
69
182260
3000
ืฉืœ ื”ืคื—ื“ื™ื ื‘ืขื•ืœื ืขืฉื•ื™ื” ืœื”ืจืื•ืช
03:05
Let's take a look.
70
185260
2000
ื‘ื•ืื• ื ืจืื”
03:07
This is Mountains Out of Molehills,
71
187260
2000
ืื™ืœื• ื”ืจื™ื ืžื’ื‘ืขื•ืช ืฉืœ ื—ืคืจืคืจื•ืช
03:09
a timeline of global media panic.
72
189260
2000
ืฆื™ืจ ื”ื–ืžืŸ ืฉืœ ืคืื ื™ืงื” ื‘ืชืงืฉื•ืจืช ื”ืขื•ืœืžื™ืช
03:11
(Laughter)
73
191260
2000
(ืฆื—ื•ืง)
03:13
So, I'll label this for you in a second.
74
193260
2000
ืื– ืื ื™ ืืชืŸ ืชื•ื•ื™ื•ืช ื‘ืขื•ื“ ืจื’ืข
03:15
But the height here, I want to point out,
75
195260
2000
ืื‘ืœ ื”ื’ื•ื‘ื” ื›ืืŸ, ืื ื™ ืจื•ืฆื” ืœื”ืฆื‘ื™ืข ืœื›ื,
03:17
is the intensity of certain fears
76
197260
2000
ื”ื•ื ื”ืขื•ืฆืžื” ืฉืœ ืคื—ื“ื™ื ืžืกื•ื™ืžื™ื
03:19
as reported in the media.
77
199260
2000
ื›ืคื™ ืฉื“ื•ื•ื—ื• ื‘ืชืงืฉื•ืจืช
03:21
Let me point them out.
78
201260
2000
ืชื ื• ืœื™ ืœื”ืฆื‘ื™ืข ืœื›ื
03:23
So this, swine flu -- pink.
79
203260
4000
ืื– ื–ื•ื”ื™ ืฉืคืขืช ื”ื—ื–ื™ืจื™ื - ื•ืจื•ื“
03:27
Bird flu.
80
207260
2000
ืฉืคืขืช ื”ืฆื™ืคื•ืจื™ื
03:29
SARS -- brownish here. Remember that one?
81
209260
3000
ืกืืจืก - ื—ื•ื ื›ืืŸ. ื–ื™ื›ืจื• ืื•ืชื”.
03:32
The millennium bug,
82
212260
3000
ื‘ืื’ ืฉื ืช ืืœืคื™ื™ื --
03:35
terrible disaster.
83
215260
2000
ืืกื•ืŸ ื ื•ืจืื™
03:37
These little green peaks
84
217260
2000
ืฉืœื•ืฉืช ื”ืคืกื’ื•ืช ื”ื™ืจื•ืงื•ืช ื”ืงื˜ื ื•ืช ื”ืืœื”
03:39
are asteroid collisions.
85
219260
2000
ื”ืŸ ื”ืชื ื’ืฉื•ืช ืฉืœ ืืกื˜ืจื•ืื™ื“ื™ื
03:41
(Laughter)
86
221260
2000
(ืฆื—ื•ืง)
03:43
And in summer, here, killer wasps.
87
223260
2000
ื•ื‘ืงื™ืฅ, ื›ืืŸ, ืฆืจืขื•ืช ืงื˜ืœื ื™ื•ืช.
03:45
(Laughter)
88
225260
8000
(ืฆื—ื•ืง)
03:53
So these are what our fears look like
89
233260
2000
ืื– ื›ืš ื ืจืื™ื ื”ืคื—ื“ื™ื ืฉืœื ื•
03:55
over time in our media.
90
235260
2000
ืœืื•ืจืš ื–ืžืŸ ื‘ืชืงืฉื•ืจืช ืฉืœื ื•
03:57
But what I love -- and I'm a journalist --
91
237260
2000
ืื‘ืœ ืžื” ืฉืื ื™ ืื•ื”ื‘ -- ื•ืื ื™ ืขื™ืชื•ื ืื™ --
03:59
and what I love is finding hidden patterns; I love being a data detective.
92
239260
3000
ื•ืžื” ืฉืื ื™ ืื•ื”ื‘ ื–ื” ืœืžืฆื•ื ืชื‘ื ื™ื•ืช ื ืกืชืจื•ืช, ืื ื™ ืื•ื”ื‘ ืœื”ื™ื•ืช ื‘ืœืฉ ืฉืœ ืžื™ื“ืข
04:02
And there's a very interesting and odd pattern hidden in this data
93
242260
3000
ื•ื™ืฉ ืชื‘ื ื™ื•ืช ื ืกืชืจื•ืช ืžืื“ ืžืขื ื™ื™ื ื•ืช ื•ืžื•ื–ืจื•ืช ื‘ืžื™ื“ืข ื”ื–ื”
04:05
that you can only see when you visualize it.
94
245260
2000
ืฉืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืจืง ื›ืืฉืจ ืืชื ืžืžื—ื™ืฉื™ื ืื•ืชื•
04:07
Let me highlight it for you.
95
247260
2000
ื”ืจืฉื• ืœื™ ืœื”ื“ื’ื™ืฉ ืื•ืชื• ืขื‘ื•ืจื›ื
04:09
See this line, this is a landscape for violent video games.
96
249260
3000
ืจื•ืื™ื ืืช ื”ืงื• ื”ื–ื”. ื–ื”ื• ืชืจืฉื™ื ื”ื ื•ืฃ ืฉืœ ืืœื™ืžื•ืช ืฉืœ ืžืฉื—ืงื™ ื•ื•ื™ื“ืื•
04:12
As you can see, there's a kind of odd, regular pattern in the data,
97
252260
3000
ื›ืคื™ ืฉืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช, ื™ืฉ ืชื‘ื ื™ืช ืงื‘ื•ืขื” ื“ื™ ืžื•ื–ืจื” ื‘ืžื™ื“ืข
04:15
twin peaks every year.
98
255260
2000
ืคืกื’ื•ืช ืชืื•ืžื•ืช ื‘ื›ืœ ืฉื ื”
04:17
If we look closer, we see those peaks occur
99
257260
2000
ืื ื ืกืชื›ืœ ืงืจื•ื‘ ื™ื•ืชืจ, ื ื•ื›ืœ ืœืจืื•ืช ืฉื”ืคืกื’ื•ืช ืงื•ืจื•ืช
04:19
at the same month every year.
100
259260
3000
ื‘ืื•ืชื• ื—ื•ื“ืฉ ื‘ื›ืœ ืฉื ื”
04:22
Why?
101
262260
2000
ืžื“ื•ืข?
04:24
Well, November, Christmas video games come out,
102
264260
2000
ื•ื‘ื›ืŸ, ื‘ื ื•ื‘ืžื‘ืจ, ืžืฉื—ืงื™ ื”ื•ื•ื™ื“ืื• ืœื—ื’ ื”ืžื•ืœื“ ื™ื•ืฆืื™ื
04:26
and there may well be an upsurge in the concern about their content.
103
266260
3000
ื•ืื– ื™ืชื›ืŸ ื’ื™ื“ื•ืœ ื‘ื“ืื’ื” ืœื’ื‘ื™ ื”ืชื•ื›ืŸ ืฉืœื”ื
04:29
But April isn't a particularly massive month
104
269260
3000
ืื‘ืœ ืืคืจื™ืœ ื”ื•ื ืื™ื ื• ื—ื•ื“ืฉ ืžืกื™ื‘ื™
04:32
for video games.
105
272260
2000
ืœืžืฉื—ืงื™ ื”ื•ื•ื™ื“ืื•
04:34
Why April?
106
274260
2000
ืžื“ื•ืข ืืคืจื™ืœ?
04:36
Well, in April 1999 was the Columbine shooting,
107
276260
3000
ื•ื‘ื›ืŸ ื‘ืืคืจื™ืœ 1999 ื”ื™ื” ืื™ืจื•ืข ื”ื™ืจื™ื•ืช ื‘ืงื•ืœื•ืžื‘ื™ื™ืŸ
04:39
and since then, that fear
108
279260
2000
ื•ืžืื– ื”ืคื—ื“ ื”ื–ื”
04:41
has been remembered by the media
109
281260
2000
ืžื•ื–ื›ืจ ืขืœ ื™ื“ื™ ื”ืชืงืฉื•ืจืช
04:43
and echoes through the group mind gradually through the year.
110
283260
2000
ื•ืžื”ื“ื”ื“ ื‘ื”ื“ืจื’ื” ื‘ืงื‘ื•ืฆื•ืช ื”ื—ืฉื™ื‘ื” ืœืื•ืจืš ื”ืฉื ื”
04:45
You have retrospectives, anniversaries,
111
285260
3000
ื™ืฉ ืชื—ืงื™ืจื™ื ื•ื™ืžื™ ืฉื ื”
04:48
court cases, even copy-cat shootings,
112
288260
3000
ืชื™ืงื™ื ื‘ื‘ืชื™ ื”ืžืฉืคื˜ ื•ืืคื™ืœื• ื™ืจื™ื•ืช ืฉืœ ื—ืงื™ื™ื ื™ื
04:51
all pushing that fear into the agenda.
113
291260
3000
ื›ื•ืœื ื“ื•ื—ืคื™ื ืืช ื”ืคื—ื“ื™ื ืฉืœื”ื ืœื“ื™ื•ืŸ ื”ืฆื™ื‘ื•ืจื™
04:54
And there's another pattern here as well. Can you spot it?
114
294260
2000
ื•ื™ืฉ ืคื” ืชื‘ื ื™ืช ื ื•ืกืคืช. ืืชื ืžืกื•ื’ืœื™ื ืœื”ื‘ื—ื™ืŸ ื‘ื”?
04:56
See that gap there? There's a gap,
115
296260
2000
ืจื•ืื™ื ืืช ื”ืคืขืจ ื›ืืŸ? ื™ืฉ ื›ืืŸ ืคืขืจ
04:58
and it affects all the other stories.
116
298260
2000
ื•ื–ื” ืžืฉืคื™ืข ืขืœ ื›ืœ ื”ืกื™ืคื•ืจื™ื ื”ืื—ืจื™ื
05:00
Why is there a gap there?
117
300260
2000
ืžื“ื•ืข ื™ืฉ ืฉื ืคืขืจ?
05:02
You see where it starts? September 2001,
118
302260
3000
ืืชื ืจื•ืื™ื ืžืชื™ ื–ื” ืžืชื—ื™ืœ? ืกืคื˜ืžื‘ืจ 2001
05:05
when we had something very real
119
305260
2000
ื›ืืฉืจ ื™ืฉ ืœื ื• ืžืฉื”ื• ืžืื“ ืžืžืฉื™
05:07
to be scared about.
120
307260
2000
ืœืคื—ื“ ืžืžื ื•
05:09
So, I've been working as a data journalist for about a year,
121
309260
3000
ื•ื‘ื›ืŸ, ืื ื™ ืขื•ื‘ื“ ื›ืขื™ืชื•ื ืื™ ืฉืœ ืžื™ื“ืข ื‘ืขืจืš ืฉื ื”
05:12
and I keep hearing a phrase
122
312260
2000
ื•ืื ื™ ืฉื•ืžืข ืžืฉืคื˜
05:14
all the time, which is this:
123
314260
3000
ื›ืœ ื”ื–ืžืŸ, ืฉืื•ืžืจ:
05:17
"Data is the new oil."
124
317260
2000
"ืžื™ื“ืข ื”ื•ื ื”ื ืคื˜ ื”ื—ื“ืฉ"
05:19
Data is the kind of ubiquitous resource
125
319260
3000
ื•ืžื™ื“ืข ื”ื•ื ืžืงื•ืจ ืฉืงื™ื™ื ื‘ื›ืœ ืžืงื•ื
05:22
that we can shape to provide new innovations and new insights,
126
322260
3000
ืฉืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืขืฆื‘ ืœืกืคืง ืจืขื™ื•ื ื•ืช ื•ืื‘ื—ื ื•ืช ื—ื“ืฉื•ืช
05:25
and it's all around us, and it can be mined very easily.
127
325260
3000
ื”ื•ื ืžืกื‘ื™ื‘ื ื•, ื•ื ื™ืชืŸ ืœื›ืจื•ืช ืื•ืชื• ืžืื“ ื‘ืงืœื•ืช
05:28
It's not a particularly great metaphor in these times,
128
328260
3000
ื•ื–ื” ืœื ืžื˜ืืคื•ืจื” ื›ืœ ื›ืš ื’ื“ื•ืœื” ื‘ื–ืžื ื™ื ืืœื”
05:31
especially if you live around the Gulf of Mexico,
129
331260
3000
ื‘ืขื™ืงืจ ืื ืืชื” ื—ื™ ื‘ืื–ื•ืจ ืฉืœ ืžืคืจืฅ ืžืงืกื™ืงื•
05:34
but I would, perhaps, adapt this metaphor slightly,
130
334260
2000
ืื‘ืœ ืื ื™ ืื•ืœื™ ืืชืื™ื ืืช ื”ืžื˜ืคื•ืจื” ืงืœื•ืช
05:36
and I would say that data is the new soil.
131
336260
3000
ื•ืื•ืžืจ ืฉื”ืžื™ื“ืข ื”ื•ื ื”ืื“ืžื” ื”ื—ื“ืฉื”
05:40
Because for me, it feels like a fertile, creative medium.
132
340260
3000
ื‘ื’ืœืœ ืฉื‘ืฉื‘ื™ืœื™ ื–ื” ื›ืžื• ืžืงื•ืจ ืฉืœ ื™ืฆื™ืจืชื™ื•ืช ืคื•ืจื”
05:43
Over the years, online,
133
343260
2000
ืืชื ื™ื•ื“ืขื™ื, ื‘ืžืฉืš ื”ืฉื ื™ื, ื‘ืขื•ืœื ื”ืžืงื•ื•ืŸ
05:45
we've laid down
134
345260
3000
ื”ื ื—ื ื•
05:48
a huge amount of information and data,
135
348260
2000
ื›ืžื•ื™ื•ืช ืขืฆื•ืžื•ืช ืฉืœ ืžื™ื“ืข
05:50
and we irrigate it with networks and connectivity,
136
350260
2000
ื•ื”ืฉืงื ื• ืื•ืชื• ื‘ืขื–ืจืช ืจืฉืชื•ืช ื•ืงื™ืฉื•ืจื™ื•ืช
05:52
and it's been worked and tilled by unpaid workers and governments.
137
352260
3000
ื•ื”ื•ื ืขื‘ืจ ืขื™ื‘ื•ื“ ื‘ืขื–ืจืช ืขื•ื‘ื“ื™ื ืœืœื ืชืฉืœื•ื ื•ืžืžืฉืœื•ืช
05:55
And, all right, I'm kind of milking the metaphor a little bit.
138
355260
3000
ื•ื‘ืกื“ืจ, ืื ื™ ืงืฆืช ื—ื•ืœื‘ ืืช ื”ืžื˜ืคื•ืจื”
05:58
But it's a really fertile medium,
139
358260
3000
ืื‘ืœ ื–ื”ื• ื‘ืืžืช ืžืงื•ืจ ืคื•ืจื”
06:01
and it feels like visualizations, infographics, data visualizations,
140
361260
3000
ื•ื ืจืื” ืœื™ ืฉื”ืžื—ืฉื”, ืฆื™ื•ืจ ืฉืœ ืžื™ื“ืข, ื”ืžื—ืฉื” ืฉืœ ืžื™ื“ืข
06:04
they feel like flowers blooming from this medium.
141
364260
3000
ื ืจืื” ืฉื”ื ื”ืคืจื—ื™ื ื”ืคื•ืจื—ื™ื ืžื”ืžืงื•ืจ ื”ื–ื”
06:07
But if you look at it directly,
142
367260
2000
ืื‘ืœ ืื ืžืกืชื›ืœื™ื ืขืœ ื–ื” ื‘ืฆื•ืจื” ื™ืฉื™ืจื”
06:09
it's just a lot of numbers and disconnected facts.
143
369260
2000
ื–ื” ื ืจืื” ื›ืžื• ื”ืžื•ืŸ ืžืกืคืจื™ื ื•ืขื•ื‘ื“ื•ืช ืฉืื™ื ืŸ ืงืฉื•ืจื•ืช
06:11
But if you start working with it and playing with it in a certain way,
144
371260
3000
ืื‘ืœ ืื ืืชื ืžืชื—ื™ืœื™ื ืœืขื‘ื•ื“ ืขื ื–ื” ื•ืœืฉื—ืง ืขื ื–ื” ื‘ืฆื•ืจื” ืžืกื•ื™ืžืช
06:14
interesting things can appear and different patterns can be revealed.
145
374260
3000
ื“ื‘ืจื™ื ืžืขื ื™ื™ื ื™ื ืžื•ืคื™ืขื™ื ื•ืชื‘ื ื™ื•ืช ืฉื•ื ื•ืช ืžืชื’ืœื•ืช
06:17
Let me show you this.
146
377260
2000
ื”ืจืฉื• ืœื™ ืœื”ืจืื•ืช ืœื›ื ืืช ื–ื”
06:19
Can you guess what this data set is?
147
379260
3000
ืืชื ื™ื›ื•ืœื™ื ืœื ื—ืฉ ืžื” ื”ืžื™ื“ืข ื”ื–ื” ืื•ืžืจ?
06:22
What rises twice a year,
148
382260
2000
ืžื” ืฆื•ืžื— ืคืขืžื™ื™ื ื”ืฉื ื”
06:24
once in Easter
149
384260
2000
ืคืขื ื‘ื—ื’ ื”ืคืกื—ื
06:26
and then two weeks before Christmas,
150
386260
2000
ื•ืื– ืฉื‘ื•ืขื™ื™ื ืœืคื ื™ ื—ื’ ื”ืžื•ืœื“
06:28
has a mini peak every Monday,
151
388260
2000
ื•ื™ืฉ ืœื• ืคืกื’ื” ืงื˜ื ื” ื‘ื›ืœ ื™ื•ื ืฉื ื™
06:30
and then flattens out over the summer?
152
390260
2000
ื•ืื– ื ื”ื™ื” ืฉื˜ื•ื— ื›ืœ ื”ืงื™ื™ืฅ
06:32
I'll take answers.
153
392260
2000
ืื ื™ ืžืงื‘ืœ ืชืฉื•ื‘ื•ืช
06:34
(Audience: Chocolate.) David McCandless: Chocolate.
154
394260
2000
(ื”ืงื”ืœ: ืฉื•ืงื•ืœื“) ืฉื•ืงื•ืœื“
06:36
You might want to get some chocolate in.
155
396260
3000
ืืชื ืื•ืœื™ ืชืจืฆื• ืœืงื—ืช ืงืฆืช ืฉื•ืงื•ืœื“
06:39
Any other guesses?
156
399260
2000
ื”ืฆืขื•ืช ืื—ืจื•ืช?
06:41
(Audience: Shopping.) DM: Shopping.
157
401260
2000
(ื”ืงื”ืœ: ืงื ื™ื•ืช) ืงื ื™ื•ืช
06:43
Yeah, retail therapy might help.
158
403260
3000
ื›ืŸ, ื˜ื™ืคื•ืœ ืงื ื™ื•ืช ื™ื›ื•ืœ ืœืขื–ื•ืจ
06:46
(Audience: Sick leave.)
159
406260
2000
(ืงื”ืœ: ื—ื•ืคืฉื•ืช ืžื—ืœื”)
06:48
DM: Sick leave. Yeah, you'll definitely want to take some time off.
160
408260
2000
ื—ื•ืคืฉืช ืžื—ืœื”. ื›ืŸ, ืืชื ื‘ื•ื“ืื™ ืชืจืฆื• ืœืงื—ืช ืงืฆืช ื—ื•ืคืฉ
06:50
Shall we see?
161
410260
2000
ื‘ื•ืื• ื ืจืื”?
06:53
(Laughter)
162
413260
8000
(ืฆื—ื•ืง)
07:01
(Applause)
163
421260
3000
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
07:04
So, the information guru Lee Byron and myself,
164
424260
3000
ืื– ื”ืžื™ื“ืข ื›ืืŸ, ืœื™ ื‘ื™ื™ืจื•ืŸ ื•ืื ื™
07:07
we scraped 10,000 status Facebook updates
165
427260
3000
ืื ื—ื ื• ืืกืคื ื• 10,000 ืขื™ื“ื›ื•ื ื™ ืžืฆื‘ ื‘ืคื™ื™ืกื‘ื•ืง
07:10
for the phrase "break-up" and "broken-up"
166
430260
2000
ืฉืœ ื”ืžืฉืคื˜ "ืคืจื™ื“ื”" ืื• "ื ืคืจื“ื ื•"
07:12
and this is the pattern we found --
167
432260
2000
ื•ื–ื•ื”ื™ ื”ืชื‘ื ื™ืช ืฉื’ื™ืœื™ื ื•
07:14
people clearing out for Spring Break,
168
434260
2000
ืื ืฉื™ื ืžืคื ื™ื ืœืงืจืืช ื—ื•ืคืฉืช ื”ืื‘ื™ื‘
07:16
(Laughter)
169
436260
5000
(ืฆื—ื•ืง)
07:21
coming out of very bad weekends on a Monday,
170
441260
2000
ื™ื•ืฆืื™ื ืžืกื•ืคื™ ืฉื‘ื•ืข ืžืื“ ืจืขื™ื ื‘ื™ืžื™ ืฉื ื™
07:23
being single over the summer,
171
443260
3000
ื ืฉืืจื™ื ืœื‘ื“ ื‘ืžืฉืš ื”ืงื™ื™ืฅ
07:26
and then the lowest day of the year, of course: Christmas Day.
172
446260
3000
ื•ืื– ื”ื™ื•ื ื”ื ืžื•ืš ื‘ื™ื•ืชืจ ืฉืœ ื”ืฉื ื”: ื™ื•ื ื—ื’ ื”ืžื•ืœื“
07:29
Who would do that?
173
449260
3000
ืžื™ ืขื•ืฉื” ืืช ื–ื”?
07:32
So there's a titanic amount of data out there now,
174
452260
2000
ืื– ื™ืฉ ื›ืžื•ื™ื•ืช ืขืฆื•ืžื•ืช ืฉืœ ืžื™ื“ืข ืฉื ื‘ื—ื•ืฅ
07:34
unprecedented.
175
454260
2000
ื‘ืฆื•ืจื” ื—ืกืจืช ืชืงื“ื™ื
07:37
But if you ask the right kind of question,
176
457260
2000
ืื‘ืœ ืื ืฉื•ืืœื™ื ืืช ื”ืฉืืœื” ื”ื ื›ื•ื ื”
07:39
or you work it in the right kind of way,
177
459260
2000
ืื• ืื ืขื•ื‘ื“ื™ื ื‘ื“ืจืš ื”ื ื›ื•ื ื”
07:41
interesting things can emerge.
178
461260
3000
ื“ื‘ืจื™ื ืžืขื ื™ื™ื ื™ื ืฆืคื™ื
07:44
So information is beautiful. Data is beautiful.
179
464260
3000
ืื– ืžื™ื“ืข ื”ื•ื ื“ื‘ืจ ื™ืคื™ืคื”
07:47
I wonder if I could make my life beautiful.
180
467260
3000
ืื ื™ ืชื•ื”ื” ืื ืื•ื›ืœ ืœืขืฉื•ืช ืืช ื”ื—ื™ื™ื ืฉืœื™ ื›ืœ ื›ืš ื™ืคื™ื
07:50
And here's my visual C.V.
181
470260
2000
ื”ื ื” ืงื•ืจื•ืช ื”ื—ื™ื™ื ื”ื—ื–ื•ืชื™ื™ื ืฉืœื™
07:52
I'm not quite sure I've succeeded.
182
472260
2000
ืื ื™ ืœื ื‘ื˜ื•ื— ืฉื›ืœ ื›ืš ื”ืฆืœื—ืชื™
07:54
Pretty blocky, the colors aren't that great.
183
474260
2000
ื“ื™ ืžื’ื•ืฉื, ื”ืฆื‘ืขื™ื ืœื ื›ืœ ื›ืš ื˜ื•ื‘ื™ื
07:56
But I wanted to convey something to you.
184
476260
3000
ืื ื™ ืื ื™ ืจื•ืฆื” ืœื”ืขื‘ื™ืจ ืœื›ื ืžืกืจ ืžืกื•ื™ื
07:59
I started as a programmer,
185
479260
2000
ื”ืชื—ืœืชื™ ื›ืชื•ื›ื ื™ืชืŸ
08:01
and then I worked as a writer for many years, about 20 years,
186
481260
2000
ื•ืื– ืขื‘ื“ืชื™ ื›ื›ืชื‘ ื‘ืžืฉืš ื”ืจื‘ื” ืฉื ื™ื, ื‘ืขืจืš 20 ืฉื ื”
08:03
in print, online and then in advertising,
187
483260
2000
ื‘ื“ืคื•ืก, ื‘ืขื•ืœื ื”ืžืงื•ื•ืŸ ื•ืื– ื‘ืคืจืกื•ื
08:05
and only recently have I started designing.
188
485260
3000
ื•ืจืง ืœืื—ืจื•ื ื” ื”ืชื—ืœืชื™ ืœืขืฆื‘
08:08
And I've never been to design school.
189
488260
2000
ื•ืžืขื•ืœื ืœื ื”ื™ื™ืชื™ ื‘ื‘ื™ืช ืกืคืจ ืœืขื™ืฆื•ื‘
08:10
I've never studied art or anything.
190
490260
3000
ืžืขื•ืœื ืœื ืœืžื“ืชื™ ืื•ืžื ื•ืช ืื• ืžืฉื”ื•
08:13
I just kind of learned through doing.
191
493260
2000
ืื ื™ ืคืฉื•ื˜ ืœืžื“ืชื™ ืชื•ืš ื›ื“ื™ ืขืฉื™ื”
08:15
And when I started designing,
192
495260
2000
ื•ื›ืืฉืจ ื”ืชื—ืœืชื™ ืœืขืฆื‘
08:17
I discovered an odd thing about myself.
193
497260
2000
ื’ื™ืœื™ืชื™ ืžืฉื”ื• ืžื•ื–ืจ ืขืœ ืขืฆืžื™
08:19
I already knew how to design,
194
499260
2000
ื›ืœ ื”ื–ืžืŸ ื™ื“ืขืชื™ ืื™ืš ืœืขืฆื‘
08:21
but it wasn't like I was amazingly brilliant at it,
195
501260
3000
ืื‘ืœ ืœื ื”ื™ื™ืชื™ ืžื“ื”ื™ื ื‘ื–ื”
08:24
but more like I was sensitive
196
504260
2000
ื”ื™ื™ืชื™ ืคืฉื•ื˜ ืจื’ื™ืฉ
08:26
to the ideas of grids and space
197
506260
2000
ืœืจืขื™ื•ื ื•ืช ืฉืœ ืจืฉืชื•ืช ื•ืžืจื—ื‘
08:28
and alignment and typography.
198
508260
2000
ืฉืœ ื™ืฉื•ืจ ื•ื›ืชื‘
08:30
It's almost like being exposed
199
510260
2000
ื–ื” ื›ืžืขื˜ ื›ืžื• ืœื”ื™ื•ืช ื—ืฉื•ืฃ
08:32
to all this media over the years
200
512260
2000
ืœื›ืœ ื”ืชืงืฉื•ืจืช ื”ื–ืืช ื‘ืžืฉืš ื”ืฉื ื™ื
08:34
had instilled a kind of dormant design literacy in me.
201
514260
3000
ืคื™ืชื—ื” ื™ื›ื•ืœืช ืขื™ืฆื•ื‘ ืจื“ื•ืžื” ื‘ืชื•ื›ื™
08:37
And I don't feel like I'm unique.
202
517260
2000
ื•ืื ื™ ืœื ืžืจื’ื™ืฉ ืฉืื ื™ ืžื™ื•ื—ื“
08:39
I feel that everyday, all of us now
203
519260
2000
ืื ื™ ืžืจื’ื™ืฉ ื›ืœ ื™ื•ื, ื›ื•ืœื ื• ืขื›ืฉื™ื•
08:41
are being blasted by information design.
204
521260
3000
ืžื•ื˜ืจื“ื™ื ืขืœ ื™ื“ื™ ืขื™ืฆื•ื‘ ื”ืžื™ื“ืข
08:44
It's being poured into our eyes through the Web,
205
524260
2000
ื”ื•ื ืžื•ื–ืจื ืœืชื•ืš ื”ืขื™ื ื™ื ืฉืœื ื• ื“ืจืš ื”ืจืฉืช
08:46
and we're all visualizers now;
206
526260
2000
ื•ื›ื•ืœื ื• ืขื›ืฉื™ื• ืžืžื—ื™ืฉื™ื
08:48
we're all demanding a visual aspect
207
528260
2000
ื›ื•ืœื ื• ื“ื•ืจืฉื™ื ืืช ื”ืฆื“ ื”ื—ื–ื•ืชื™
08:50
to our information.
208
530260
3000
ืœืžื™ื“ืข ืฉืœื ื•
08:53
There's something almost quite magical about visual information.
209
533260
3000
ื•ื™ืฉ ืžืฉื”ื• ื›ืžืขื˜ ืงืกื•ื ื‘ืžื™ื“ืข ื—ื–ื•ืชื™
08:56
It's effortless, it literally pours in.
210
536260
3000
ื”ื•ื ื—ืกืจ ืžืืžืฅ, ื”ื•ื ืคืฉื•ื˜ ื–ื•ืจื ืคื ื™ืžื”
08:59
And if you're navigating a dense information jungle,
211
539260
3000
ื•ืื ืืชื” ืžื ื•ื•ื˜ ื‘ื’'ื•ื ื’ืœ ืฆืคื•ืฃ ืฉืœ ืžื™ื“ืข
09:02
coming across a beautiful graphic
212
542260
2000
ืœืžืฆื•ื ื’ืจืืคื™ืงื” ื™ืคื™ืคื™ื”
09:04
or a lovely data visualization,
213
544260
2000
ืื• ื”ืžื—ืฉื” ื—ื–ื•ืชื™ืช ื™ืคื” ืฉืœ ืžื™ื“ืข
09:06
it's a relief, it's like coming across a clearing in the jungle.
214
546260
3000
ื–ื•ื”ื™ ื”ืงืœื”, ื–ื” ื›ืžื• ืœื”ื’ื™ืข ืœืงืจื—ืช ื™ืขืจ ื‘ื’'ื•ื ื’ืœ
09:09
I was curious about this, so it led me
215
549260
2000
ื•ื”ื™ื™ืชื™ ืกืงืจืŸ ืœื’ื‘ื™ ื–ื”, ืื– ื–ื” ื”ื•ื‘ื™ืœ ืื•ืชื™
09:11
to the work of a Danish physicist
216
551260
2000
ืœืขื‘ื•ื“ื” ืฉืœ ืจื•ืคื ื“ื ื™
09:13
called Tor Norretranders,
217
553260
2000
ื‘ืฉื ืชื•ืจ ื ื•ืจื˜ืจื ื“ืก
09:15
and he converted the bandwidth of the senses into computer terms.
218
555260
3000
ื•ื”ื•ื ื”ืžื™ืจ ืืช ืจื•ื—ื‘ ื”ืคืก ืฉืœ ื”ื—ื•ืฉื™ื ืœืžื•ื ื—ื™ ืžื—ืฉื‘
09:19
So here we go. This is your senses,
219
559260
2000
ืื– ื”ื ื” ื–ื”. ืืœื• ื”ื—ื•ืฉื™ื ืฉืœื›ื
09:21
pouring into your senses every second.
220
561260
2000
ื–ื•ืจืžื™ื ืœืชื•ืš ื”ื—ื•ืฉื™ื ืฉืœื›ื ื‘ื›ืœ ืฉื ื™ื”
09:23
Your sense of sight is the fastest.
221
563260
3000
ื—ื•ืฉ ื”ืจืื™ื” ื”ื•ื ื”ืžื”ื™ืจ ื‘ื™ื•ืชืจ
09:26
It has the same bandwidth as a computer network.
222
566260
3000
ื™ืฉ ืœื• ืืช ืื•ืชื• ืจื•ื—ื‘ ื”ืคืก ื›ืžื• ืจืฉืช ืžื—ืฉื‘ื™ื
09:29
Then you have touch, which is about the speed of a USB key.
223
569260
3000
ื•ื›ืŸ ื™ืฉ ื—ื•ืฉ ืžื™ืฉื•ืฉ, ืฉื”ื•ื ื‘ืขืจืš ืื•ืชื” ืžื”ื™ืจื•ืช ื›ืžื• ืžืคืชื— USB
09:32
And then you have hearing and smell,
224
572260
2000
ื•ื›ืŸ ื™ืฉ ื—ื•ืฉื™ ืฉืžื™ืขื” ื•ืจื™ื—
09:34
which has the throughput of a hard disk.
225
574260
2000
ืฉื™ืฉ ืœื”ื ืชืคื•ืงื” ืฉืœ ื“ื™ืกืง ืงืฉื™ื—
09:36
And then you have poor old taste,
226
576260
2000
ื•ื›ืŸ ื™ืฉ ืืช ื—ื•ืฉ ื”ื˜ืขื ื”ื™ืฉืŸ ื•ื”ืžืกื›ืŸ
09:38
which is like barely the throughput of a pocket calculator.
227
578260
3000
ืฉื”ื•ื ื‘ืงื•ืฉื™ ืขื ืชืคื•ืงื” ืฉืœ ืžื—ืฉื‘ื•ืŸ ื›ื™ืก
09:41
And that little square in the corner, a naught .7 percent,
228
581260
3000
ื•ื”ืจื™ื‘ื•ืข ื”ืงื˜ืŸ ื‘ืคื™ื ื” ืขื 0.7 ืื—ื•ื–
09:44
that's the amount we're actually aware of.
229
584260
3000
ื–ื•ื”ื™ ื”ื›ืžื•ืช ืฉืื ื—ื ื• ื‘ืืžืช ืžื•ื“ืขื™ื ืœื”
09:47
So a lot of your vision --
230
587260
2000
ืื– ื”ืจื‘ื” ืžื”ืงืœื™ื˜ื” ืฉืœื›ื
09:49
the bulk of it is visual, and it's pouring in.
231
589260
2000
ื”ืจื•ื‘ ื”ื•ื ื—ื–ื•ืชื™ ื•ื–ื” ื–ื•ืจื ืคื ื™ืžื”
09:51
It's unconscious.
232
591260
2000
ื–ื” ืœื ืžื•ื“ืข
09:53
The eye is exquisitely sensitive
233
593260
3000
ื•ื”ืขื™ื ื™ื™ื ื”ืŸ ืจื’ื™ืฉื•ืช ื‘ื™ื•ืชืจ
09:56
to patterns in variations in color, shape and pattern.
234
596260
3000
ืœืชื‘ื ื™ื•ืช ืขื ืฉื™ื ื•ื™ ืฉืœ ืฆื‘ืข, ืฆื•ืจื” ื•ืชื‘ื ื™ืช
09:59
It loves them, and it calls them beautiful.
235
599260
2000
ื”ืŸ ืื•ื”ื‘ื•ืช ืื•ืชืŸ ื•ืงื•ืจืื•ืช ืœื”ืŸ ื™ื•ืคื™
10:01
It's the language of the eye.
236
601260
2000
ื–ื•ื”ื™ ื”ืฉืคื” ืฉืœ ื”ืขื™ื ื™ื™ื
10:03
If you combine the language of the eye with the language of the mind,
237
603260
2000
ื•ืื ืžื—ื‘ืจื™ื ืืช ื”ืฉืคื” ืฉืœ ื”ืขื™ื ื™ื™ื ืขื ื”ืฉืคื” ืฉืœ ื”ืžื•ื—
10:05
which is about words and numbers and concepts,
238
605260
3000
ืฉื”ื™ื ืžื‘ื•ืกืกืช ืขืœ ืžื™ืœื™ื, ืžืกืคืจื™ื ื•ืžื•ืฉื’ื™ื
10:08
you start speaking two languages simultaneously,
239
608260
3000
ืืชื ืžืชื—ื™ืœื™ื ืœื“ื‘ืจ ื‘ืฉืชื™ ืฉืคื•ืช ื‘ื• ื–ืžื ื™ืช
10:11
each enhancing the other.
240
611260
3000
ื›ืœ ืื—ืช ืžื—ื–ืงืช ืืช ื”ืฉื ื™ื”
10:14
So, you have the eye, and then you drop in the concepts.
241
614260
3000
ืื– ื™ืฉ ืœื ื• ืขื™ื ื™ื™ื, ื•ืื– ืืชื ืžื›ื ื™ืกื™ื ืืช ื”ืžื•ืฉื’ื™ื
10:17
And that whole thing -- it's two languages
242
617260
2000
ื•ื›ืœ ื”ื“ื‘ืจ ื”ื–ื” -- ื–ื” ืฉืชื™ ืฉืคื•ืช
10:19
both working at the same time.
243
619260
2000
ืฉืชื™ื”ืŸ ืขื•ื‘ื“ื•ืช ื‘ืื•ืชื• ื”ื–ืžืŸ
10:21
So we can use this new kind of language, if you like,
244
621260
2000
ืื– ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื”ืฉืชืžืฉ ื‘ืกื•ื’ ืฉืœ ืฉืคื” ื—ื“ืฉื”, ืื ืชืจืฆื•
10:23
to alter our perspective or change our views.
245
623260
3000
ืœืฉื ื•ืช ืืช ื ืงื•ื“ืช ื”ืžื‘ื˜ ืฉืœื ื• ืื• ืืช ืžื” ืฉืื ื—ื ื• ืจื•ืื™ื
10:26
Let me ask you a simple question
246
626260
2000
ื”ืจืฉื• ืœืฉืื•ืœ ืืชื›ื ืฉืืœื” ืคืฉื•ื˜ื”
10:28
with a really simple answer:
247
628260
2000
ืขื ืชืฉื•ื‘ื” ืžืื“ ืคืฉื•ื˜ื”
10:30
Who has the biggest military budget?
248
630260
2000
ืœืžื™ ื™ืฉ ืืช ื”ืชืงืฆื™ื‘ ื”ืฆื‘ืื™ ื”ื’ื“ื•ืœ ื‘ื™ื•ืชืจ
10:32
It's got to be America, right?
249
632260
2000
ื–ื” ื‘ื•ื“ืื™ ืืžืจื™ืงื”, ื ื›ื•ืŸ?
10:34
Massive. 609 billion in 2008 --
250
634260
2000
ืขืฆื•ื, 609 ื‘ื™ืœื™ื•ืŸ ื‘-2008
10:36
607, rather.
251
636260
2000
ื™ื•ืชืจ ื ื›ื•ืŸ, 607
10:38
So massive, in fact, that it can contain
252
638260
2000
ื›ืœ ื›ืš ืขืฆื•ื ืœืžืขืฉื” ืฉื”ื•ื ื™ื›ื•ืœ ืœื”ื›ื™ืœ
10:40
all the other military budgets in the world inside itself.
253
640260
3000
ืืช ื›ืœ ืชืงืฆื™ื‘ื™ ื”ืฆื‘ืื•ืช ื”ืื—ืจื™ื ื‘ืขื•ืœื ื‘ืชื•ื›ื•
10:43
Gobble, gobble, gobble, gobble, gobble.
254
643260
2000
ื’ื•ื‘ืœ, ื’ื•ื‘ืœ, ื’ื•ื‘ืœ....
10:45
Now, you can see Africa's total debt there
255
645260
2000
ืขื›ืฉื™ื• ื‘ื•ืื• ื ืจืื” ืืช ืกื›ื•ื ื”ื—ื•ื‘ ื”ื›ืœืœื™ ืฉืœ ืืคืจื™ืงื”
10:47
and the U.K. budget deficit for reference.
256
647260
2000
ื•ืืช ื”ื’ืจืขื•ืŸ ื”ืชืงืฆื™ื‘ื™ ืฉืœ ื‘ืจื™ื˜ื ื™ื” ืœืฉื ื”ืฉื•ื•ืื”
10:49
So that might well chime
257
649260
2000
ื–ื” ื‘ื”ื—ืœื˜ ืžืชืื™ื
10:51
with your view that America
258
651260
2000
ืœืชืคื™ืกื” ืฉืœื›ื ืฉืœ ืืžืจื™ืงื”
10:53
is a sort of warmongering military machine,
259
653260
3000
ื›ืžื—ืจื—ืจืช ืžืœื—ืžื”, ืžื›ื•ื ื” ืฆื‘ืื™ืช
10:56
out to overpower the world
260
656260
2000
ืžื ืกื” ืœื”ืฉืชืœื˜ ืขืœ ื”ืขื•ืœื
10:58
with its huge industrial-military complex.
261
658260
3000
ื‘ืขื–ืจืช ืžื‘ื ื” ืฆื‘ืื™-ืชืขืฉื™ืชื™ ืขืฆื•ื
11:01
But is it true that America has the biggest military budget?
262
661260
3000
ืื‘ืœ ื”ืื ื–ื” ื ื›ื•ืŸ ืฉืœืืžืจื™ืงื” ื™ืฉ ืืช ื”ืชืงืฆื™ื‘ ื”ืฆื‘ืื™ ื”ื’ื“ื•ืœ ื‘ื™ื•ืชืจ?
11:04
Because America is an incredibly rich country.
263
664260
2000
ื‘ื’ืœืœ ืฉื–ืืช ืžื“ื™ื ื” ื›ืœ ื›ืš ืขืฉื™ืจื”
11:06
In fact, it's so massively rich
264
666260
2000
ืœืžืขืฉื” ื”ื™ื ื›ืœ ื›ืš ืขืฉื™ืจื”
11:08
that it can contain the four other
265
668260
2000
ืฉื”ื™ื ื™ื›ื•ืœื” ืœื”ื›ื™ืœ ืืช ืืจื‘ืขืช
11:10
top industrialized nations' economies
266
670260
2000
ื”ื›ืœื›ืœื•ืช ืฉืœ ื”ืžื“ื™ื ื•ืช ื”ืžืชื•ืขืฉื•ืช ื”ื’ื“ื•ืœื•ืช ื‘ื™ื•ืชืจ
11:12
inside itself, it's so vastly rich.
267
672260
3000
ื‘ืชื•ื›ื”. ื”ื™ื ื›ืœ ื›ืš ืขืฉื™ืจื”
11:15
So its military budget is bound to be enormous.
268
675260
3000
ืื– ื‘ื•ื“ืื™ ืฉื”ืชืงืฆื™ื‘ ื”ืฆื‘ืื™ ืฉืœื” ื”ื•ื ื›ืœ ื›ืš ืขืฆื•ื
11:18
So, to be fair and to alter our perspective,
269
678260
2000
ืื– ื›ื“ื™ ืœื”ื™ื•ืช ื”ื•ื’ื ื™ื ื•ืœืฉื ื•ืช ืืช ื ืงื•ื“ืช ื”ืžื‘ื˜ ืฉืœื ื•
11:20
we have to bring in another data set,
270
680260
2000
ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœื”ื›ื ื™ืก ืขื•ื“ ื ืชื•ื ื™ื
11:22
and that data set is GDP, or the country's earnings.
271
682260
2000
ื”ื ืชื•ื ื™ื ื”ืœืœื• ื”ื ืฉืœ GDP, ืื• ื”ื”ื›ื ืกื•ืช ืฉืœ ื”ืžื“ื™ื ื”
11:24
Who has the biggest budget as a proportion of GDP?
272
684260
2000
ืœืžื™ ื™ืฉ ืืช ื”ืชืงืฆื™ื‘ ื”ื’ื“ื•ืœ ื‘ื™ื•ืชืจ ื™ื—ืกื™ืช ืœ-GDP?
11:26
Let's have a look.
273
686260
2000
ื‘ื•ืื• ื ืกืชื›ืœ
11:28
That changes the picture considerably.
274
688260
3000
ื–ื” ืžืฉื ื” ืืช ื”ืชืžื•ื ื” ื‘ืฆื•ืจื” ืžืฉืžืขื•ืชื™ืช
11:31
Other countries pop into view that you, perhaps, weren't considering,
275
691260
3000
ืžื“ื™ื ื•ืช ืื—ืจื•ืช ืžื•ืคื™ืขื•ืช, ืฉืื•ืœื™ ืœื ื—ืฉื‘ืชื ืขืœื™ื”ืŸ
11:34
and American drops into eighth.
276
694260
2000
ื•ืืžืจื™ืงื” ื ื•ืฉืจืช ืœืžืงื•ื ื”ืฉืžื™ื ื™
11:36
Now you can also do this with soldiers.
277
696260
2000
ืขื›ืฉื™ื• ืืชื ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ืืช ื–ื” ืขื ื—ื™ื™ืœื™ื
11:38
Who has the most soldiers? It's got to be China.
278
698260
2000
ืœืžื™ ื™ืฉ ื”ื›ื™ ื”ืจื‘ื” ื—ื™ื™ืœื™ื? ื–ื” ื—ื™ื™ื‘ ืœื”ื™ื•ืช ืกื™ืŸ.
11:40
Of course, 2.1 million.
279
700260
2000
ื›ืžื•ื‘ืŸ. 2.1 ืžื™ืœื™ื•ืŸ.
11:42
Again, chiming with your view
280
702260
2000
ืฉื•ื‘, ืชื•ืื ืืช ื”ืชืคื™ืกื” ืฉืœื›ื
11:44
that China has a militarized regime
281
704260
2000
ืฉืกื™ืŸ ื”ื™ื ืžืฉื˜ืจ ืฆื‘ืื™
11:46
ready to, you know, mobilize its enormous forces.
282
706260
2000
ืžื•ื›ื ื”, ืืชื ื™ื•ื“ืขื™ื, ืœื ื™ื™ื“ ืืช ื”ื›ื•ื— ื”ืขืฆื•ื ืฉืœื”
11:48
But of course, China has an enormous population.
283
708260
3000
ืื‘ืœ ื›ืžื•ื‘ืŸ, ืœืกื™ืŸ ื™ืฉ ื’ื ืื•ื›ืœื•ืกื™ื” ืขืฆื•ืžื”
11:51
So if we do the same,
284
711260
2000
ืื– ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ืื•ืชื• ื“ื‘ืจ
11:53
we see a radically different picture.
285
713260
2000
ื•ืื ื—ื ื• ืจื•ืื™ื ืชืžื•ื ื” ืฉื•ื ื” ืœื—ืœื•ื˜ื™ืŸ
11:55
China drops to 124th.
286
715260
2000
ืกื™ืŸ ื ื•ืฉืจืช ืœืžืงื•ื ื”-12
11:57
It actually has a tiny army
287
717260
2000
ื™ืฉ ืœื” ืœืžืขืฉื” ืฆื‘ื ืงื˜ื ื˜ืŸ
11:59
when you take other data into consideration.
288
719260
3000
ื›ืืฉืจ ืœื•ืงื—ื™ื ื ืชื•ื ื™ื ื ื•ืกืคื™ื ื‘ื—ืฉื‘ื•ืŸ
12:02
So, absolute figures, like the military budget,
289
722260
2000
ืื– ืžืกืคืจื™ื ืžื•ื—ืœื˜ื™ื, ื›ืžื• ื”ืชืงืฆื™ื‘ ื”ืฆื‘ืื™
12:04
in a connected world,
290
724260
2000
ื‘ืขื•ืœื ืžื—ื•ื‘ืจ
12:06
don't give you the whole picture.
291
726260
2000
ืœื ื ื•ืชื ื™ื ืชืžื•ื ื” ื›ืœ ื›ืš ืžืœืื”
12:08
They're not as true as they could be.
292
728260
2000
ื”ื ืœื ืืžื™ืชื™ื™ื ื›ืžื• ืฉื”ื ื™ื›ื•ืœื™ื ืœื”ื™ื•ืช
12:10
We need relative figures that are connected to other data
293
730260
3000
ืื ื—ื ื• ืฆืจื™ื›ื™ื ืžืกืคืจื™ื ื™ื—ืกื™ื™ื ืฉืžื—ื‘ืจื™ื ืืช ื”ื ืชื•ื ื™ื ื”ืื—ืจื™ื
12:13
so that we can see a fuller picture,
294
733260
2000
ื›ื“ื™ ืฉื ื•ื›ืœ ืœืจืื•ืช ืืช ื”ืชืžื•ื ื” ื”ื™ื•ืชืจ ืžืœืื”
12:15
and then that can lead to us changing our perspective.
295
735260
2000
ื•ื–ื” ื™ื›ื•ืœ ืœืฉื ื•ืช ืืช ื ืงื•ื“ืช ื”ืžื‘ื˜ ืฉืœื ื•
12:17
As Hans Rosling, the master,
296
737260
2000
ื›ืžื• ืฉื”ื ืก ืจื•ื–ืœื™ื ื’, ื”ืžืืกื˜ืจ,
12:19
my master, said,
297
739260
3000
ื”ืžืืกื˜ืจ ืฉืœื™, ืื•ืžืจ
12:22
"Let the dataset change your mindset."
298
742260
3000
"ืชื ื• ืœื ืชื•ื ื™ื ืœืฉื ื•ืช ืืช ื”ืชืคื™ืกื•ืช ืฉืœื›ื"
12:26
And if it can do that, maybe it can also change your behavior.
299
746260
3000
ืื– ืื ื”ื ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ื–ืืช, ืื•ืœื™ ื”ื ื™ื›ื•ืœื™ื ื’ื ืœืฉื ื•ืช ืืช ื”ื”ืชื ื”ื’ื•ืช ืฉืœื›ื.
12:29
Take a look at this one.
300
749260
2000
ื”ื‘ื™ื˜ื• ื‘ื–ื”
12:31
I'm a bit of a health nut.
301
751260
2000
ืื ื™ ืงืฆืช ืžืฉื•ื’ืข ื‘ืจื™ืื•ืช
12:33
I love taking supplements and being fit,
302
753260
3000
ืื ื™ ืื•ื”ื‘ ืœืงื—ืช ืชื•ืกืคื™ ืžื–ื•ืŸ ืœื”ื™ื•ืช ื‘ืจื™ื
12:36
but I can never understand what's going on in terms of evidence.
303
756260
3000
ืื‘ืœ ืื ื™ ืืฃ ืคืขื ืœื ืžืฆืœื™ื— ืœื”ื‘ื™ืŸ ืžื” ืงื•ืจื” ื‘ืžื•ื ื—ื™ื ืฉืœ ืขื“ื•ื™ื•ืช
12:39
There's always conflicting evidence.
304
759260
2000
ืชืžื™ื“ ื™ืฉ ืขื“ื•ื™ื•ืช ืกื•ืชืจื•ืช
12:41
Should I take vitamin C? Should I be taking wheatgrass?
305
761260
2000
ื”ืื ืื ื™ ืฆืจื™ืš ืœืงื—ืช ื•ื™ื˜ืžื™ืŸ C? ื”ืื ืื ื™ ืฆืจื™ืš ืœืงื—ืช ื ื‘ื˜ ื—ื™ื˜ื”?
12:43
This is a visualization of all the evidence
306
763260
2000
ื–ื•ื”ื™ ื”ืžื—ืฉื” ืฉืœ ื›ืœ ื”ืขื“ื•ื™ื•ืช
12:45
for nutritional supplements.
307
765260
2000
ืœืชื•ืกืคื™ ืžื–ื•ืŸ
12:47
This kind of diagram is called a balloon race.
308
767260
3000
ื”ืชืจืฉื™ื ื”ื–ื” ื ืงืจื ืžืจื•ืฅ ื‘ืœื•ื ื™ื
12:50
So the higher up the image,
309
770260
2000
ื›ื›ืœ ืฉื”ืชืžื•ื ื” ื’ื‘ื•ื”ื” ื™ื•ืชืจ
12:52
the more evidence there is for each supplement.
310
772260
3000
ื™ืฉ ื™ื•ืชืจ ืขื“ื•ื™ื•ืช ืœื›ืœ ืชื•ืกืฃ ืžื–ื•ืŸ
12:55
And the bubbles correspond to popularity as regards to Google hits.
311
775260
3000
ื•ื”ื‘ื•ืขื•ืช ืžืชื™ื—ืกื•ืช ืœืคื•ืคื•ืœืจื™ื•ืช ื‘ื”ืชืื ืœื—ื™ืคื•ืฉื™ ื’ื•ื’ืœ
12:58
So you can immediately apprehend
312
778260
3000
ืื– ื ื™ืชืŸ ืœืจืื•ืช ื‘ืฆื•ืจื” ืžื™ื™ื“ื™ืช
13:01
the relationship between efficacy and popularity,
313
781260
3000
ืืช ื”ื™ื—ืกื™ื ื‘ื™ืŸ ื”ื™ืขื™ืœื•ืช ื•ื”ืคื•ืคื•ืœืจื™ื•ืช
13:04
but you can also, if you grade the evidence,
314
784260
3000
ืืคืฉืจ ื’ื, ืื ื ื“ืจื’ ืืช ื”ืขื“ื•ื™ื•ืช
13:07
do a "worth it" line.
315
787260
2000
ื ื•ืกื™ืฃ ืงื• ืฉืœ "ืฉื•ื•ื” ืืช ื–ื”"
13:09
So supplements above this line are worth investigating,
316
789260
3000
ืื– ื”ืชื•ืกืคื™ื ืžืขืœ ืœืงื• ื”ื–ื” ืฉื•ื•ื™ื ื—ืงื™ืจื”
13:12
but only for the conditions listed below,
317
792260
3000
ืื‘ืœ ืจืง ืœืชื ืื™ื ื”ืžืคื•ืจื˜ื™ื ืœืžื˜ื”
13:15
and then the supplements below the line
318
795260
3000
ื•ืื– ื”ืชื•ืกืคื™ื ืžืชื—ืช ืœืงื•
13:18
are perhaps not worth investigating.
319
798260
2000
ืื•ืœื™ ืื™ื ื ืฉื•ื•ื™ื ื—ืงื™ืจื”
13:20
Now this image constitutes a huge amount of work.
320
800260
3000
ืขื›ืฉื™ื• ื”ืชืžื•ื ื” ื”ื–ืืช ื“ื•ืจืฉืช ื”ืžื•ืŸ ืขื‘ื•ื“ื”
13:23
We scraped like 1,000 studies from PubMed,
321
803260
3000
ืืกืคื ื• ื›ืืœืฃ ืžื—ืงืจื™ื ืž PubMed
13:26
the biomedical database,
322
806260
2000
ืžืกื“ ื”ื ืชื•ื ื™ื ื”ื‘ื™ื•-ืจืคื•ืื™
13:28
and we compiled them and graded them all.
323
808260
3000
ื•ืขื™ื‘ื“ื ื• ืื•ืชื ื•ื“ื™ืจื’ื ื• ืืช ื›ื•ืœื
13:31
And it was incredibly frustrating for me
324
811260
2000
ื•ื–ื” ื”ื™ื” ืžืื“ ืžืชืกื›ืœ ืขื‘ื•ืจื™
13:33
because I had a book of 250 visualizations to do for my book,
325
813260
3000
ื›ื™ ื”ื™ื” ืœื™ ืกืคืจ ืขื 250 ื”ืžื—ืฉื•ืช ืœืขืฉื•ืช ื‘ืฉื‘ื™ืœ ื”ืกืคืจ ืฉืœื™
13:36
and I spent a month doing this,
326
816260
2000
ื•ื”ืฉืงืขืชื™ ื—ื•ื“ืฉ ื‘ืœืขืฉื•ืช ืืช ื–ื”
13:38
and I only filled two pages.
327
818260
2000
ื•ืจืง ืžืœืืชื™ ืฉื ื™ ืขืžื•ื“ื™ื
13:40
But what it points to
328
820260
2000
ืื‘ืœ ืžื” ืฉื–ื” ืžืจืื”
13:42
is that visualizing information like this
329
822260
2000
ืฉื”ืžื—ืฉื” ื›ื–ืืช ืฉืœ ืžื™ื“ืข
13:44
is a form of knowledge compression.
330
824260
2000
ื”ื™ื ืฆื•ืจื” ืฉืœ ื“ื—ื™ืกืช ืžื™ื“ืข
13:46
It's a way of squeezing an enormous amount
331
826260
2000
ื–ื•ื”ื™ ื“ืจืš ืœื“ื—ื•ืก ื›ืžื•ื™ื•ืช ืขืฆื•ืžื•ืช
13:48
of information and understanding
332
828260
2000
ืฉืœ ืžื™ื“ืข ื•ื”ื‘ื ื•ืช
13:50
into a small space.
333
830260
2000
ืœืฉื˜ื— ืงื˜ืŸ
13:52
And once you've curated that data, and once you've cleaned that data,
334
832260
2000
ื•ื›ืืฉืจ ืขื™ืฆื‘ื ื• ืืช ื”ื ืชื•ื ื™ื, ื•ื›ืืฉืจ ื ื™ืงื™ื ื• ืืช ื”ื ืชื•ื ื™ื
13:54
and once it's there,
335
834260
2000
ื•ื›ืืฉืจ ื”ื ืฉื
13:56
you can do cool stuff like this.
336
836260
2000
ืืชื ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ื“ื‘ืจื™ื ืžื’ื ื™ื‘ื™ื ื›ืžื• ื–ื”
13:58
So I converted this into an interactive app,
337
838260
2000
ืื– ื”ืกื‘ืชื™ ืืช ื–ื” ืœืžืขืจื›ืช ืื™ื ื˜ืจืืงื˜ื™ื‘ื™ืช
14:00
so I can now generate this application online --
338
840260
2000
ืื– ืขื›ืฉื™ื• ืื ื™ ื™ื›ื•ืœ ืœื™ืฆืจ ืืช ื”ืžืขืจื›ืช ื”ืžืงื•ื•ื ืช
14:02
this is the visualization online --
339
842260
2000
ื–ื•ื”ื™ ื”ื”ืžื—ืฉื” ื”ืžืงื•ื•ื ืช
14:04
and I can say, "Yeah, brilliant."
340
844260
2000
ื•ืื ื™ ื™ื›ื•ืœ ืœื”ื’ื™ื“ "ื›ืŸ, ืžื‘ืจื™ืง"
14:06
So it spawns itself.
341
846260
2000
ืื– ื–ื” ืžืชืจื‘ื” ื‘ืขืฆืžื•
14:08
And then I can say, "Well, just show me the stuff
342
848260
2000
ื•ืื– ืื ื™ ื™ื›ื•ืœ ืœื”ื’ื™ื“ "ื•ื‘ื›ืŸ, ืคืฉื•ื˜ ืชืจืื” ืœื™ ื“ื‘ืจื™ื
14:10
that affects heart health."
343
850260
2000
ืฉืžืฉืคื™ืขื™ื ืขืœ ื‘ืจื™ืื•ืช ื”ืœื‘"
14:12
So let's filter that out.
344
852260
2000
ืื– ื‘ื•ืื• ื ืกื ืŸ ืืช ื–ื” ื”ื—ื•ืฆื”
14:14
So heart is filtered out, so I can see if I'm curious about that.
345
854260
3000
ืื– ื”ืœื‘ ืžืกื•ื ืŸ ื”ื—ื•ืฆื”, ืื– ืื ืื ื™ ืกืงืจืŸ ืœื’ื‘ื™ ื–ื”
14:17
I think, "No, no. I don't want to take any synthetics,
346
857260
2000
ืื ื™ ื—ื•ืฉื‘ "ืœื. ืœื. ืื ื™ ืœื ืจื•ืฆื” ืœื›ืœื•ืœ ืฉื•ื ื“ื‘ืจ ืกื™ื ื˜ื˜ื™
14:19
I just want to see plants and --
347
859260
3000
ืื ื™ ืจืง ืจื•ืฆื” ืœืจืื•ืช ืฆืžื—ื™ื ื•--
14:22
just show me herbs and plants. I've got all the natural ingredients."
348
862260
3000
ืคืฉื•ื˜ ืชืจืื” ืœื™ ืชื‘ืœื™ื ื™ื ื•ืฆืžื—ื™ื. ื™ืฉ ืœื™ ืืช ื›ืœ ื”ืžืจื›ื™ื‘ื™ื ื”ื˜ื‘ืขื™ื™ื"
14:25
Now this app is spawning itself
349
865260
2000
ืขื›ืฉื™ื• ื”ืžืขืจื›ืช ืžืชืจื‘ื” ื‘ืขืฆืžื”
14:27
from the data.
350
867260
2000
ืžืชื•ืš ื”ื ืชื•ื ื™ื
14:29
The data is all stored in a Google Doc,
351
869260
2000
ื›ืœ ื”ื ืชื•ื ื™ื ืื’ื•ืจื™ื ื‘ืžืกืžืš ืฉืœ ื’ื•ื’ืœ
14:31
and it's literally generating itself from that data.
352
871260
3000
ื•ื–ื” ืคืฉื•ื˜ ืžื™ื™ืฆืจ ืืช ืขืฆืžื• ืžืชื•ืš ื”ื ืชื•ื ื™ื
14:34
So the data is now alive; this is a living image,
353
874260
2000
ืื– ืขื›ืฉื™ื• ื”ื ืชื•ื ื™ื ื”ืœืœื• ื—ื™ื™ื, ื–ื•ื”ื™ ืชืžื•ื ื” ื—ื™ื”
14:36
and I can update it in a second.
354
876260
2000
ื•ืื ื™ ื™ื›ื•ืœ ืœืขื“ื›ืŸ ืื•ืชื” ื‘ืจื’ืข
14:38
New evidence comes out. I just change a row on a spreadsheet.
355
878260
2000
ืขื›ืฉื™ื• ืขื“ื•ืช ื ื•ืกืคืช ืžื’ื™ืขื” -- ืื ื™ ืคืฉื•ื˜ ืžืฉื ื” ืฉื•ืจื” ื‘ื’ื™ืœื™ื•ืŸ ื”ืืœืงื˜ืจื•ื ื™
14:40
Doosh! Again, the image recreates itself.
356
880260
4000
ื“ื•ื•ืฉ! ืฉื•ื‘ ื”ืชืžื•ื ื” ื ื•ืฆืจืช ื‘ืขืฆืžื”
14:44
So it's cool.
357
884260
2000
ื–ื” ื›ืœ ื›ืš ืžื’ื ื™ื‘
14:46
It's kind of living.
358
886260
3000
ื–ื” ื›ืžื• ื™ืฆื•ืจ ื—ื™
14:49
But it can go beyond data,
359
889260
2000
ืื‘ืœ ื–ื” ื’ื ื™ื›ื•ืœ ืœื”ืชืคืชื— ืžืขื‘ืจ ืœื ืชื•ื ื™ื
14:51
and it can go beyond numbers.
360
891260
2000
ื•ื–ื” ื™ื›ื•ืœ ืœื”ืชืคืชื— ืžืขื‘ืจ ืœืžืกืคืจื™ื
14:53
I like to apply information visualization
361
893260
2000
ื•ืื ื™ ื™ื›ื•ืœ ืœื”ืคืขื™ืœ ื”ืžื—ืฉื•ืช ืฉืœ ืžื™ื“ืข
14:55
to ideas and concepts.
362
895260
3000
ืœืจืขื™ื•ื ื•ืช ื•ืœืžื•ืฉื’ื™ื
14:58
This is a visualization
363
898260
2000
ื–ื•ื”ื™ ื”ืžื—ืฉื”
15:00
of the political spectrum,
364
900260
2000
ืœืžื ืขื“ ื”ืคื•ืœื™ื˜ื™
15:02
an attempt for me to try
365
902260
2000
ืžืชื•ืš ื ืกื™ื•ืŸ ืฉืœื™ ืœื ืกื•ืช
15:04
and understand how it works
366
904260
2000
ื•ืœื”ื‘ื™ืŸ ืื™ืš ื–ื” ืขื•ื‘ื“
15:06
and how the ideas percolate down
367
906260
2000
ื•ืื™ืš ื”ืจืขื™ื•ื ื•ืช ื™ื•ืจื“ื™ื
15:08
from government into society and culture,
368
908260
2000
ืžื”ืžืžืฉืœื” ืœืชื•ืš ื”ื—ื‘ืจื” ื•ื”ืชืจื‘ื•ืช
15:10
into families, into individuals, into their beliefs
369
910260
3000
ืœืžืฉืคื—ื•ืช, ืœื™ื—ื™ื“ื™ื, ืœืชื•ืš ื”ืืžื•ื ื•ืช ืฉืœื”ื
15:13
and back around again in a cycle.
370
913260
3000
ื•ืื– ื—ื–ืจื” ื‘ืžืขื’ืœ
15:16
What I love about this image
371
916260
2000
ืžื” ืฉืื ื™ ืื•ื”ื‘ ืœื’ื‘ื™ ื”ืชืžื•ื ื” ื”ื–ืืช
15:18
is it's made up of concepts,
372
918260
2000
ืฉื”ื™ื ืžื•ืจื›ื‘ืช ืžืžื•ืฉื’ื™ื
15:20
it explores our worldviews
373
920260
2000
ื”ื™ื ื—ื•ืงืจืช ืืช ืชืคื™ืกื•ืช ื”ืขื•ืœื ืฉืœื ื•
15:22
and it helps us -- it helps me anyway --
374
922260
2000
ื•ื”ื™ื ืขื•ื–ืจืช ืœื ื• - ืœืคื—ื•ืช ืขื•ื–ืจืช ืœื™ --
15:24
to see what others think,
375
924260
2000
ืœืจืื•ืช ืžื” ืื—ืจื™ื ื—ื•ืฉื‘ื™ื
15:26
to see where they're coming from.
376
926260
2000
ืœืจืื•ืช ืžืื™ืคื” ื”ื ืžื’ื™ืขื™ื
15:28
And it feels just incredibly cool to do that.
377
928260
3000
ื•ื–ื” ืžืจื’ื™ืฉ ืžืžืฉ ืžื’ื ื™ื‘ ืœืขืฉื•ืช ืืช ื–ื”
15:31
What was most exciting for me
378
931260
3000
ืžื” ืฉื”ื™ื” ื”ื›ื™ ืžืจื’ืฉ ืขื‘ื•ืจื™
15:34
designing this
379
934260
2000
ืœืชื›ื ืŸ ืืช ื–ื”
15:36
was that, when I was designing this image,
380
936260
2000
ื”ื™ื” ื›ืืฉืจ ืชื›ื ื ืชื™ ืืช ื”ืชืžื•ื ื” ื”ื–ืืช
15:38
I desperately wanted this side, the left side,
381
938260
3000
ืžืื“ ืจืฆื™ืชื™ ืฉื”ืฆื“ ื”ื–ื”, ื”ืฆื“ ื”ืฉืžืืœื™
15:41
to be better than the right side --
382
941260
2000
ืœื”ื™ื•ืช ื™ื•ืชืจ ื˜ื•ื‘ ืžื”ืฆื“ ื”ื™ืžื ื™
15:43
being a journalist, a Left-leaning person --
383
943260
3000
ืœื”ื™ื•ืช ืกื•ื’ ืฉืœ ืขื™ืชื•ื ืื™, ืื“ื ื”ื ื•ื˜ื” ืฉืžืืœื”
15:46
but I couldn't, because I would have created
384
946260
2000
ืื‘ืœ ืœื ื™ื›ื•ืœืชื™, ื‘ื’ืœืœ ืฉื”ื™ื™ืชื™ ื™ื•ืฆืจ
15:48
a lopsided, biased diagram.
385
948260
3000
ืชืจืฉื™ื ืžื•ื˜ื”, ื—ื“ ืฆื“ื“ื™
15:51
So, in order to really create a full image,
386
951260
3000
ืื– ื›ื“ื™ ืœื™ืฆืจ ื‘ืืžืช ืชืžื•ื ื” ืžืœืื”
15:54
I had to honor the perspectives on the right-hand side
387
954260
3000
ื”ื™ื™ืชื™ ืฆืจื™ืš ืœื›ื‘ื“ ืืช ื ืงื•ื“ืช ื”ืžื‘ื˜ ืฉืœ ื”ืฆื“ ื”ื™ืžื ื™
15:57
and at the same time, uncomfortably recognize
388
957260
3000
ื•ื‘ืื•ืชื• ื”ื–ืžืŸ, ื‘ืฆื•ืจื” ืœื ื ื•ื—ื” ืœื”ื›ื™ืจ
16:00
how many of those qualities were actually in me,
389
960260
3000
ื›ืžื” ืžื”ืชื›ื•ื ื•ืช ื”ืœืœื• ื‘ืืžืช ื ืžืฆืื•ืช ื‘ืชื•ื›ื™
16:03
which was very, very annoying and uncomfortable.
390
963260
2000
ืžื” ืฉื”ื™ื” ืžืื“ ืžืื“ ืžืขืฆื‘ืŸ ื•ืœื ื ื•ื—
16:05
(Laughter)
391
965260
4000
(ืฆื—ื•ืง)
16:09
But not too uncomfortable,
392
969260
2000
ืื‘ืœ ืœื ื™ื•ืชืจ ืžื“ื™ ืœื ื ื•ื—
16:11
because there's something unthreatening
393
971260
3000
ื‘ื’ืœืœ ืฉื™ืฉ ืžืฉื”ื• ืžืจื’ื™ืข
16:14
about seeing a political perspective,
394
974260
2000
ื‘ืœืจืื•ืช ื ืงื•ื“ืช ืžื‘ื˜ ืคื•ืœื™ื˜ื™ืช
16:16
versus being told or forced to listen to one.
395
976260
3000
ืœืขื•ืžืช ืœื”ื™ื•ืช ืžื•ื›ืจื— ืœื”ืงืฉื™ื‘ ืœืื—ืช
16:19
You're capable of holding conflicting viewpoints
396
979260
3000
ื–ื” ื‘ืืžืช -- ืืชื ืžืกื•ื’ืœื™ื ืœื”ื—ื–ื™ืง ื ืงื•ื“ื•ืช ืžื‘ื˜ ืกื•ืชืจื•ืช
16:22
joyously when you can see them.
397
982260
2000
ื‘ืงืœื•ืช, ื›ืืฉืจ ืืชื ืžืกื•ื’ืœื™ื ืœืจืื•ืช ืื•ืชื
16:24
It's even fun to engage with them
398
984260
2000
ื–ื” ืืคื™ืœื• ืžื”ื ื” ืœื ืกื•ืช ืื•ืชื
16:26
because it's visual.
399
986260
2000
ื‘ื’ืœืœ ืฉื–ื” ื—ื–ื•ืชื™
16:28
So that's what's exciting to me,
400
988260
2000
ืื– ื–ื” ืžื” ืฉืžืจื’ืฉ ืื•ืชื™
16:30
seeing how data can change my perspective
401
990260
2000
ืœืจืื•ืช ืื™ืš ื”ื ืชื•ื ื™ื ืžืฉื ื™ื ืืช ื ืงื•ื“ืช ื”ืžื‘ื˜ ืฉืœื™
16:32
and change my mind midstream --
402
992260
2000
ื•ืžืฉื ื™ื ืืช ื”ื—ืฉื™ื‘ื” ืฉืœื™
16:34
beautiful, lovely data.
403
994260
3000
ื ืชื•ื ื™ื ื™ืคื™ืคื™ื™ื™ื
16:38
So, just to wrap up,
404
998260
2000
ืื– ื›ืกื™ื›ื•ื
16:40
I wanted to say
405
1000260
2000
ืื ื™ ืจืฆื™ืชื™ ืœื•ืžืจ
16:42
that it feels to me that design is about solving problems
406
1002260
2000
ืื ื™ ืžืจื’ื™ืฉ ืฉืขื™ืฆื•ื‘ ื”ื•ื ืคืชืจื•ืŸ ื‘ืขื™ื•ืช
16:44
and providing elegant solutions,
407
1004260
3000
ื•ืœืชืช ืคืชืจื•ื ื•ืช ืืœื’ื ื˜ื™ื™ื
16:47
and information design is about
408
1007260
2000
ื•ืขื™ืฆื•ื‘ ืžื™ื“ืข ื”ื•ื
16:49
solving information problems.
409
1009260
2000
ืคืชืจื•ืŸ ืœื‘ืขื™ื•ืช ืžื™ื“ืข
16:51
It feels like we have a lot of information problems
410
1011260
2000
ื•ืื ื™ ืžืจื’ื™ืฉ ืฉื™ืฉ ืœื ื• ื”ืจื‘ื” ื‘ืขื™ื•ืช ืžื™ื“ืข
16:53
in our society at the moment,
411
1013260
2000
ื‘ื—ื‘ืจื” ืฉืœื ื• ื›ืจื’ืข
16:55
from the overload and the saturation
412
1015260
2000
ืžืขื•ืžืก ื•ื”ืฆืคื”
16:57
to the breakdown of trust and reliability
413
1017260
2000
ืœืžืฉื‘ืจ ืฉืœ ืืžื•ืŸ ื•ืืžื™ื ื•ืช
16:59
and runaway skepticism and lack of transparency,
414
1019260
2000
ืœื”ื˜ืœืช ืกืคืง ื•ื—ื•ืกืจ ื‘ืฉืงื™ืคื•ืช
17:01
or even just interestingness.
415
1021260
2000
ื•ืืคื™ืœื• ืคืฉื•ื˜ ืขื ื™ื™ืŸ
17:03
I mean, I find information just too interesting.
416
1023260
2000
ืื ื™ ืžืชื›ื•ื•ืŸ ืฉืื ื™ ืžื•ืฆื ืืช ื”ืžื™ื“ืข ืคืฉื•ื˜ ื™ื•ืชืจ ืžื“ื™ ืžืขื ื™ื™ืŸ
17:05
It has a magnetic quality that draws me in.
417
1025260
3000
ื™ืฉ ืœื• ืžืฉื™ื›ื” ืžื’ื ื˜ื™ืช ืขื‘ื•ืจื™
17:09
So, visualizing information
418
1029260
2000
ืื– ืœื”ืžื—ื™ืฉ ืžื™ื“ืข
17:11
can give us a very quick solution to those kinds of problems.
419
1031260
3000
ื™ื›ื•ืœ ืœืชืช ืœื ื• ืคืชืจื•ื ื•ืช ืžืื“ ืžื”ื™ืจื™ื ืœืกื•ื’ ื–ื” ืฉืœ ื‘ืขื™ื•ืช
17:14
Even when the information is terrible,
420
1034260
2000
ื•ืืคื™ืœื• ืื ื”ืžื™ื“ืข ื”ื•ื ื ื•ืจืื™
17:16
the visual can be quite beautiful.
421
1036260
3000
ื”ื”ืžื—ืฉื” ื™ื›ื•ืœื” ืœื”ื™ื•ืช ื“ื™ ื™ืคื”
17:19
Often we can get clarity
422
1039260
3000
ื‘ื“ืจืš ื›ืœืœ ืื ื™ ื™ื›ื•ืœื™ื ืœืจืื•ืช ื‘ื‘ื”ื™ืจื•ืช
17:22
or the answer to a simple question very quickly,
423
1042260
2000
ืืช ื”ืคืชืจื•ืŸ ืœื‘ืขื™ื” ืคืฉื•ื˜ื” ืžืื“ ืžื”ืจ
17:24
like this one,
424
1044260
2000
ื›ืžื• ื–ืืช
17:26
the recent Icelandic volcano.
425
1046260
3000
ื”ืชืคืจืฆื•ืช ื”ืจ ื”ื’ืขืฉ ื”ืื™ืกืœื ื“ื™ ื”ืื—ืจื•ื ื”
17:29
Which was emitting the most CO2?
426
1049260
2000
ืฉืฉื™ื—ืจื” ื”ื›ื™ ื”ืจื‘ื” CO2?
17:31
Was it the planes or the volcano,
427
1051260
2000
ื”ืื ืื™ืœื• ื”ืžื˜ื•ืกื™ื ืื• ื”ืจ ื”ื’ืขืฉ
17:33
the grounded planes or the volcano?
428
1053260
2000
ื”ืžื˜ื•ืกื™ื ื”ืžืงื•ืจืงืขื™ื ืื• ื”ืจ ื”ื’ืขืฉ
17:35
So we can have a look.
429
1055260
2000
ืื– ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื”ืกืชื›ืœ
17:37
We look at the data and we see:
430
1057260
2000
ืœื”ื‘ื™ื˜ ื‘ื ืชื•ื ื™ื ื•ืœืจืื•ืช
17:39
Yep, the volcano emitted 150,000 tons;
431
1059260
2000
ื›ืŸ, ื”ืจ ื”ื’ืขืฉ ืฉื™ื—ืจืจ 150,000 ื˜ื•ืŸ
17:41
the grounded planes would have emitted
432
1061260
2000
ื”ืžื˜ื•ืกื™ื ื”ืžืงื•ืจืงืขื™ื ื”ื™ื• ืžืฉื—ืจืจื™ื
17:43
345,000 if they were in the sky.
433
1063260
3000
345,000 ืื ื”ื ื”ื™ื• ื˜ืกื™ื ื‘ืฉืžื™ื™ื
17:46
So essentially, we had our first carbon-neutral volcano.
434
1066260
3000
ืื– ื‘ืขืงืจื•ืŸ, ื”ื™ืชื” ืœื ื• ื”ืชืคืจืฆื•ืช ื”ืจ ื’ืขืฉ ืจืืฉื•ื ื” ืฉื”ื•ืจื™ื“ื” ืืช ื›ืžื•ืช ื”ืคื—ืžืŸ
17:49
(Laughter)
435
1069260
2000
(ืฆื—ื•ืง)
17:51
(Applause)
436
1071260
9000
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
18:00
And that is beautiful. Thank you.
437
1080260
3000
ื•ื–ื” ื™ืคื™ืคื”. ืชื•ื“ื” ืจื‘ื”.
18:03
(Applause)
438
1083260
8000
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7