Jeff Hancock: 3 types of (digital) lies

91,479 views ใƒป 2012-11-09

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

00:00
Translator: Joseph Geni Reviewer: Morton Bast
0
0
7000
ืžืชืจื’ื: Yael BST ืžื‘ืงืจ: Ido Dekkers
00:15
Let me tell you, it has been a fantastic month for deception.
1
15641
3713
ืชืจืฉื• ืœื™ ืœื•ืžืจ ืœื›ื, ื–ื” ื”ื™ื” ื—ื•ื“ืฉ ื ืคืœื ืœืจืžืื•ืช.
00:19
And I'm not even talking about the American presidential race. (Laughter)
2
19354
4253
ื•ืื ื™ ืืคื™ืœื• ืœื ืžื“ื‘ืจ ืขืœ ื”ืžืจื•ืฅ ืœื ืฉื™ืื•ืช. (ืฆื—ื•ืง)
00:23
We have a high-profile journalist caught for plagiarism,
3
23607
4335
ื™ืฉ ืœื ื• ืขื™ืชื•ื ืื™ ื‘ื›ื™ืจ ืฉื ืชืคืก ื‘ื’ื ื‘ื” ืกืคืจื•ืชื™ืช,
00:27
a young superstar writer whose book involves
4
27942
2932
ืกื•ืคืจ ืกื•ืคืจืกื˜ืืจ ืฆืขื™ืจ ืฉื”ืกืคืจื™ื ืฉืœื• ืžื›ื™ืœื™ื
00:30
so many made up quotes that they've pulled it from the shelves;
5
30874
3305
ื›"ื› ื”ืจื‘ื” ืฆื™ื˜ื•ื˜ื™ื ืžื•ืžืฆืื™ื ืฉื”ื•ืจื™ื“ื• ืื•ืชื• ืžื”ืžื“ืคื™ื;
00:34
a New York Times exposรฉ on fake book reviews.
6
34179
2598
ื›ืชื‘ืช ืชื—ืงื™ืจ ืฉืœ ื”ื ื™ื•-ื™ื•ืจืง ื˜ื™ื™ืžืก ืขืœ ืกืงื™ืจื•ืช ืกืคืจื™ื ืžื–ื•ื™ืคื•ืช.
00:36
It's been fantastic.
7
36777
1409
ื”ื™ื” ื ืคืœื.
00:38
Now, of course, not all deception hits the news.
8
38186
3851
ืขื›ืฉื™ื•, ื›ืžื•ื‘ืŸ, ืœื ื›ืœ ื”ืจืžืื•ื™ื•ืช ืžื’ื™ืขื•ืช ืœื›ื•ืชืจื•ืช.
00:42
Much of the deception is everyday. In fact, a lot of research
9
42037
3679
ืขื™ืงืจ ื”ืจืžืื•ืช ื”ื™ื ื™ื•ืžื™ื•ืžื™ืช. ืœืžืขืฉื”, ื”ืจื‘ื” ืžื—ืงืจื™ื
00:45
shows that we all lie once or twice a day, as Dave suggested.
10
45716
4331
ืžืจืื™ื ืฉื›ื•ืœื ื• ืžืฉืงืจื™ื ืคืขื ืื• ืคืขืžื™ื™ื ื‘ื™ื•ื, ื›ืคื™ ืฉื“ื™ื™ื‘ ื˜ื•ืขืŸ.
00:50
So it's about 6:30 now, suggests that most of us should have lied.
11
50047
2933
ืื– ืขื›ืฉื™ื• ื‘ืขืจืš 6:30, ืžื” ืฉืื•ืžืจ ืฉืจื•ื‘ื™ื ื• ืฉื™ืงืจื• ื›ื‘ืจ.
00:52
Let's take a look at Winnipeg. How many of you,
12
52980
1900
ื‘ื•ืื• ื ื‘ื“ื•ืง ืืช ื•ื™ื ื™ืคื’. ื›ืžื” ืžื›ื,
00:54
in the last 24 hours -- think back -- have told a little fib,
13
54880
2927
ื‘-24 ื”ืฉืขื•ืช ื”ืื—ืจื•ื ื•ืช - ืชื ืกื• ืœื”ื™ื–ื›ืจ - ืกื™ืคืจื• ืฉืงืจ ืงื˜ืŸ,
00:57
or a big one? How many have told a little lie out there?
14
57807
3551
ืื• ืฉืงืจ ื’ื“ื•ืœ? ื›ืžื” ืžื›ื ืฉื™ืงืจื• ืงืฆืช?
01:01
All right, good. These are all the liars.
15
61358
1904
ื‘ืกื“ืจ, ื™ื•ืคื™. ืืœื• ื›ืœ ื”ืฉืงืจื ื™ื.
01:03
Make sure you pay attention to them. (Laughter)
16
63262
3293
ืชื™ื–ื”ืจื• ืžื”ื. (ืฆื—ื•ืง)
01:06
No, that looked good, it was about two thirds of you.
17
66555
2146
ืœื, ื–ื” ื ืจืื” ื˜ื•ื‘, ื‘ืขืจืš ืฉื ื™ ืฉืœื™ืฉ ืžื›ื.
01:08
The other third didn't lie, or perhaps forgot,
18
68701
2852
ื”ืฉืœื™ืฉ ื”ื ื•ืชืจ ืœื ืฉื™ืงืจ, ืื• ืื•ืœื™ ืฉื›ื—,
01:11
or you're lying to me about your lying, which is very,
19
71553
2660
ืื• ืฉืืชื ืžืฉืงืจื™ื ืœื™ ืขืœ ื”ืฉืงืจื™ื ืฉืœื›ื, ืฉื–ื” ืžืื•ื“,
01:14
very devious. (Laughter) This fits with a lot of the research,
20
74213
4050
ืžืื•ื“ ืขืจืžื•ืžื™. (ืฆื—ื•ืง). ื–ื” ืชื•ืื ื”ืžื•ืŸ ืžื—ืงืจื™ื,
01:18
which suggests that lying is very pervasive.
21
78263
3354
ืฉื˜ื•ืขื ื™ื ืฉื”ืฉืงืจ ืžืื•ื“ ื ื•ื˜ื” ืœื”ืชืคืฉื˜ื•ืช.
01:21
It's this pervasiveness, combined with the centrality
22
81617
3961
ืชื›ื•ื ืช ื”ื”ืชืคืฉื˜ื•ืช ื”ื–ื•, ื‘ื™ื—ื“ ืขื ื”ืžืจื›ื–ื™ื•ืช
01:25
to what it means to be a human, the fact that we can
23
85578
2440
ืฉืœ ื”ืžืฉืžืขื•ืช ืฉืœ ื”ื™ื•ืชื ื• ื‘ื ื™ ืื“ื, ื”ืขื•ื‘ื“ื” ืฉืื ื—ื ื• ื™ื›ื•ืœื™ื
01:28
tell the truth or make something up,
24
88018
1880
ืœืกืคืจ ืืช ื”ืืžืช ืื• ืœื”ืžืฆื™ื ืžืฉื”ื•,
01:29
that has fascinated people throughout history.
25
89898
2851
ื”ืŸ ืฉืจื™ืชืงื• ืื ืฉื™ื ืœืื•ืจืš ื”ื”ื™ืกื˜ื•ืจื™ื”.
01:32
Here we have Diogenes with his lantern.
26
92749
2629
ืคื” ื™ืฉ ืœื ื• ืืช ื“ื™ื•ื’ื ืก ืขื ื”ืขืฉืฉื™ืช ืฉืœื•.
01:35
Does anybody know what he was looking for?
27
95378
2680
ืžื™ืฉื”ื• ื™ื•ื“ืข ืžื” ื”ื•ื ื—ื™ืคืฉ?
01:38
A single honest man, and he died without finding one
28
98058
3784
ืื“ื ืื—ื“ ื”ื’ื•ืŸ, ื•ื”ื•ื ืžืช ืžื‘ืœื™ ืœืžืฆื•ื ืื•ืชื•
01:41
back in Greece. And we have Confucius in the East
29
101842
3017
ืื– ื‘ื™ื•ื•ืŸ. ื•ื™ืฉ ืœื ื• ืืช ืงื•ื ืคื•ืฆื™ื•ืก ื‘ืžื–ืจื—
01:44
who was really concerned with sincerity,
30
104859
2377
ืฉื”ื›ื ื•ืช ืžืื•ื“ ื”ืขืกื™ืงื” ืื•ืชื•,
01:47
not only that you walked the walk or talked the talk,
31
107236
3084
ืœื ืžืกืคื™ืง ืฉืชืขืฉื” ืืช ื”ืžืขืฉื™ื ืื• ืชื’ื™ื“ ืืช ื”ืžื™ืœื™ื,
01:50
but that you believed in what you were doing.
32
110320
3154
ืืœื ืฉืชืืžื™ืŸ ื‘ืžื” ืฉืืชื” ืขื•ืฉื”.
01:53
You believed in your principles.
33
113474
2006
ืฉืชืืžื™ืŸ ื‘ืขืงืจื•ื ื•ืช ืฉืœ ืขืฆืžืš.
01:55
Now my first professional encounter with deception
34
115480
2931
ื”ืžืคื’ืฉ ื”ืžืงืฆื•ืขื™ ื”ืจืืฉื•ืŸ ืฉืœื™ ืขื ื”ืจืžืื•ืช
01:58
is a little bit later than these guys, a couple thousand years.
35
118411
3463
ืงืฆืช ื™ื•ืชืจ ืžืื•ื—ืจ ืžื–ื” ืฉืœ ื”ื—ื‘ืจ'ื” ื”ืืœื”, ื‘ื›ืžื” ืืœืคื™ ืฉื ื™ื.
02:01
I was a customs officer for Canada back in the mid-'90s.
36
121874
3799
ื”ื™ื™ืชื™ ืคืงื™ื“ ืžื›ืก ืฉืœ ืงื ื“ื” ืื– ื‘ืืžืฆืข ืฉื ื•ืช ื”- 90.
02:05
Yeah. I was defending Canada's borders.
37
125673
2826
ื›ืŸ. ื”ื’ื ืชื™ ืขืœ ื’ื‘ื•ืœื•ืชื™ื” ืฉืœ ืงื ื“ื”.
02:08
You may think that's a weapon right there. In fact,
38
128499
3782
ืืชื ื—ื•ืฉื‘ื™ื ืื•ืœื™ ืฉื–ื” ื ืฉืง ื›ืืŸ. ืœืžืขืฉื”,
02:12
that's a stamp. I used a stamp to defend Canada's borders. (Laughter)
39
132281
5030
ื–ื• ื—ื•ืชืžืช. ื ืขื–ืจืชื™ ื‘ื—ื•ืชืžืช ื›ื“ื™ ืœื”ื’ืŸ ืขืœ ื’ื‘ื•ืœื•ืชื™ื” ืฉืœ ืงื ื“ื”. (ืฆื—ื•ืง)
02:17
Very Canadian of me. I learned a lot about deception
40
137311
3537
ืžืื•ื“ ืงื ื“ื™ ืžืฆื“ื™. ืœืžื“ืชื™ ื”ืจื‘ื” ืขืœ ื”ืจืžืื•ืช
02:20
while doing my duty here in customs,
41
140848
3055
ื‘ื–ืžืŸ ืฉืจื•ืชื™ ื›ืืŸ ื‘ืžื›ืก,
02:23
one of which was that most of what I thought I knew about deception was wrong,
42
143903
2884
ืื—ื“ ื”ื“ื‘ืจื™ื ื–ื” ืฉืจื•ื‘ ืžื” ืฉื—ืฉื‘ืชื™ ืฉื™ื“ืขืชื™ ืขืœ ื”ืจืžืื•ืช ื”ื™ื” ืฉื’ื•ื™,
02:26
and I'll tell you about some of that tonight.
43
146787
1752
ื•ืื ื™ ืืกืคืจ ืœื›ื ืงืฆืช ืขืœ ื–ื” ื”ืขืจื‘.
02:28
But even since just 1995, '96, the way we communicate
44
148539
4074
ืื‘ืœ ืืคื™ืœื• ืจืง ืž- 1995, 96, ื”ืื•ืคืŸ ืฉื‘ื• ืื ื—ื ื• ืžืชืงืฉืจื™ื
02:32
has been completely transformed. We email, we text,
45
152613
3297
ืขื‘ืจ ืžื”ืคื›ื” ืžื•ื—ืœื˜ืช. ืื ื—ื ื• ืฉื•ืœื—ื™ื ืื™ืžื™ื™ืœื™ื, ืžืกืžืกื™ื,
02:35
we skype, we Facebook. It's insane.
46
155910
2613
ืžื“ื‘ืจื™ื ื‘ืกืงื™ื™ืค, ื‘ืคื™ื™ืกื‘ื•ืง. ื–ื” ืžื˜ื•ืจืฃ.
02:38
Almost every aspect of human communication's been changed,
47
158523
3261
ื›ืžืขื˜ ื›ืœ ื”ื™ื‘ื˜ ืฉืœ ื”ืชืงืฉื•ืจืช ื”ืื ื•ืฉื™ืช ื”ืฉืชื ื”,
02:41
and of course that's had an impact on deception.
48
161784
2560
ื•ื›ืžื•ื‘ืŸ ื”ื™ืชื” ืœื›ืš ื”ืฉืคืขื” ืขืœ ื”ืจืžืื•ืช.
02:44
Let me tell you a little bit about a couple of new deceptions
49
164344
2583
ืชื ื• ืœื™ ืœืกืคืจ ืœื›ื ืงืฆืช ืขืœ ื›ืžื” ืจืžืื•ื™ื•ืช ื—ื“ืฉื•ืช
02:46
we've been tracking and documenting.
50
166927
2376
ืฉืื ื—ื ื• ืขื•ืงื‘ื™ื ืื—ืจื™ื”ืŸ ื•ืžืชืขื“ื™ื ืื•ืชืŸ.
02:49
They're called the Butler, the Sock Puppet
51
169303
4244
ื”ืŸ ื ืงืจืื•ืช "ืžืฉืจืช", "ื‘ื•ื‘ืช-ื’ืจื‘"
02:53
and the Chinese Water Army.
52
173547
2081
ื•"ืฆื‘ื ื”ืžื™ื ืฉืœ ืกื™ืŸ".
02:55
It sounds a little bit like a weird book,
53
175628
1897
ื–ื” ื ืฉืžืข ืงืฆืช ื›ืžื• ืกืคืจ ืžื•ื–ืจ,
02:57
but actually they're all new types of lies.
54
177525
2133
ืื‘ืœ ืœืžืขืฉื” ื›ืœ ืืœื• ื”ื ืกื•ื’ื™ื ื—ื“ืฉื™ื ืฉืœ ืฉืงืจื™ื.
02:59
Let's start with the Butlers. Here's an example of one:
55
179658
3045
ื ืชื—ื™ืœ ื‘ืžืฉืจืช. ื”ื ื” ื“ื•ื’ืžื”:
03:02
"On my way." Anybody ever written, "On my way?"
56
182703
3113
"ืื ื™ ื‘ื“ืจืš". ืžื™ืฉื”ื• ืžื›ื ื›ืชื‘ ื‘ืขื‘ืจ "ืื ื™ ื‘ื“ืจืš" ?
03:05
Then you've also lied. (Laughter)
57
185816
3763
ืื– ื’ื ืืชื ืฉื™ืงืจืชื. (ืฆื—ื•ืง)
03:09
We're never on our way. We're thinking about going on our way.
58
189579
4197
ืื ื—ื ื• ืืฃ ืคืขื ืœื ื‘ื“ืจืš. ืื ื—ื ื• ื—ื•ืฉื‘ื™ื ืขืœ ืœื”ื™ื•ืช ื‘ื“ืจืš.
03:13
Here's another one: "Sorry I didn't respond to you earlier.
59
193776
2763
ื•ื”ื ื” ืขื•ื“ ืื—ืช: "ืžืฆื˜ืขืจ ืฉืœื ื”ื’ื‘ืชื™ ืงื•ื“ื.
03:16
My battery was dead." Your battery wasn't dead.
60
196539
1965
ื”ืกื•ืœืœื” ืฉืœื™ ื ื’ืžืจื”." ื”ืกื•ืœืœื” ืฉืœืš ืœื ื ื’ืžืจื”.
03:18
You weren't in a dead zone.
61
198504
1876
ืœื ื”ื™ื™ืช ื‘ืื–ื•ืจ ืœืœื ืงืœื™ื˜ื”.
03:20
You just didn't want to respond to that person that time.
62
200380
1953
ืคืฉื•ื˜ ืœื ืจืฆื™ืช ืœื”ื’ื™ื‘ ืœืื“ื ื”ื–ื” ื‘ืื•ืชื• ืจื’ืข.
03:22
Here's the last one: You're talking to somebody,
63
202333
1797
ื•ืื—ื“ ืื—ืจื•ืŸ: ืืชื ืžื“ื‘ืจื™ื ืขื ืžื™ืฉื”ื•,
03:24
and you say, "Sorry, got work, gotta go."
64
204130
2490
ื•ืื– ืื•ืžืจื™ื, "ืžืฆื˜ืขืจ, ื™ืฉ ืœื™ ืขื‘ื•ื“ื”, ื—ื™ื™ื‘ ืœื–ื•ื–."
03:26
But really, you're just bored. You want to talk to somebody else.
65
206620
3797
ืื‘ืœ ื”ืืžืช, ืืชื ืคืฉื•ื˜ ืžืฉื•ืขืžืžื™ื. ืืชื ืจื•ืฆื™ื ืœื“ื‘ืจ ืขื ืžื™ืฉื”ื• ืื—ืจ.
03:30
Each of these is about a relationship,
66
210417
2416
ื›ืœ ืื—ื“ ืžืืœื• ืกื•ื‘ื‘ ืกื‘ื™ื‘ ืžืขืจื›ื•ืช ื™ื—ืกื™ื,
03:32
and this is a 24/7 connected world. Once you get my cell phone number,
67
212833
4405
ื•ื”ืขื•ืœื ื”ื–ื” ื”ื•ื ืขื•ืœื ืฉืžื—ื•ื‘ืจ 24/7. ืžืจื’ืข ืฉื™ืฉ ืœืš ืืช ืžืกืคืจ ื”ื ื™ื™ื“ ืฉืœื™,
03:37
you can literally be in touch with me 24 hours a day.
68
217238
2965
ืืชื” ื™ื›ื•ืœ ืžืžืฉ ืœื”ื™ื•ืช ื‘ืงืฉืจ ืื™ืชื™ 24 ืฉืขื•ืช ื‘ื™ืžืžื”.
03:40
And so these lies are being used by people
69
220203
2369
ืื– ื”ืฉืงืจื™ื ื”ืืœื• ืžืฉืžืฉื™ื ืืช ื”ืื ืฉื™ื
03:42
to create a buffer, like the butler used to do,
70
222572
2826
ื›ื“ื™ ืœื™ืฆื•ืจ ื—ื™ืฅ, ื›ืžื• ืฉื”ืžืฉืจืช ื”ื™ื” ืขื•ืฉื”,
03:45
between us and the connections to everybody else.
71
225398
3407
ื‘ื™ื ื™ื ื• ืœื‘ื™ืŸ ื”ืงืฉืจ ืขื ื›ืœ ื”ืื—ืจื™ื.
03:48
But they're very special. They use ambiguity
72
228805
1707
ืื‘ืœ ื”ื ืžืื•ื“ ืžื™ื•ื—ื“ื™ื. ื”ื ืขื•ืฉื™ื ืฉื™ืžื•ืฉ ื‘ืื™-ื‘ื”ื™ืจื•ืช
03:50
that comes from using technology. You don't know
73
230512
2061
ืฉื ื•ื‘ืขืช ืžื”ืฉื™ืžื•ืฉ ื‘ื˜ื›ื ื•ืœื•ื’ื™ื”. ืืชื ืœื ื™ื•ื“ืขื™ื
03:52
where I am or what I'm doing or who I'm with.
74
232573
2948
ืื™ืคื” ืื ื™ ืื• ืžื” ืื ื™ ืขื•ืฉื” ืื• ืขื ืžื™ ืื ื™ ื ืžืฆื.
03:55
And they're aimed at protecting the relationships.
75
235521
2491
ื•ื”ืžื˜ืจื” ืฉืœื”ื ื”ื™ื ืœื”ื’ืŸ ืขืœ ืžืขืจื›ื•ืช ื”ื™ื—ืกื™ื.
03:58
These aren't just people being jerks. These are people
76
238012
2581
ื–ื” ืœื ืกืชื ืื ืฉื™ื ืฉืžืชื ื”ื’ื™ื ืžื’ืขื™ืœ. ื–ื” ืื ืฉื™ื
04:00
that are saying, look, I don't want to talk to you now,
77
240593
2376
ืฉืื•ืžืจื™ื, ืชืจืื”, ืื ื™ ืœื ืจื•ืฆื” ืœื“ื‘ืจ ืื™ืชืš ืขื›ืฉื™ื•,
04:02
or I didn't want to talk to you then, but I still care about you.
78
242969
2424
ืื• ืœื ืจืฆื™ืชื™ ืœื“ื‘ืจ ืื™ืชืš ืงื•ื“ื, ืื‘ืœ ืืชื” ืขื“ื™ื™ืŸ ื—ืฉื•ื‘ ืœื™.
04:05
Our relationship is still important.
79
245393
2400
ืžืขืจื›ืช ื”ื™ื—ืกื™ื ืฉืœื ื• ืขื“ื™ื™ืŸ ื—ืฉื•ื‘ื”.
04:07
Now, the Sock Puppet, on the other hand,
80
247793
1514
ืขื›ืฉื™ื•, ื‘ื•ื‘ืช ื”ื’ืจื‘, ืžืฆื“ ืฉื ื™,
04:09
is a totally different animal. The sock puppet isn't
81
249307
2343
ื”ื™ื ื—ื™ื” ืื—ืจืช ืœื’ืžืจื™. ื‘ื•ื‘ืช ื”ื’ืจื‘ ื”ื–ื• ื”ื™ื ืœื
04:11
about ambiguity, per se. It's about identity.
82
251650
3065
ืื™-ื‘ื”ื™ืจื•ืช, ื›ืฉืœืขืฆืžื”. ื”ืขื ื™ื™ืŸ ืคื” ื”ื•ื ื–ื”ื•ืช.
04:14
Let me give you a very recent example,
83
254715
2002
ืื ื™ ืืชืŸ ืœื›ื ื“ื•ื’ืžื” ืžืžืฉ ืžื”ื–ืžืŸ ื”ืื—ืจื•ืŸ,
04:16
as in, like, last week.
84
256717
1514
ื›ืœื•ืžืจ, ืžื”ืฉื‘ื•ืข ืฉืขื‘ืจ.
04:18
Here's R.J. Ellory, best-seller author in Britain.
85
258231
3268
ื–ื” ืจ.ื’'. ืืœืจื•ื™ื™, ืกื•ืคืจ ืจื‘ื™ ืžื›ืจ ื‘ื‘ืจื™ื˜ื ื™ื”.
04:21
Here's one of his bestselling books.
86
261499
2020
ื”ื ื” ืื—ื“ ืžื”ืกืคืจื™ื ืจื‘ื™ ื”ืžื›ืจ ืฉืœื•.
04:23
Here's a reviewer online, on Amazon.
87
263519
3413
ื•ื”ื ื” ืžื‘ืงืจ ืื™ื ื˜ืจื ื˜ื™, ื‘ืืžื–ื•ืŸ.
04:26
My favorite, by Nicodemus Jones, is,
88
266932
2657
ื”ื‘ื™ืงื•ืจืช ืฉืื ื™ ื”ื›ื™ ืื•ื”ื‘ ืฉืœ ื ื™ืงื•ื“ืžื•ืก ื’'ื•ื ืก, ื”ื™ื,
04:29
"Whatever else it might do, it will touch your soul."
89
269589
3808
"ื™ื•ืชืจ ืžื›ืœ ื“ื‘ืจ ืื—ื“, ื–ื” ื™ื’ืข ื‘ื ืฉืžืชืš."
04:33
And of course, you might suspect
90
273397
1403
ื•ื›ืžื•ื‘ืŸ, ืืคืฉืจ ืœื—ืฉื•ื“
04:34
that Nicodemus Jones is R.J. Ellory.
91
274800
2627
ืฉื ื™ืงื•ื“ืžื•ืก ื’'ื•ื ืก ื”ื•ื ืจ.ื’'. ืืœืจื•ื™ื™.
04:37
He wrote very, very positive reviews about himself. Surprise, surprise.
92
277427
4687
ื”ื•ื ื›ืชื‘ ื‘ื™ืงื•ืจื•ืช ืžืื•ื“ ืžืื•ื“ ื—ื™ื•ื‘ื™ื•ืช ืขืœ ืขืฆืžื•, ื›ืžื” ืžืคืชื™ืข.
04:42
Now this Sock Puppet stuff isn't actually that new.
93
282114
3260
ืขื›ืฉื™ื• ื”ืงื˜ืข ืฉืœ ื‘ื•ื‘ืช ื”ื’ืจื‘ ื”ื–ื• ื”ื•ื ืœืžืขืฉื” ืœื ื—ื“ืฉ ื›"ื›.
04:45
Walt Whitman also did this back in the day,
94
285374
3167
ื’ื ื•ื•ืœื˜ ื•ื™ื˜ืžืŸ ืขืฉื” ืืช ื–ื” ื‘ื–ืžื ื•,
04:48
before there was Internet technology. Sock Puppet
95
288541
3055
ืœืคื ื™ ื˜ื›ื ื•ืœื•ื’ื™ืช ื”ืื™ื ื˜ืจื ื˜. ื‘ื•ื‘ืช ื”ื’ืจื‘
04:51
becomes interesting when we get to scale,
96
291596
2768
ืžืชื—ื™ืœื” ืœื”ื™ื•ืช ืžืขื ื™ื™ื ืช ื›ืฉืงื ื” ื”ืžื™ื“ื” ื’ื“ืœ,
04:54
which is the domain of the Chinese Water Army.
97
294364
2518
ื•ื–ื• ื›ื‘ืจ ื”ืžืžืœื›ื” ืฉืœ "ืฆื‘ื ื”ืžื™ื ืฉืœ ืกื™ืŸ".
04:56
Chinese Water Army refers to thousands of people
98
296882
2436
"ืฆื‘ื ื”ืžื™ื ืฉืœ ืกื™ืŸ" ืžืชื™ื™ื—ืก ืœืืœืคื™ ื”ืื ืฉื™ื
04:59
in China that are paid small amounts of money
99
299318
3048
ื‘ืกื™ืŸ ืฉืžืงื‘ืœื™ื ืกื›ื•ืžื™ ื›ืกืฃ ืงื˜ื ื™ื
05:02
to produce content. It could be reviews. It could be
100
302366
3034
ื›ื“ื™ ืœื™ื™ืฆืจ ืชื•ื›ืŸ. ื–ื• ื™ื›ื•ืœื” ืœื”ื™ื•ืช ืกืงื™ืจื”.
05:05
propaganda. The government hires these people,
101
305400
2559
ื–ื• ื™ื›ื•ืœื” ืœื”ื™ื•ืช ืชืขืžื•ืœื”. ื”ืžืžืฉืœ ืžืขืกื™ืง ืืช ื”ืื ืฉื™ื ื”ืืœื•,
05:07
companies hire them, all over the place.
102
307959
2628
ื—ื‘ืจื•ืช ืžืขืกื™ืงื•ืช ืื•ืชืŸ, ื‘ื›ืœ ืžืงื•ื.
05:10
In North America, we call this Astroturfing,
103
310587
3617
ื‘ืฆืคื•ืŸ ืืžืจื™ืงื”, ืื ื—ื ื• ืงื•ืจืื™ื ืœื–ื” "ืœื”ื™ื˜ื•ืช ืžื•ื“ืจื›ืช",
05:14
and Astroturfing is very common now. There's a lot of concerns about it.
104
314204
3438
ื•ืœื”ื™ื˜ื•ืช ืžื•ื“ืจื›ืช ื”ื™ื ืžืื•ื“ ื ืคื•ืฆื” ื›ื™ื•ื. ื”ื™ื ืžืขื•ืจืจืช ื”ืจื‘ื” ื“ืื’ื”.
05:17
We see this especially with product reviews, book reviews,
105
317642
3227
ืื ื—ื ื• ืจื•ืื™ื ืืช ื–ื” ื‘ืขื™ืงืจ ื‘ืกืงื™ืจื•ืช ืฉืœ ืžื•ืฆืจื™ื, ื‘ื™ืงื•ืจืช ืกืคืจื™ื,
05:20
everything from hotels to whether that toaster is a good toaster or not.
106
320869
4795
ื‘ื›ืœ ื ื•ืฉื ื”ื—ืœ ืžืžืœื•ื ื•ืช ื•ืขื“ ืœื’ื‘ื™ ืื ื”ื˜ื•ืกื˜ืจ ื˜ื•ื‘ ืื• ืœื.
05:25
Now, looking at these three reviews, or these three types of deception,
107
325664
3918
ืขื›ืฉื™ื•, ื›ืฉืžืกืชื›ืœื™ื ืขืœ ืฉืœื•ืฉืช ื”ืกื•ื’ื™ื ื”ืืœื• ืฉืœ ื‘ื™ืงื•ืจื•ืช, ืื• ืฉืœ ืจืžืื•ืช,
05:29
you might think, wow, the Internet is really making us
108
329582
2737
ืืคืฉืจ ืื•ืœื™ ืœื—ืฉื•ื‘, ื•ื•ืื•, ื”ืื™ื ื˜ืจื ื˜ ืžืžืฉ ื”ื•ืคืš ืื•ืชื ื•
05:32
a deceptive species, especially when you think about
109
332319
3209
ืœื™ืฆื•ืจื™ื ืจืžืื™ื, ื‘ืžื™ื•ื—ื“ ื›ืฉื—ื•ืฉื‘ื™ื
05:35
the Astroturfing, where we can see deception brought up to scale.
110
335528
4602
ืขืœ "ืœื”ื™ื˜ื•ืช ืžื•ื“ืจื›ืช", ืฉืฉื ืจื•ืื™ื ืืช ืจืžืื•ืช ืฉืžื‘ื•ืฆืขืช ื‘ืงื ื” ืžื™ื“ื” ื’ื“ื•ืœ.
05:40
But actually, what I've been finding is very different from that.
111
340130
4738
ืื‘ืœ ืœืžืขืฉื”, ืžื” ืฉืžืฆืื ื• ื”ื•ื ืžืื•ื“ ืฉื•ื ื” ืžื–ื”.
05:44
Now, let's put aside the online anonymous sex chatrooms,
112
344868
3249
ืขื›ืฉื™ื•, ื‘ื•ืื• ื ื ื™ื— ื‘ืฆื“ ืืช ื—ื“ืจื™ ืฉื™ื—ื•ืช ื”ืกืงืก ื”ืžืงื•ื•ื ื™ื,
05:48
which I'm sure none of you have been in.
113
348117
1899
ืฉืื ื™ ื‘ื˜ื•ื— ืฉืืฃ ืื—ื“ ืžื›ื ืœื ื”ื™ื” ื‘ื”ื.
05:50
I can assure you there's deception there.
114
350016
2329
ืื ื™ ื™ื›ื•ืœ ืœื”ื‘ื˜ื™ื— ืœื›ื ืฉื™ืฉ ืฉื ืจืžืื•ืช.
05:52
And let's put aside the Nigerian prince who's emailed you
115
352345
2709
ื•ื‘ื•ืื• ื ื ื™ื— ื‘ืฆื“ ืืช ื”ื ืกื™ืš ื”ื ื™ื’ืจื™ ืฉืฉืœื— ืœื›ื ืžื™ื™ืœ
05:55
about getting the 43 million out of the country. (Laughter)
116
355054
3228
ืœื’ื‘ื™ ื”ื‘ืจื—ืช 43 ืžื™ืœื™ื•ืŸ ืžื—ื•ืฅ ืœืžื“ื™ื ื”. (ืฆื—ื•ืง)
05:58
Let's forget about that guy, too.
117
358282
1680
ื‘ื•ืื• ื ืฉื›ื— ื’ื ืžื›ืœ ื–ื”, ื—ื‘ืจื™ื.
05:59
Let's focus on the conversations between our friends
118
359962
2944
ื‘ื•ืื• ื ืชืžืงื“ ื‘ืฉื™ื—ื•ืช ืขื ื”ื—ื‘ืจื™ื ืฉืœื ื•
06:02
and our family and our coworkers and our loved ones.
119
362906
2147
ื•ืขื ื”ืžืฉืคื—ื•ืช ืฉืœื ื• ื•ืขื ื”ืขืžื™ืชื™ื ืฉืœื ื• ื•ื™ืงื™ืจื™ื ื•.
06:05
Those are the conversations that really matter.
120
365053
2408
ืืœื• ื”ืฉื™ื—ื•ืช ืฉื‘ืืžืช ื—ืฉื•ื‘ื•ืช.
06:07
What does technology do to deception with those folks?
121
367461
4240
ืžื” ืขื•ืฉื” ื”ื˜ื›ื ื•ืœื•ื’ื™ื” ืœืจืžืื•ืช ื‘ื—ื‘ืจ'ื” ื”ืืœื•?
06:11
Here's a couple of studies. One of the studies we do
122
371701
3075
ื”ื ื” ื›ืžื” ืžื—ืงืจื™ื. ืื—ื“ ื”ืžื—ืงืจื™ื ืฉืื ื—ื ื• ืขื•ืฉื™ื
06:14
are called diary studies, in which we ask people to record
123
374776
3371
ื ืงืจื ืžื—ืงืจื™ ื™ื•ืžืŸ, ืฉื‘ื• ืื ื—ื ื• ืžื‘ืงืฉื™ื ืžืื ืฉื™ื ืœืชืขื“
06:18
all of their conversations and all of their lies for seven days,
124
378147
3566
ืืช ื›ืœ ื”ืฉื™ื—ื•ืช ืฉืœื”ื ื•ืืช ื›ืœ ื”ืฉืงืจื™ื ืฉืœื”ื ื‘ืžืฉืš 7 ื™ืžื™ื,
06:21
and what we can do then is calculate how many lies took place
125
381713
3105
ื•ืžื” ืฉืื ื—ื ื• ืื– ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ื–ื” ืœื—ืฉื‘ ื›ืžื” ืฉืงืจื™ื ื”ื™ื•
06:24
per conversation within a medium, and the finding
126
384818
2948
ื‘ื›ืœ ืฉื™ื—ื” ื‘ืžื“ื™ื•ื, ื•ื”ืžืžืฆืื™ื
06:27
that we get that surprises people the most is that email
127
387766
2524
ืฉืงื™ื‘ืœื ื• ืฉืžืคืชื™ืขื™ื ืืช ื”ืื ืฉื™ื ื”ื›ื™ ื”ืจื‘ื” ื–ื” ืฉืื™ืžื™ื™ืœ
06:30
is the most honest of those three media.
128
390290
3279
ื”ื•ื ื”ื›ื™ ื›ืŸ ืžื‘ื™ืŸ ืฉืœื•ืฉ ื”ืžื“ื™ื•ืช.
06:33
And it really throws people for a loop because we think,
129
393569
2401
ื•ื–ื” ืžืžืฉ ืžืคืชื™ืข ืื ืฉื™ื ื›ื™ ืื ื—ื ื• ื—ื•ืฉื‘ื™ื,
06:35
well, there's no nonverbal cues, so why don't you lie more?
130
395970
3736
ืื™ืŸ ื‘ื–ื” ืกื™ืžื ื™ื ืœื-ืžื™ืœื•ืœื™ื™ื, ืื– ืœืžื” ืืชื” ืœื ืžืฉืงืจ ื™ื•ืชืจ?
06:39
The phone, in contrast, the most lies.
131
399706
4304
ื”ื˜ืœืคื•ืŸ, ืœืขื•ืžืช ื–ืืช, ื”ื›ื™ ื”ืจื‘ื” ืฉืงืจื™ื.
06:44
Again and again and again we see the phone is the device
132
404010
1946
ืฉื•ื‘ ื•ืฉื•ื‘ ื•ืฉื•ื‘ ืื ื—ื ื• ืจื•ืื™ื ืฉื”ื˜ืœืคื•ืŸ ื”ื•ื ื”ืžื›ืฉื™ืจ
06:45
that people lie on the most, and perhaps because of the Butler Lie ambiguities I was telling you about.
133
405956
4718
ืฉืื ืฉื™ื ืžืฉืงืจื™ื ื‘ื• ื”ื›ื™ ื”ืจื‘ื”, ื•ืื•ืœื™ ื‘ื’ืœืœ ืื™ ื”ื‘ื”ื™ืจื•ืช ืฉืœ ืฉืงืจ ื”ืžืฉืจืช ืฉื“ื™ื‘ืจืชื™ ืขืœื™ื•.
06:50
This tends to be very different from what people expect.
134
410674
3975
ื–ื” ื‘ื“ืจ"ื› ืžืื•ื“ ืฉื•ื ื” ืžืžื” ืฉืื ืฉื™ื ืžืฆืคื™ื.
06:54
What about rรฉsumรฉs? We did a study in which we had
135
414649
3224
ื•ืžื” ืœื’ื‘ื™ ืงื•ืจื•ืช ื—ื™ื™ื? ืขืจื›ื ื• ืžื—ืงืจ ืฉื‘ื• ื‘ื™ืงืฉื ื•
06:57
people apply for a job, and they could apply for a job
136
417873
2544
ืžืื ืฉื™ื ืœื”ื’ื™ืฉ ืžื•ืขืžื“ื•ืช ืœืžืฉืจื”, ื•ื”ื ื™ื›ืœื• ืœื”ื’ื™ืฉ ืžื•ืขืžื“ื•ืช
07:00
either with a traditional paper rรฉsumรฉ, or on LinkedIn,
137
420417
3514
ืื• ื‘ืฆื•ืจื” ื”ืžืกื•ืจืชื™ืช ืฉืœ ืงื•ืจื•ืช ื—ื™ื™ื ืขืœ ื ื™ื™ืจ, ืื• ื‘- LinkedIn,
07:03
which is a social networking site like Facebook,
138
423931
2822
ืฉื–ื” ืืชืจ ื—ื‘ืจืชื™ ื›ืžื• ืคื™ื™ืกื‘ื•ืง,
07:06
but for professionals -- involves the same information as a rรฉsumรฉ.
139
426753
3567
ืื‘ืœ ืœืื ืฉื™ ืžืงืฆื•ืข - ื™ืฉ ื‘ื• ืืช ืื•ืชื” ืื™ื ืคื•ืจืžืฆื™ื” ื›ืžื• ื‘ืงื•"ื—.
07:10
And what we found, to many people's surprise,
140
430320
2614
ื•ืžื” ืฉื’ื™ืœื™ื ื•, ืœื”ืคืชืขืชื ืฉืœ ืจื‘ื™ื,
07:12
was that those LinkedIn rรฉsumรฉs were more honest
141
432934
2795
ื–ื” ืฉืงื•"ื— ื‘- LinkedIn ื”ื™ื• ื›ื ื™ื ื™ื•ืชืจ
07:15
on the things that mattered to employers, like your
142
435729
1824
ื‘ื“ื‘ืจื™ื ืฉื—ืฉื•ื‘ื™ื ืœืžืขืกื™ืงื™ื, ื›ืžื•
07:17
responsibilities or your skills at your previous job.
143
437553
4151
ืชื—ื•ืžื™ ื”ืื—ืจื™ื•ืช ืฉืœืš ืื• ื”ื›ื™ืฉื•ืจื™ื ืฉืœืš ื‘ืชืคืงื™ื“ ื”ืงื•ื“ื.
07:21
How about Facebook itself?
144
441704
2296
ื•ืžื” ืœื’ื‘ื™ ืคื™ื™ืกื‘ื•ืง ืขืฆืžื•?
07:24
You know, we always think that hey, there are these
145
444000
1882
ืืชื ื™ื•ื“ืขื™ื, ืื ื—ื ื• ืชืžื™ื“ ื—ื•ืฉื‘ื™ื ืฉืฉื ื–ื” ืื™ื–ื•
07:25
idealized versions, people are just showing the best things
146
445882
2129
ื’ืจืกื” ืื™ื“ื™ืืœื™ืกื˜ื™ืช, ืื ืฉื™ื ืกืชื ืžืจืื™ื ืืช ื”ื“ื‘ืจื™ื ื”ื›ื™ ื˜ื•ื‘ื™ื
07:28
that happened in their lives. I've thought that many times.
147
448011
2656
ืฉืงืจื• ืœื”ื ื‘ื—ื™ื™ื. ื’ื ืื ื™ ื—ืฉื‘ืชื™ ื›ืš ืœืคืขืžื™ื.
07:30
My friends, no way they can be that cool and have good of a life.
148
450667
3068
ื”ื—ื‘ืจื™ื ืฉืœื™, ืื™ืŸ ืžืฆื‘ ืฉื”ื ื›ืืœื• ืžื’ื ื™ื‘ื™ื ืื• ืฉื™ืฉ ืœื”ื ื—ื™ื™ื ื›"ื› ื˜ื•ื‘ื™ื.
07:33
Well, one study tested this by examining people's personalities.
149
453735
3821
ื•ื‘ื›ืŸ, ืžื—ืงืจ ืื—ื“ ื‘ื“ืง ืืช ื–ื” ืข"ื™ ื‘ื—ื™ื ืช ื”ืื™ืฉื™ื•ืช ืฉืœ ื”ืื ืฉื™ื.
07:37
They had four good friends of a person judge their personality.
150
457556
4218
ื‘ื™ืงืฉื• ืžืืจื‘ืขื” ื—ื‘ืจื™ื ื˜ื•ื‘ื™ื ืฉืœ ืื•ืชื• ืื“ื ืœืชืืจ ืืช ื”ืื™ืฉื™ื•ืช ืฉืœื•.
07:41
Then they had strangers, many strangers,
151
461774
1956
ื•ืื– ื‘ื™ืงืฉื• ืžืื ืฉื™ื ื–ืจื™ื, ื”ืจื‘ื” ืื ืฉื™ื
07:43
judge the person's personality just from Facebook,
152
463730
2528
ืœืชืืจ ืืช ื”ืื™ืฉื™ื•ืช ืฉืœ ื”ืื“ื ืจืง ืœืคื™ ื”ืคื™ื™ืกื‘ื•ืง ืฉืœื•,
07:46
and what they found was those judgments of the personality
153
466258
2429
ื•ืžื” ืฉื”ื ืžืฆืื• ื”ื™ื” ืฉื”ืชื™ืื•ืจื™ื ืฉืœ ื”ืื™ืฉื™ื•ืช
07:48
were pretty much identical, highly correlated,
154
468687
2509
ื”ื™ื• ื“ื™ ื–ื”ื™ื, ื”ืชืืžื” ื’ื‘ื•ื”ื”,
07:51
meaning that Facebook profiles really do reflect our actual personality.
155
471196
4373
ื›ืœื•ืžืจ ืฉืคืจื•ืคื™ืœ ื”ืคื™ื™ืกื‘ื•ืง ื‘ืืžืช ืžืฉืงืฃ ืืช ื”ืื™ืฉื™ื•ืช ื”ืืžื™ืชื™ืช ืฉืœื ื•.
07:55
All right, well, what about online dating?
156
475569
2572
ื‘ืกื“ืจ, ืื– ืžื” ืœื’ื‘ื™ ื“ื™ื™ื˜ื™ื ืžืงื•ื•ื ื™ื?
07:58
I mean, that's a pretty deceptive space.
157
478141
1500
ื›ืœื•ืžืจ, ื–ื” ืชื—ื•ื ื“ื™ ืžื˜ืขื”.
07:59
I'm sure you all have "friends" that have used online dating. (Laughter)
158
479641
3535
ืื ื™ ื‘ื˜ื•ื— ืฉืœื›ื•ืœื›ื ื™ืฉ "ื—ื‘ืจื™ื" ืฉื”ืฉืชืžืฉื• ื‘ืืชืจื™ ืฉื™ื“ื•ื›ื™ื. (ืฆื—ื•ืง)
08:03
And they would tell you about that guy that had no hair
159
483176
2058
ื•ื”ื ื™ืกืคืจื• ืœื›ื ืขืœ ื”ื‘ื—ื•ืจ ืฉื”ื’ื™ืข ื‘ืœื™ ืฉื™ืขืจ
08:05
when he came, or the woman that didn't look at all like her photo.
160
485234
3030
ืื• ื”ื‘ื—ื•ืจื” ืฉืœื ื ืจืืชื” ื‘ื›ืœืœ ื›ืžื• ื‘ืชืžื•ื ื” ืฉืœื”.
08:08
Well, we were really interested in it, and so what we did
161
488264
3136
ื•ื‘ื›ืŸ, ืžืื•ื“ ื”ืชืขื ื™ื™ื ื• ื‘ื–ื”, ืื– ืžื” ืฉืขืฉื™ื ื•
08:11
is we brought people, online daters, into the lab,
162
491400
3107
ื”ื™ื” ืœื”ื‘ื™ื ืื ืฉื™ื ืฉื™ืฆืื• ืœื“ื™ื™ื˜ื™ื ืžืงื•ื•ื ื™ื, ืืœ ื”ืžืขื‘ื“ื”,
08:14
and then we measured them. We got their height
163
494507
1480
ื•ืื– ืžื“ื“ื ื• ืื•ืชื. ื‘ื“ืงื• ืืช ื”ื’ื•ื‘ื” ืฉืœื”ื
08:15
up against the wall, we put them on a scale, got their weight --
164
495987
3881
ืžื•ืœ ื”ืงื™ืจ, ื”ืขืœื ื• ืื•ืชื ืขืœ ื”ืžืฉืงืœ ื•ืจืื™ื ื• ื›ืžื” ื”ื ืฉื•ืงืœื™ื...
08:19
ladies loved that -- and then we actually got their driver's license to get their age.
165
499868
3895
ื ืฉื™ื ืžืื•ื“ ืื”ื‘ื• ืืช ื–ื”...ื•ืื– ื’ื ื‘ื™ืงืฉื ื• ืืช ืจื™ืฉื™ื•ืŸ ื”ื ื”ื™ื’ื” ืฉืœื”ื ื›ื“ื™ ืœื‘ืจืจ ืืช ื’ื™ืœื.
08:23
And what we found was very, very interesting.
166
503763
4311
ื•ืžื” ืฉืžืฆืื ื• ื”ื™ื” ืžืื•ื“ ืžืื•ื“ ืžืขื ื™ื™ืŸ.
08:28
Here's an example of the men and the height.
167
508074
3929
ื”ื ื” ื“ื•ื’ืžื” ืœื’ื‘ืจื™ื ื•ื’ื•ื‘ื”.
08:32
Along the bottom is how tall they said they were in their profile.
168
512003
2470
ืœืžื˜ื” ื–ื” ื”ื’ื•ื‘ื” ืฉื”ื ืฆื™ื™ื ื• ื‘ืคืจื•ืคื™ืœ ืฉืœื”ื.
08:34
Along the y-axis, the vertical axis, is how tall they actually were.
169
514473
4862
ื•ื‘ืฆื™ืจ ื”- Y, ื”ืื ื›ื™, ื–ื” ื”ื’ื•ื‘ื” ื”ืืžื™ืชื™ ืฉืœื”ื.
08:39
That diagonal line is the truth line. If their dot's on it,
170
519335
3076
ื”ืงื• ื”ืืœื›ืกื•ื ื™ ื”ื–ื” ื”ื•ื ืงื• ื”ืืžืช. ืื ื”ื ืงื•ื“ื” ืฉืœื”ื ืขืœื™ื•,
08:42
they were telling exactly the truth.
171
522411
1554
ืื– ื”ื ืืžืจื• ื‘ื“ื™ื•ืง ืืช ื”ืืžืช.
08:43
Now, as you see, most of the little dots are below the line.
172
523965
3113
ืขื›ืฉื™ื•, ื›ืคื™ ืฉืืชื ืจื•ืื™ื, ืจื•ื‘ ื”ื ืงื•ื“ื•ืช ื”ืงื˜ื ื•ืช ื ืžืฆืื•ืช ืžืชื—ืช ืœืงื•.
08:47
What it means is all the guys were lying about their height.
173
527078
2867
ืžื” ืฉื–ื” ืื•ืžืจ ื–ื” ืฉื›ืœ ื”ื’ื‘ืจื™ื ืฉื™ืงืจื• ืœื’ื‘ื™ ื”ื’ื•ื‘ื” ืฉืœื”ื.
08:49
In fact, they lied about their height about nine tenths of an inch,
174
529945
2941
ืœืžืขืฉื”, ื”ื ืฉื™ืงืจื• ื‘ืขืจืš ื‘-2.3 ืก"ืž,
08:52
what we say in the lab as "strong rounding up." (Laughter)
175
532886
6276
ืžื” ืฉืื ื—ื ื• ืžื›ื ื™ื ื‘ืžืขื‘ื“ื” "ืขื™ื’ื•ืœ ื—ื–ืง ืœืžืขืœื”". (ืฆื—ื•ืง)
08:59
You get to 5'8" and one tenth, and boom! 5'9".
176
539162
4503
ืืชื” ืžื’ื™ืข ืœ- 58.1 ืื™ื ืฅ' ื•ืื– ื‘ื•ื! 5.9 ืื™ื ืฅ'.
09:03
But what's really important here is, look at all those dots.
177
543665
1998
ืื‘ืœ ืžื” ืฉื‘ืืžืช ื—ืฉื•ื‘ ื›ืืŸ, ืชืจืื• ืืช ื›ืœ ื”ื ืงื•ื“ื•ืช ื”ืืœื•.
09:05
They are clustering pretty close to the truth. What we found
178
545663
2566
ื”ืŸ ืžืงื•ื‘ืฆื•ืช ื“ื™ ืงืจื•ื‘ ืœืืžืช. ืžื” ืฉื’ื™ืœื ื•
09:08
was 80 percent of our participants did indeed lie
179
548229
2408
ื”ื™ื” ืฉ- 80% ืžื”ืžืฉืชืชืคื™ื ืฉืœื• ืื›ืŸ ืฉื™ืงืจื•
09:10
on one of those dimensions, but they always lied by a little bit.
180
550637
3595
ื‘ืื—ื“ ืžื”ืžื“ื“ื™ื ื”ืืœื•, ืื‘ืœ ื”ื ืชืžื™ื“ ืฉื™ืงืจื• ื‘ืงืฆืช.
09:14
One of the reasons is pretty simple. If you go to a date,
181
554232
3024
ืื—ืช ื”ืกื™ื‘ื•ืช ืœื›ืš ื”ื™ื ื“ื™ ืคืฉื•ื˜ื”. ืื ืืชื” ืžื’ื™ืข ืœื“ื™ื™ื˜,
09:17
a coffee date, and you're completely different than what you said,
182
557256
3601
ืœืคื’ื™ืฉื” ื‘ื‘ื™ืช ืงืคื”, ื•ื”ืื“ื ืฉื•ื ื” ืœื’ืžืจื™ ืžืžื” ืฉื”ื•ื ืืžืจ,
09:20
game over. Right? So people lied frequently, but they lied
183
560857
3619
ื”ืžืฉื—ืง ื ื’ืžืจ. ื ื›ื•ืŸ? ืื– ืื ืฉื™ื ืฉื™ืงืจื• ืœืขื™ืชื™ื ืชื›ื•ืคื•ืช, ืื‘ืœ ื”ื ืฉื™ืงืจื•
09:24
subtly, not too much. They were constrained.
184
564476
3469
ื‘ืฆื•ืจื” ืžืขื•ื“ื ืช, ืœื ื™ื•ืชืจ ืžื“ื™. ื”ื ื”ื’ื‘ื™ืœื• ืืช ืขืฆืžื.
09:27
Well, what explains all these studies? What explains the fact
185
567945
2887
ื•ื‘ื›ืŸ, ืžื” ืžืกื‘ื™ืจ ืืช ื›ืœ ื”ืžื—ืงืจื™ื ื”ืืœื•? ืžื” ืžืกื‘ื™ืจ ืืช ื”ืขื•ื‘ื“ื”
09:30
that despite our intuitions, mine included,
186
570832
4635
ืฉืœืžืจื•ืช ื”ืื™ื ื˜ื•ืื™ืฆื™ื” ืฉืœื ื•, ื›ื•ืœืœ ืฉืœื™,
09:35
a lot of online communication, technologically-mediated
187
575467
3529
ื”ืจื‘ื” ืžื”ืชืงืฉื•ืจืช ื”ืžืงื•ื•ื ืช, ืฉื”ื˜ื›ื ื•ืœื•ื’ื™ื” ืžืชื•ื•ื›ืช ื‘ื”,
09:38
communication, is more honest than face to face?
188
578996
4028
ื”ื™ื ื™ื•ืชืจ ื›ื ื” ืžืืฉืจ ืคื ื™ื ืžื•ืœ ืคื ื™ื?
09:43
That really is strange. How do we explain this?
189
583024
2489
ื–ื” ื‘ืืžืช ืžืฉื•ื ื”. ืื™ืš ืื ื—ื ื• ืžืกื‘ื™ืจื™ื ืืช ื–ื”?
09:45
Well, to do that, one thing is we can look at the deception-detection literature.
190
585513
3379
ื•ื‘ื›ืŸ, ื›ื“ื™ ืœืขืฉื•ืช ืืช ื–ื”, ืื—ื“ ื”ื“ื‘ืจื™ื ืฉืืคืฉืจ ืœื‘ื“ื•ืง ื–ื” ืืช ื”ืกืคืจื•ืช ืขืœ ื–ื™ื”ื•ื™ ืจืžืื•ืช.
09:48
It's a very old literature by now, it's coming up on 50 years.
191
588892
4345
ื–ื” ืกืคืจื•ืช ืžืื•ื“ ื™ืฉื ื”, ืžืชืงืจื‘ืช ืœ- 50 ืฉื ื”.
09:53
It's been reviewed many times. There's been thousands of trials,
192
593237
2662
ืกืงืจื• ืื•ืชื” ื›ื‘ืจ ื”ืจื‘ื” ืคืขืžื™ื. ื”ื™ื• ื›ื‘ืจ ืืœืคื™ ื ื™ืกื™ื•ื ื•ืช
09:55
hundreds of studies, and there's some really compelling findings.
193
595899
3981
ืžืื•ืช ืžื—ืงืจื™ื, ื•ื™ืฉ ื›ืžื” ืžืžืฆืื™ื ืžืจืชืงื™ื ืžืื•ื“.
09:59
The first is, we're really bad at detecting deception,
194
599880
3236
ื”ืจืืฉื•ืŸ ื”ื•ื, ืื ื—ื ื• ืžืื•ื“ ื’ืจื•ืขื™ื ื‘ื–ื™ื”ื•ื™ ืจืžืื•ืช,
10:03
really bad. Fifty-four percent accuracy on average when you have to tell
195
603116
4116
ืžืื•ื“ ื’ืจื•ืขื™ื. 54% ื“ื™ื•ืง ื‘ืžืžื•ืฆืข ื›ืืฉืจ ืืชื” ืฆืจื™ืš ืœื–ื”ื•ืช
10:07
if somebody that just said a statement is lying or not.
196
607232
3384
ืื ืžื™ืฉื”ื• ืฉื›ืจื’ืข ืืžืจ ืžืฉื”ื• ืฉื™ืงืจ ืื• ืœื.
10:10
That's really bad. Why is it so bad?
197
610616
3192
ื–ื” ืžืžืฉ ื’ืจื•ืข. ืœืžื” ื–ื” ื›"ื› ื’ืจื•ืข?
10:13
Well it has to do with Pinocchio's nose.
198
613808
2530
ื•ื‘ื›ืŸ ื–ื” ืงืฉื•ืจ ืœืืฃ ืฉืœ ืคื™ื ื•ืงื™ื•.
10:16
If I were to ask you guys, what do you rely on
199
616338
2359
ืื ื”ื™ื™ืชื™ ืฉื•ืืœ ืืชื›ื, ืขืœ ืžื” ืืชื ืžืกืชืžื›ื™ื
10:18
when you're looking at somebody and you want to find out
200
618697
2245
ื›ืืฉืจ ืืชื ืžืกืชื›ืœื™ื ืขืœ ืžื™ืฉื”ื• ื•ืจื•ืฆื™ื ืœื“ืขืช
10:20
if they're lying? What cue do you pay attention to?
201
620942
2930
ืื ื”ื•ื ืžืฉืงืจ? ืœืื™ื–ื” ืกื™ืžืŸ ืืชื ืฉืžื™ื ืœื‘?
10:23
Most of you would say that one of the cues you look at
202
623872
2430
ืจื•ื‘ื›ื ื”ื™ื™ืชื ืื•ืžืจื™ื ืฉืื—ื“ ื”ืกื™ืžื ื™ื ืฉืืชื ืฉืžื™ื ืœื‘ ืืœื™ื•
10:26
is the eyes. The eyes are the window to the soul.
203
626302
2728
ื–ื” ื”ืขื™ื ื™ื™ื. ื”ืขื™ื ื™ื™ื ื”ื ื”ืจืื™ ืฉืœ ื”ื ืคืฉ.
10:29
And you're not alone. Around the world, almost every culture,
204
629030
2403
ื•ืืชื ืœื ืœื‘ื“. ื‘ื›ืœ ื”ืขื•ืœื, ื›ืžืขื˜ ื‘ื›ืœ ืชืจื‘ื•ืช,
10:31
one of the top cues is eyes. But the research
205
631433
2863
ืื—ื“ ื”ืกื™ืžื ื™ื ื”ืจืืฉื•ื ื™ื ื”ืŸ ื”ืขื™ื ื™ื™ื. ืื‘ืœ ื”ืžื—ืงืจ
10:34
over the last 50 years says there's actually no reliable cue
206
634296
3824
ืฉืœ ืœืžืขืœื” ืž- 50 ืฉื ื” ืื•ืžืจ ืฉืœืžืขืฉื” ืื™ืŸ ืืฃ ืกื™ืžืŸ ืืžื™ืŸ
10:38
to deception, which blew me away, and it's one of
207
638120
2997
ืœืจืžืื•ืช, ืฉื–ื” ืžืžืฉ ืžื“ื”ื™ื ืื•ืชื™,
10:41
the hard lessons that I learned when I was customs officer.
208
641117
2355
ื•ื–ื” ืื—ื“ ืžื”ืœืงื—ื™ื ื”ืงืฉื™ื ืฉืœืžื“ืชื™ ื›ืฉื”ื™ื™ืชื™ ืคืงื™ื“ ืžื›ืก.
10:43
The eyes do not tell us whether somebody's lying or not.
209
643472
2430
ื”ืขื™ื ื™ื™ื ืœื ืื•ืžืจื•ืช ืœื ื• ืื ืžื™ืฉื”ื• ืžืฉืงืจ ืื• ืœื.
10:45
Some situations, yes -- high stakes, maybe their pupils dilate,
210
645902
3018
ื‘ืกื™ื˜ื•ืืฆื™ื•ืช ืžืกื•ื™ืžื•ืช, ื‘ืžืฆื‘ื™ ืกื™ื›ื•ืŸ ื’ื‘ื•ื”, ืื•ืœื™ ื”ืื™ืฉื•ื ื™ื ืžืชืจื—ื‘ื™ื,
10:48
their pitch goes up, their body movements change a little bit,
211
648920
3504
ื”ืงื•ืœ ืฉืœื”ื ื’ื‘ื•ื” ื™ื•ืชืจ, ืชื ื•ืขื•ืช ื”ื’ื•ืฃ ืฉืœื”ื ืžืฉืชื ื•ืช ืงืฆืช,
10:52
but not all the time, not for everybody, it's not reliable.
212
652424
4832
ืื‘ืœ ืœื ืชืžื™ื“, ืœื ืืฆืœ ื›ื•ืœื, ื–ื” ืœื ืืžื™ืŸ.
10:57
Strange. The other thing is that just because you can't see me
213
657256
3378
ืžื•ื–ืจ. ื”ื“ื‘ืจ ื”ื ื•ืกืฃ ื”ื•ื, ืจืง ื‘ื’ืœืœ ืฉืืชื” ืœื ื™ื›ื•ืœ ืœืจืื•ืช ืื•ืชื™
11:00
doesn't mean I'm going to lie. It's common sense,
214
660634
2419
ื–ื” ืœื ืื•ืžืจ ืฉืื ื™ ืืฉืงืจ. ื–ื” ื”ื’ื™ื•ืŸ ื‘ืจื™ื,
11:03
but one important finding is that we lie for a reason.
215
663053
2907
ืื‘ืœ ืžืžืฆื ืื—ื“ ื—ืฉื•ื‘ ื”ื•ื ืฉื™ืฉ ืกื™ื‘ื” ืœื›ืš ืฉืื ื—ื ื• ืžืฉืงืจื™ื.
11:05
We lie to protect ourselves or for our own gain
216
665960
2367
ืื ื—ื ื• ืžืฉืงืจื™ื ื›ื“ื™ ืœื”ื’ืŸ ืขืœ ืขืฆืžื ื• ืื• ืœื˜ื•ื‘ืช ืจื•ื•ื— ืื™ืฉื™ ืฉืœื ื•
11:08
or for somebody else's gain.
217
668327
2827
ืื• ืœื˜ื•ื‘ืช ืจื•ื•ื— ืฉืœ ืื“ื ืื—ืจ.
11:11
So there are some pathological liars, but they make up
218
671154
1930
ืื– ื™ืฉ ื›ืžื” ืฉืงืจื ื™ื ืคืชื•ืœื•ื’ื™ื™ื, ืื‘ืœ ื”ื ืžื”ื•ื•ื™ื
11:13
a tiny portion of the population. We lie for a reason.
219
673084
3513
ืจืง ื—ืœืง ืงื˜ื ื˜ืŸ ืžื”ืื•ื›ืœื•ืกื™ื™ื”. ื™ืฉ ืกื™ื‘ื” ืœืฉืงืจื™ื ืฉืœื ื•.
11:16
Just because people can't see us doesn't mean
220
676597
1631
ืจืง ื‘ื’ืœืœ ืฉืื ืฉื™ื ืœื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืื•ืชื ื• ื–ื” ืœื ืื•ืžืจ
11:18
we're going to necessarily lie.
221
678228
2271
ืฉืื ื—ื ื• ื‘ื”ื›ืจื— ื ืฉืงืจ.
11:20
But I think there's actually something much more
222
680499
1553
ืื‘ืœ ืื ื™ ื—ื•ืฉื‘ ืฉื™ืฉ ืœืžืขืฉื” ืžืฉื”ื•
11:22
interesting and fundamental going on here. The next big
223
682052
3274
ื™ื•ืชืจ ืžืขื ื™ื™ืŸ ื•ื™ืกื•ื“ื™ ืฉืงื•ืจื” ื›ืืŸ. ื”ื“ื‘ืจ ื”ื’ื“ื•ืœ ื”ื‘ื
11:25
thing for me, the next big idea, we can find by going
224
685326
3797
ืžื‘ื—ื™ื ืชื™, ืืช ื”ืจืขื™ื•ืŸ ื”ื’ื“ื•ืœ ื”ื‘ื, ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืจืื•ืช
11:29
way back in history to the origins of language.
225
689123
3139
ืื ื ื‘ื™ื˜ ืื—ื•ืจื” ืœื”ื™ืกื˜ื•ืจื™ื” ืฉืœ ืžืงื•ืจื•ืช ื”ืฉืคื”.
11:32
Most linguists agree that we started speaking somewhere
226
692262
3887
ืจื•ื‘ ื”ื‘ืœืฉื ื™ื ืžืกื›ื™ืžื™ื ืฉื”ืชื—ืœื ื• ืœื“ื‘ืจ ื‘ืขืจืš
11:36
between 50,000 and 100,000 years ago. That's a long time ago.
227
696149
3168
ืœืคื ื™ 50,000 ืขื“ 100,000 ืฉื ื™ื. ื–ื” ืžืื•ื“ ืžื–ืžืŸ.
11:39
A lot of humans have lived since then.
228
699317
2616
ื”ืจื‘ื” ื‘ื ื™ ืื“ื ื—ื™ื• ืžืื–.
11:41
We've been talking, I guess, about fires and caves
229
701933
2423
ืื ื—ื ื• ื“ื™ื‘ืจื ื•, ืื ื™ ืžื ื™ื—, ืขืœ ืืฉ ื•ืžืขืจื•ืช
11:44
and saber-toothed tigers. I don't know what they talked about,
230
704356
3107
ื•ืขืœ ื˜ื™ื’ืจื™ืกื™ื ืืจื•ื›ื™-ื ื™ื‘ื™ื. ืื ื™ ืœื ื™ื•ื“ืข ืขืœ ืžื” ื”ื ื“ื™ื‘ืจื•,
11:47
but they were doing a lot of talking, and like I said,
231
707463
2518
ืื‘ืœ ื”ื ื“ื™ื‘ืจื• ื”ืžื•ืŸ, ื•ื›ืžื• ืฉืืžืจืชื™,
11:49
there's a lot of humans evolving speaking,
232
709981
2545
ื™ืฉ ื”ืจื‘ื” ื‘ื ื™ ืื“ื ืฉืžืชืคืชื—ื™ื ื•ืžื“ื‘ืจื™ื,
11:52
about 100 billion people in fact.
233
712526
2806
ื›- 100 ืžื™ืœื™ืืจื“ ืื ืฉื™ื ืœืžืขืฉื”.
11:55
What's important though is that writing only emerged
234
715332
2782
ืื‘ืœ ืžื” ืฉื—ืฉื•ื‘ ื”ื•ื ืฉื”ื›ืชื‘ ื”ืชืคืชื— ืจืง
11:58
about 5,000 years ago. So what that means is that
235
718114
3587
ืœืคื ื™ ื›- 5,000 ืฉื ื”. ืื– ืžื” ืฉื–ื” ืื•ืžืจ ื–ื”
12:01
all the people before there was any writing,
236
721701
2392
ืฉื›ืœ ื”ืื ืฉื™ื ืœืคื ื™ ืฉื”ื™ื” ื›ืชื‘,
12:04
every word that they ever said, every utterance
237
724093
5586
ื›ืœ ืžื™ืœื” ืฉื”ื ืืžืจื• ืื™-ืคืขื, ื›ืœ ื”ื‘ืจื”
12:09
disappeared. No trace. Evanescent. Gone.
238
729679
4752
ื ืขืœืžื•. ืื™ืŸ ื–ื›ืจ. ื”ืชืื“ื•. ืื™ื ื.
12:14
So we've been evolving to talk in a way in which
239
734431
4065
ืื– ืื ื—ื ื• ื”ืชืคืชื—ื ื• ืœื›ื“ื™ ื“ื™ื‘ื•ืจ ื‘ืื•ืคืŸ
12:18
there is no record. In fact, even the next big change
240
738496
5917
ืฉืื™ืŸ ืœื• ืฉื•ื ืชื™ืขื•ื“. ืœืžืขืฉื”, ืืคื™ืœื• ื”ืฉื™ื ื•ื™ ื”ื’ื“ื•ืœ ื”ื‘ื
12:24
to writing was only 500 years ago now,
241
744413
2468
ืœื›ืชื™ื‘ื” ื”ืชืจื—ืฉ ืจืง ืœืคื ื™ 500 ืฉื ื”,
12:26
with the printing press, which is very recent in our past,
242
746881
2379
ืขื ืžื›ื•ื ืช ื”ื“ืคื•ืก, ืฉื”ืŸ ื—ืœืง ืžื”ืขื‘ืจ ื”ืžืื•ื“ ืงืจื•ื‘ ืฉืœื ื•,
12:29
and literacy rates remained incredibly low right up until World War II,
243
749260
4242
ื•ืฉื™ืขื•ืจื™ ื™ื“ื™ืขืช ืงืจื•ื ื•ื›ืชื•ื‘ ื ืฉืืจื• ื ืžื•ื›ื™ื ืžืื•ื“ ื›ืžืขื˜ ืขื“ ืžืœื”"ืข ื”-2,
12:33
so even the people of the last two millennia,
244
753502
3384
ื›ืš ืฉืืคื™ืœื• ื”ืื ืฉื™ื ืฉืœ ืฉื ื™ ื”ืืœืคื™ื ื”ืื—ืจื•ื ื™ื,
12:36
most of the words they ever said -- poof! -- disappeared.
245
756886
5032
ืจื•ื‘ ื”ืžื™ืœื™ื ืฉื”ื ืืžืจื•...ืคื•ืฃ!... ื ืขืœืžื•.
12:41
Let's turn to now, the networked age.
246
761918
3591
ื‘ื•ืื• ื ื—ื–ื•ืจ ืœืขื›ืฉื™ื•, ืขื™ื“ืŸ ื”ืชืงืฉื•ืจืช.
12:45
How many of you have recorded something today?
247
765509
4712
ื›ืžื” ืžื›ื ืชื™ืขื“ื• ืžืฉื”ื• ื”ื™ื•ื?
12:50
Anybody do any writing today? Did anybody write a word?
248
770221
3177
ืžื™ืฉื”ื• ื›ืชื‘ ืžืฉื”ื• ื”ื™ื•ื? ืžื™ืฉื”ื• ื›ืชื‘ ืžื™ืœื”?
12:53
It looks like almost every single person here recorded something.
249
773398
4226
ื ืจืื” ื›ืื™ืœื• ื›ืœ ืื—ื“ ืžื”ืื ืฉื™ื ืคื” ืชื™ืขื“ ืžืฉื”ื•.
12:57
In this room, right now, we've probably recorded more
250
777624
3048
ื‘ื—ื“ืจ ื”ื–ื”, ืขื›ืฉื™ื•, ืกื‘ื™ืจ ืœื”ื ื™ื— ืฉืชืขื“ื ื• ื™ื•ืชืจ
13:00
than almost all of human pre-ancient history.
251
780672
4542
ืžื›ืžืขื˜ ื›ืœ ื”ืื ื•ืฉื•ืช ืฉืœืคื ื™ ื”ืขืช ื”ืขืชื™ืงื”.
13:05
That is crazy. We're entering this amazing period
252
785214
3230
ื–ื” ืžื˜ื•ืจืฃ. ืื ื—ื ื• ื ื›ื ืกื™ื ืœืชืงื•ืคื” ืžื“ื”ื™ืžื”
13:08
of flux in human evolution where we've evolved to speak
253
788444
4015
ืฉืœ ืฉื˜ืฃ ื‘ื”ืชืคืชื—ื•ืช ื”ืื ื•ืฉื™ืช ืฉื‘ื• ื”ืชืคืชื—ื ื• ืœื›ื“ื™ ื“ื™ื‘ื•ืจ
13:12
in a way in which our words disappear, but we're in
254
792459
2701
ื‘ืื•ืคืŸ ืฉื‘ื• ื”ืžื™ืœื™ื ืฉืœื ื• ื ืขืœืžื•ืช, ืื‘ืœ ืื ื—ื ื•
13:15
an environment where we're recording everything.
255
795160
2903
ื‘ืกื‘ื™ื‘ื” ืฉื‘ื” ืื ื—ื ื• ืžืชืขื“ื™ื ื”ื›ื•ืœ.
13:18
In fact, I think in the very near future, it's not just
256
798063
2337
ืœืžืขืฉื”, ืื ื™ ื—ื•ืฉื‘ ืฉื‘ืขืชื™ื“ ื”ืžืื•ื“ ืงืจื•ื‘,
13:20
what we write that will be recorded, everything we do
257
800400
2349
ืœื ืจืง ืžื” ืฉืื ื—ื ื• ื›ื•ืชื‘ื™ื ื™ื”ื™ื” ืžืชื•ืขื“, ื›ืœ ืžื” ืฉืื ื—ื ื• ืขื•ืฉื™ื
13:22
will be recorded.
258
802749
2333
ื™ื”ื™ื” ืžืชื•ืขื“.
13:25
What does that mean? What's the next big idea from that?
259
805082
4456
ืžื” ื–ื” ืื•ืžืจ? ืžื” ื”ืจืขื™ื•ืŸ ื”ื’ื“ื•ืœ ื”ื‘ื ืฉืœ ื–ื”?
13:29
Well, as a social scientist, this is the most amazing thing
260
809538
4250
ื•ื‘ื›ืŸ, ื›ืื™ืฉ ืžื“ืขื™ ื”ื—ื‘ืจื”, ื–ื” ื”ื“ื‘ืจ ื”ืžื“ื”ื™ื ื‘ื™ื•ืชืจ
13:33
I have ever even dreamed of. Now, I can look at
261
813788
3547
ืฉืื™ ืคืขื ื—ืœืžืชื™ ืขืœื™ื•. ืขื›ืฉื™ื•, ืื ื™ ื™ื›ื•ืœ ืœื”ืชื‘ื•ื ืŸ
13:37
all those words that used to, for millennia, disappear.
262
817335
3611
ื‘ื›ืœ ื”ืžื™ืœื™ื ื”ืืœื• ืฉืขื“ ืขื›ืฉื™ื•, ื‘ืžืฉืš ืืœืฃ ืฉื ื”, ื”ื™ื• ื ืขืœืžื•ืช.
13:40
I can look at lies that before were said and then gone.
263
820946
4248
ืื ื™ ื™ื›ื•ืœ ืœื”ืกืชื›ืœ ืขืœ ืฉืงืจื™ื ืฉืงื•ื“ื ื”ื™ื• ื ืืžืจื™ื ื•ืื– ื ืขืœืžื™ื.
13:45
You remember those Astroturfing reviews that we were
264
825194
3520
ืืชื ื–ื•ื›ืจื™ื ืืช ื”ื‘ื™ืงื•ืจืช ืฉืงืฉื•ืจื•ืช ืœ"ืœื”ื™ื˜ื•ืช ืžื•ื“ืจื›ืช",
13:48
talking about before? Well, when they write a fake review,
265
828714
3503
ืฉื“ื™ื‘ืจื ื• ืขืœื™ื” ืงื•ื“ื? ืื–, ื›ืฉื”ื ื›ื•ืชื‘ื™ื ื‘ื™ืงื•ืจืช ืžื–ื•ื™ืคืช,
13:52
they have to post it somewhere, and it's left behind for us.
266
832217
2704
ื”ื ื—ื™ื™ื‘ื™ื ืœืคืจืกื ืื•ืชื” ืื™ืคืฉื”ื•, ื•ื–ื” ื ืฉืืจ ืฉื ื‘ืฉื‘ื™ืœื™ื ื•,
13:54
So one thing that we did, and I'll give you an example of
267
834921
2435
ืื– ื“ื‘ืจ ืื—ื“ ืฉืขืฉื™ื ื•, ื•ืื ื™ ืืชืŸ ืœื›ื ื“ื•ื’ืžื”
13:57
looking at the language, is we paid people
268
837356
2495
ืœื‘ื—ื™ื ืช ื”ืฉืคื”, ืฉื™ืœืžื ื• ืœืื ืฉื™ื
13:59
to write some fake reviews. One of these reviews is fake.
269
839851
3535
ื›ื“ื™ ืฉื™ื›ืชื‘ื• ื‘ื™ืงื•ืจื•ืช ืžื–ื•ื™ืคื•ืช. ืื—ืช ืžื”ื‘ื™ืงื•ืจื•ืช ื”ืืœื• ืžื–ื•ื™ืคืช.
14:03
The person never was at the James Hotel.
270
843386
1943
ื”ืื“ื ื”ื–ื” ืืฃ ืคืขื ืœื ื”ื™ื” ื‘ืžืœื•ืŸ ื’'ื™ื™ืžืก.
14:05
The other review is real. The person stayed there.
271
845329
2922
ื”ื‘ื™ืงื•ืจื•ืช ื”ืฉื ื™ื” ืืžื™ืชื™ืช. ื”ืื ืฉื™ื ืฉื”ื• ืฉื.
14:08
Now, your task now is to decide
272
848251
3527
ืขื›ืฉื™ื•, ื”ืžืฉื™ืžื” ืฉืœื›ื ืขื›ืฉื™ื• ื”ื™ื ืœื”ื—ืœื™ื˜
14:11
which review is fake?
273
851778
4073
ืื™ื–ื• ื‘ื™ืงื•ืจืช ื”ื™ื ืžื–ื•ื™ืคืช?
14:15
I'll give you a moment to read through them.
274
855851
4186
ืื ื™ ืืชืŸ ืœื›ื ืจื’ืข ืœืงืจื•ื ืืช ื›ื•ืœืŸ.
14:20
But I want everybody to raise their hand at some point.
275
860037
2287
ืื‘ืœ ืื ื™ ืจื•ืฆื” ืฉื›ื•ืœื ื™ืฆื‘ื™ืขื• ื‘ืฉืœื‘ ืžืกื•ื™ื,
14:22
Remember, I study deception. I can tell if you don't raise your hand.
276
862324
4231
ืชื–ื›ืจื•, ืื ื™ ื—ื•ืงืจ ืจืžืื•ื™ื•ืช. ืื ื™ ื™ื›ื•ืœ ืœื“ืขืช ืื ืœื ืชืฆื‘ื™ืขื•.
14:26
All right, how many of you believe that A is the fake?
277
866555
4570
ื˜ื•ื‘, ื›ืžื” ืžื›ื ืžืืžื™ื ื™ื ืฉื' ื”ื™ื ื”ืžื–ื•ื™ืคืช?
14:33
All right. Very good. About half.
278
873154
2142
ื‘ืกื“ืจ. ื˜ื•ื‘ ืžืื•ื“. ื‘ืขืจืš ื—ืฆื™.
14:35
And how many of you think that B is?
279
875296
3615
ื•ื›ืžื” ืžื›ื ื—ื•ืฉื‘ื™ื ืฉื‘' ืžื–ื•ื™ืคืช?
14:38
All right. Slightly more for B.
280
878911
2529
ื‘ืกื“ืจ. ืงืฆืช ื™ื•ืชืจ ืœื‘'.
14:41
Excellent. Here's the answer.
281
881440
2592
ืžืฆื•ื™ืŸ. ื”ื ื” ื”ืชืฉื•ื‘ื”.
14:44
B is a fake. Well done second group. You dominated the first group. (Laughter)
282
884032
6581
ื‘' ื”ื™ื ื”ืžื–ื•ื™ืคืช. ื›ืœ ื”ื›ื‘ื•ื“ ืœืงื‘ื•ืฆื” ื”ืฉื ื™ื™ื”. ืืชื ื ื™ืฆื—ืชื ืืช ื”ืจืืฉื•ื ื”. (ืฆื—ื•ืง)
14:50
You're actually a little bit unusual. Every time we demonstrate this,
283
890613
2846
ื”ืืžืช ืฉืืชื ื˜ื™ืคื” ื—ืจื™ื’ื™ื. ื‘ื›ืœ ืคืขื ืฉืื ื—ื ื• ืžื“ื’ื™ืžื™ื ืืช ื–ื”,
14:53
it's usually about a 50-50 split, which fits
284
893459
2746
ื”ื—ืœื•ืงื” ื”ื™ื ืฉืœ ื‘ืขืจืš 50-50, ืžื” ืฉืžืกืชื“ืจ
14:56
with the research, 54 percent. Maybe people here
285
896205
2646
ืขื ื”ืžื—ืงืจ, 54%. ืื•ืœื™ ืื ืฉื™ื ื›ืืŸ
14:58
in Winnipeg are more suspicious and better at figuring it out.
286
898851
3770
ื‘ื•ื™ื ื™ืคื’ ื”ื ื™ื•ืชืจ ื—ืฉื“ื ื™ื™ื ื•ื™ื•ืชืจ ื˜ื•ื‘ื™ื ื‘ืœื”ื‘ื™ืŸ ื“ื‘ืจื™ื ื›ืืœื•.
15:02
Those cold, hard winters, I love it.
287
902621
2688
ื”ื—ื•ืจืคื™ื ื”ืงืจื™ื ื•ื”ืงืฉื™ื ื”ืืœื•, ืื ื™ ืžืช ืขืœ ื–ื”.
15:05
All right, so why do I care about this?
288
905309
3054
ื˜ื•ื‘, ืื– ืœืžื” ืื›ืคืช ืœื™ ืžื–ื”?
15:08
Well, what I can do now with my colleagues in computer science
289
908363
3268
ืžื” ืฉืื ื™ ื™ื›ื•ืœ ืœืขืฉื•ืช ืขื›ืฉื™ื• ื‘ื™ื—ื“ ืขื ื”ืขืžื™ืชื™ื ืฉืœื™ ื‘ืžื“ืขื™ ื”ืžื—ืฉื‘
15:11
is we can create computer algorithms that can analyze
290
911631
3232
ื–ื” ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื™ืฆื•ืจ ืืœื’ื•ืจื™ืชื ืžืžื•ื—ืฉื‘ ืฉื™ื›ื•ืœ ืœื ืชื—
15:14
the linguistic traces of deception.
291
914863
2900
ืืช ืขืงื‘ื•ืช ื”ืฉืคื” ืฉืœ ื”ืจืžืื•ืช.
15:17
Let me highlight a couple of things here
292
917763
1833
ืื ื™ ืื“ื’ื™ืฉ ืคื” ื›ืžื” ื“ื‘ืจื™ื
15:19
in the fake review. The first is that liars tend to think
293
919596
3443
ื‘ื‘ื™ืงื•ืจืช ื”ืžื–ื•ื™ืคืช. ื”ื“ื‘ืจ ื”ืจืืฉื•ืŸ ื–ื” ืฉืฉืงืจื ื™ื ื ื•ื˜ื™ื ืœื—ืฉื•ื‘
15:23
about narrative. They make up a story:
294
923039
1588
ืขืœ ื ืจื˜ื™ื‘ื™ื. ื”ื ืžืžืฆื™ืื™ื ืกื™ืคื•ืจ:
15:24
Who? And what happened? And that's what happened here.
295
924627
3186
ืžื™? ื•ืžื” ืงืจื”? ื•ื–ื” ืžื” ืฉืงืจื” ื›ืืŸ.
15:27
Our fake reviewers talked about who they were with
296
927813
2289
ื”ืžื‘ืงืจืช ื”ืžื–ื•ื™ืคืช ืฉืœื ื• ืžื“ื‘ืจืช ืขืœ ืขื ืžื™ ื”ื ื”ื™ื•
15:30
and what they were doing. They also used the first person singular, I,
297
930102
4765
ื•ืžื” ื”ื ืขืฉื•. ื”ื ื’ื ืžืฉืชืžืฉื™ื ื‘ื’ื•ืฃ ืจืืฉื•ืŸ ื™ื—ื™ื“, ืื ื™,
15:34
way more than the people that actually stayed there.
298
934867
2469
ื”ืจื‘ื” ื™ื•ืชืจ ืžืื ืฉื™ื ืฉื‘ืืžืช ืฉื”ื• ื‘ืžืœื•ืŸ.
15:37
They were inserting themselves into the hotel review,
299
937336
4696
ื”ื ื”ื›ื ื™ืกื• ืืช ืขืฆืžื ืœื‘ื™ืงื•ืจืช ื”ืžืœื•ืŸ,
15:42
kind of trying to convince you they were there.
300
942032
1696
ื›ืื™ืœื• ืžื ืกื™ื ืœืฉื›ื ืข ืื•ืชืš ืฉื”ื ื”ื™ื• ืฉื.
15:43
In contrast, the people that wrote the reviews that were actually there,
301
943728
4015
ืœืขื•ืžืช ื–ืืช, ื”ืื ืฉื™ื ืฉื›ืชื‘ื• ืืช ื”ื‘ื™ืงื•ืจืช ื•ื‘ืืžืช ื”ื™ื• ืฉื,
15:47
their bodies actually entered the physical space,
302
947743
2432
ืฉื”ื’ื•ืฃ ืฉืœื”ื ืžืžืฉ ื ื›ื ืก ืœืžืจื—ื‘ ื”ืคื™ื–ื™ ื”ื–ื”,
15:50
they talked a lot more about spatial information.
303
950175
2899
ื”ื ื“ื™ื‘ืจื• ื”ืจื‘ื” ืขืœ ืžื™ื“ืข ืžืจื—ื‘ื™.
15:53
They said how big the bathroom was, or they said,
304
953074
2517
ื”ื ืฆื™ื™ื ื• ื›ืžื” ื’ื“ื•ืœ ื—ื“ืจ ื”ืืžื‘ื˜ื™ื”, ืื• ื”ื ืืžืจื•,
15:55
you know, here's how far shopping is from the hotel.
305
955591
4520
ืืชื ื™ื•ื“ืขื™ื, ื–ื” ื”ืžืจื—ืง ืžื”ืžืœื•ืŸ ืœืžืจื›ื– ื”ืงื ื™ื•ืช.
16:00
Now, you guys did pretty well. Most people perform at chance at this task.
306
960111
4161
ืขื›ืฉื™ื•, ืืชื ื”ืฆืœื—ืชื ื™ื—ืกื™ืช. ืืฆืœ ืจื•ื‘ ื”ืื ืฉื™ื ื–ื” ืขื ื™ื™ืŸ ืฉืœ ืžื–ืœ,
16:04
Our computer algorithm is very accurate, much more accurate
307
964272
2758
ื”ืืœื’ื•ืจื™ืชื ื”ืžืžื•ื—ืฉื‘ ืฉืœื ื• ืžืื•ื“ ืžื“ื•ื™ืง, ื”ืจื‘ื” ื™ื•ืชืจ ืžื“ื•ื™ืง
16:07
than humans can be, and it's not going to be accurate all the time.
308
967030
3291
ืžืžื” ืฉื‘ื ื™ ืื“ื ื™ื›ื•ืœื™ื ืœื”ื™ื•ืช, ื•ื”ื•ื ืœื ื™ื”ื™ื” ืžื“ื•ื™ืง ื‘ื›ืœ ื”ืžืงืจื™ื.
16:10
This isn't a deception-detection machine to tell
309
970321
2030
ื–ื• ืœื ืžื›ื•ื ืช ื–ื™ื”ื•ื™ ืจืžืื•ืช ื›ื“ื™ ืœื‘ื“ื•ืง ืื
16:12
if your girlfriend's lying to you on text messaging.
310
972351
2501
ื”ื—ื‘ืจื” ืฉืœืš ืžืฉืงืจืช ืœืš ื‘ืกืžืก.
16:14
We believe that every lie now, every type of lie --
311
974852
3564
ืื ื—ื ื• ืžืืžื™ื ื™ื ืฉื›ืœ ืฉืงืจ ืขื›ืฉื™ื•, ื›ืœ ืกื•ื’ ืฉืœ ืฉืงืจ
16:18
fake hotel reviews, fake shoe reviews,
312
978416
3787
ื‘ื™ืงื•ืจืช ืžืœื•ืŸ ืžื–ื•ื™ืคื•ืช, ื‘ื™ืงื•ืจืช ื ืขืœื™ื™ื ืžื–ื•ื™ืคืช,
16:22
your girlfriend cheating on you with text messaging --
313
982203
2914
ื”ื—ื‘ืจื” ืฉืœืš ืฉื‘ื•ื’ื“ืช ื‘ืš ื‘ื”ื•ื“ืขื•ืช ื˜ืงืกื˜...
16:25
those are all different lies. They're going to have
314
985117
1505
ื›ืœ ืืœื• ื”ื ืฉืงืจื™ื ืฉื•ื ื™ื. ื™ื”ื™ื• ืœื”ื
16:26
different patterns of language. But because everything's
315
986622
2859
ืชื‘ื ื™ื•ืช ืฉื•ื ื•ืช ืฉืœ ืฉืคื”. ืื‘ืœ ื‘ื’ืœืœ ืฉื”ื›ื•ืœ
16:29
recorded now, we can look at all of those kinds of lies.
316
989481
4689
ืžืชื•ืขื“ ืขื›ืฉื™ื•, ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื”ืชื‘ื•ื ืŸ ืขืœ ื›ืœ ืกื•ื’ื™ ื”ืฉืงืจื™ื ื”ืืœื•.
16:34
Now, as I said, as a social scientist, this is wonderful.
317
994170
3993
ืขื›ืฉื™ื•, ื›ืžื• ืฉืืžืจืชื™, ื›ืื™ืฉ ืžื“ืขื™ ื”ื—ื‘ืจื”, ื–ื” ื ื”ื“ืจ.
16:38
It's transformational. We're going to be able to learn
318
998163
2087
ื–ื” ืžื—ื•ืœืœ ืฉื™ื ื•ื™. ืื ื—ื ื• ื ื”ื™ื” ืžืกื•ื’ืœื™ื ืœืœืžื•ื“
16:40
so much more about human thought and expression,
319
1000250
3802
ื›"ื› ื”ืจื‘ื” ื™ื•ืชืจ ืขืœ ื“ืจื›ื™ ื”ื—ืฉื™ื‘ื” ื•ื”ื‘ื™ื˜ื•ื™ ืฉืœ ื‘ื ื™ ื”ืื“ื,
16:44
about everything from love to attitudes,
320
1004052
4398
ื‘ื›ืœ ืชื—ื•ื ื”ื—ืœ ืžืื”ื‘ื” ื•ืขื“ ื”ืชื ื”ื’ื•ืช,
16:48
because everything is being recorded now, but
321
1008450
1960
ื›ื™ ื”ื›ื•ืœ ืžืชื•ืขื“ ืขื›ืฉื™ื•, ืื‘ืœ
16:50
what does it mean for the average citizen?
322
1010410
2404
ืžื” ื–ื” ืื•ืžืจ ืœื’ื‘ื™ ื”ืื–ืจื— ื”ืžืžื•ืฆืข?
16:52
What does it mean for us in our lives?
323
1012814
2802
ืžื” ื–ื” ืื•ืžืจ ืœื’ื‘ื™ื ื• ื‘ื—ื™ื™ื ืฉืœื ื•?
16:55
Well, let's forget deception for a bit. One of the big ideas,
324
1015616
3673
ืื–, ื‘ื•ืื• ื ืฉื›ื— ืœืจื’ืข ืืช ื”ืจืžืื•ืช. ืื—ื“ ืžื”ืจืขื™ื•ื ื•ืช ื”ื’ื“ื•ืœื™ื,
16:59
I believe, is that we're leaving these huge traces behind.
325
1019289
3688
ืื ื™ ืžืืžื™ืŸ, ื–ื” ืฉืื ื—ื ื• ืžืฉืื™ืจื™ื ืขืงื‘ื•ืช ืื“ื™ืจื™ื ืžืื—ืจื™ื ื•.
17:02
My outbox for email is massive,
326
1022977
3216
ืชื™ื‘ืช ื”ื“ื•ืืจ ื”ื™ื•ืฆื ืฉืœื™ ื”ื™ื ืขืฆื•ืžื”,
17:06
and I never look at it. I write all the time,
327
1026193
3337
ื•ืื ื™ ืืฃ ืคืขื ืœื ืžืกืชื›ืœ ื‘ื”. ืื ื™ ื›ื•ืชื‘ ื›ืœ ื”ื–ืžืŸ,
17:09
but I never look at my record, at my trace.
328
1029530
3438
ืื‘ืœ ืื ื™ ืืฃ ืคืขื ืœื ืžืกืชื›ืœ ื‘ืชื™ืขื•ื“, ืขืœ ื”ืขืงื‘ื•ืช ืฉืœื™.
17:12
And I think we're going to see a lot more of that,
329
1032968
1567
ื•ืื ื™ ื—ื•ืฉื‘ ืฉืื ื—ื ื• ื ืจืื” ื”ืจื‘ื” ื™ื•ืชืจ ืžื–ื”,
17:14
where we can reflect on who we are by looking at
330
1034535
3161
ื‘ืžื•ื‘ืŸ ืฉืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืชื”ื•ืช ืขืœ ืงื ืงื ื™ื ื• ืข"ื™ ื”ืชื‘ื•ื ื ื•ืช
17:17
what we wrote, what we said, what we did.
331
1037696
3618
ื‘ืžื” ืฉื›ืชื‘ื ื•, ืžื” ืฉืืžืจื ื•, ืžื” ืฉืขืฉื™ื ื•.
17:21
Now, if we bring it back to deception, there's a couple
332
1041314
2272
ืขื›ืฉื™ื•, ืื ื ื—ื–ื•ืจ ืœืจืžืื•ืช, ื™ืฉ ืฉื ื™
17:23
of take-away things here.
333
1043586
1977
ื“ื‘ืจื™ื ืฉืฆืจื™ืš ืœืงื—ืช ืžืคื”.
17:25
First, lying online can be very dangerous, right?
334
1045563
4488
ืจืืฉื™ืช, ืฉืงืจื™ื ืžืงื•ื•ื ื™ื ื™ื›ื•ืœื™ื ืœื”ื™ื•ืช ืžืื•ื“ ืžืกื•ื›ื ื™ื, ื ื›ื•ืŸ?
17:30
Not only are you leaving a record for yourself on your machine,
335
1050051
2706
ืœื ืจืง ืฉืื ื—ื ื• ืžืฉืื™ืจื™ื ืชื™ืขื•ื“ ืœืขืฆืžื ื• ืขืœ ื”ืžื›ืฉื™ืจ,
17:32
but you're leaving a record on the person that you were lying to,
336
1052757
4275
ืืœื ืื ื—ื ื• ืžืฉืื™ืจื™ื ืชื™ืขื•ื“ ื’ื ืืฆืœ ื”ืื“ื ืฉืœื• ืฉื™ืงืจื ื•,
17:37
and you're also leaving them around for me to analyze
337
1057032
1760
ื•ืืชื ื’ื ืžืฉืื™ืจื™ื ืืช ื–ื” ืฉื ื‘ืฉื‘ื™ืœ ืฉืื ื™ ืื•ื›ืœ ืœื ืชื—
17:38
with some computer algorithms.
338
1058792
1454
ืืช ื–ื” ืขื ืื™ื–ื• ืืœื’ื•ืจื™ืชื ืžื—ืฉื•ื‘ื™.
17:40
So by all means, go ahead and do that, that's good.
339
1060246
3173
ืื– ื‘ื‘ืงืฉื”, ืชืขืฉื• ืืช ื–ื”, ื–ื” ื˜ื•ื‘.
17:43
But when it comes to lying and what we want to do
340
1063419
4154
ืื‘ืœ ื‘ื›ืœ ืžื” ืฉื ื•ื’ืข ืœืฉืงืจื™ื ื•ืœืžื” ืฉืื ื—ื ื• ืจื•ืฆื™ื ืœืขืฉื•ืช
17:47
with our lives, I think we can go back to
341
1067573
2553
ืขื ื”ื—ื™ื™ื ืฉืœื ื•, ืื ื™ ื—ื•ืฉื‘ ืฉืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื—ื–ื•ืจ ืืœ
17:50
Diogenes and Confucius. And they were less concerned
342
1070126
3749
ื“ื™ื•ื’ื ืก ื•ืงื•ื ืคื•ืฆื™ื•ืก. ื”ื ื”ื™ื• ืžื•ื˜ืจื“ื™ื ืคื—ื•ืช
17:53
about whether to lie or not to lie, and more concerned about
343
1073875
2832
ืžื”ืฉืืœื” ื”ืื ืœืฉืงืจ ืื• ืœื ืœืฉืงืจ, ื•ื™ื•ืชืจ ืžื•ื˜ืจื“ื™ื
17:56
being true to the self, and I think this is really important.
344
1076707
3285
ืœื’ื‘ื™ ืœื”ื™ื•ืช ื›ืŸ ืœืขืฆืžืš, ื•ืื ื™ ื—ื•ืฉื‘ ืฉื–ื” ืžืื•ื“ ื—ืฉื•ื‘.
17:59
Now, when you are about to say or do something,
345
1079992
4183
ืขื›ืฉื™ื•, ื›ืฉืืชื ืขื•ืžื“ื™ื ืœื”ื’ื™ื“ ืื• ืœืขืฉื•ืช ืžืฉื”ื•,
18:04
we can think, do I want this to be part of my legacy,
346
1084175
4560
ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื—ืฉื•ื‘, ื”ืื ืื ื™ ืจื•ืฆื” ืฉื–ื” ื™ื”ื™ื” ื—ืœืง ืžื”ืžื•ืจืฉืช ืฉืœื™,
18:08
part of my personal record?
347
1088735
2713
ื—ืœืง ืžื”ืชื™ืง ื”ืื™ืฉื™ ืฉืœื™?
18:11
Because in the digital age we live in now,
348
1091448
2657
ื›ื™ ื‘ืขื™ื“ืŸ ื”ื“ื™ื’ื™ื˜ืœื™ ืฉื‘ื• ืื ื—ื ื• ื—ื™ื™ื ืขื›ืฉื™ื•,
18:14
in the networked age, we are all leaving a record.
349
1094105
4464
ื‘ืขื™ื“ืŸ ื”ืžืงื•ื•ืŸ, ืื ื—ื ื• ื›ื•ืœื ื• ืžืฉืื™ืจื™ื ืื—ืจื™ื ื• ืชื™ืขื•ื“.
18:18
Thank you so much for your time,
350
1098569
1695
ืชื•ื“ื” ืจื‘ื” ืœื›ื ืขืœ ื–ืžื ื›ื,
18:20
and good luck with your record. (Applause)
351
1100264
4447
ื•ื‘ื”ืฆืœื—ื” ื‘ืชื™ืขื•ื“ ืฉืœื›ื. (ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7