This virtual lab will revolutionize science class | Michael Bodekaer

204,673 views ใƒป 2016-06-01

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Ido Dekkers ืžื‘ืงืจ: Zeeva Livshitz
00:12
Today, I am going to show you
0
12879
2002
ื”ื™ื•ื, ืื ื™ ืขื•ืžื“ ืœื”ืจืื•ืช ืœื›ื
00:14
how this tablet and this virtual-reality headset that I'm wearing
1
14905
4429
ืื™ืš ื”ื˜ืื‘ืœื˜ ื”ื–ื” ื•ืžืฉืงืคื™ ื”ืžืฆื™ืื•ืช ื”ืžื“ื•ืžื” ื”ืืœื” ืฉืื ื™ ื—ื•ื‘ืฉ
00:19
are going to completely revolutionize science education.
2
19358
4041
ืขื•ืžื“ื™ื ืœืขืฉื•ืช ืžื”ืคื›ื” ืฉืœืžื” ื‘ื—ื™ื ื•ืš ื”ืžื“ืขื™.
00:24
And I'm also going to show you
3
24100
1795
ื•ืื ื™ ื’ื ืืจืื” ืœื›ื
00:25
how it can make any science teacher more than twice as effective.
4
25919
4784
ืื™ืš ื–ื” ื™ื›ื•ืœ ืœืขืฉื•ืช ืืช ืœื™ืžื•ื“ื™ ื”ืžื“ืขื™ื ืืคืงื˜ื™ื‘ื™ื™ื ืคื™ ืฉืชื™ื™ื.
00:31
But before I show you how all of this is possible,
5
31124
3464
ืื‘ืœ ืœืคื ื™ ืฉืืจืื” ืœื›ื ืื™ืš ื›ืœ ื–ื” ืืคืฉืจื™,
00:34
let's talk briefly about why improving the quality of science education
6
34612
5539
ื‘ื•ืื• ื ื“ื‘ืจ ื‘ืงืฆืจื” ืขืœ ืœืžื” ืฉื™ืคื•ืจ ืื™ื›ื•ืช ื”ื—ื™ื ื•ืš ื”ืžื“ืขื™
00:40
is so vitally important.
7
40175
2440
ื”ื•ื ื›ืœ ื›ืš ื—ืฉื•ื‘.
00:43
If you think about it,
8
43513
1161
ืื ืืชื ื—ื•ืฉื‘ื™ื ืขืœ ื–ื”,
00:44
the world is growing incredibly fast.
9
44698
2275
ื”ืขื•ืœื ื’ื“ืœ ืžืžืฉ ืžื”ืจ,
00:47
And with that growth comes a whole list of growing challenges,
10
47322
3885
ื•ืขื ื”ื’ื“ื™ืœื” ื”ื–ื• ืžื’ื™ืขื” ืจืฉื™ืžื” ืฉืœืžื” ืฉืœ ืืชื’ืจื™ื ื’ื“ื•ืœื™ื,
00:51
challenges such as dealing with global warming,
11
51231
3013
ืืชื’ืจื™ื ื›ืžื• ืœื”ืชืžื•ื“ื“ ืขื ื”ื”ืชื—ืžืžื•ืช ื”ื’ืœื•ื‘ืœื™ืช,
00:54
solving starvation and water shortages
12
54268
2363
ืœืคืชื•ืจ ืืช ื”ืจืขื‘ ื•ืžื—ืกื•ืจ ื‘ืžื™ื
00:56
and curing diseases,
13
56655
1452
ื•ืจื™ืคื•ื™ ืžื—ืœื•ืช,
00:58
to name just a few.
14
58131
1525
ืื ืจืง ืœื”ื–ื›ื™ืจ ื›ืžื”.
01:00
And who, exactly, is going to help us solve all of these great challenges?
15
60402
5480
ื•ืžื™, ื‘ื“ื™ื•ืง, ื™ืขื–ื•ืจ ืœื ื• ืœืคืชื•ืจ ืืช ื›ืœ ื”ื‘ืขื™ื•ืช ื”ื’ื“ื•ืœื•ืช ื”ืืœื•?
01:06
Well, to a very last degree, it is these young students.
16
66733
3437
ื•ื‘ื›ืŸ, ื‘ืจืžื” ื’ื‘ื•ื”ื” ืžืื•ื“, ื–ื” ื”ืชืœืžื™ื“ื™ื ื”ืฆืขื™ืจื™ื.
01:10
This is the next generation of young, bright scientists.
17
70194
3842
ื–ื” ื”ื“ื•ืจ ื”ื‘ื ืฉืœ ืžื“ืขื ื™ื ืฆืขื™ืจื™ื ืžื‘ืจื™ืงื™ื.
01:14
And in many ways, we all rely on them
18
74060
3020
ื•ื‘ื”ืจื‘ื” ืžืงืจื™ื, ืื ื—ื ื• ืžืกืชืžื›ื™ื ืขืœื™ื”ื
01:17
for coming up with new, great innovations
19
77104
2802
ืœื”ื’ื™ืข ืœื”ืžืฆืื•ืช ื—ื“ืฉื•ืช ื•ื’ื“ื•ืœื•ืช
01:19
to help us solve all these challenges ahead of us.
20
79930
3711
ื›ื“ื™ ืœืขื–ื•ืจ ืœื ื• ืœืคืชื•ืจ ืืช ื›ืœ ื”ืืชื’ืจื™ื ืฉืขื•ืžื“ื™ื ื‘ืคื ื™ื ื•.
01:24
And so a couple of years back,
21
84708
1951
ื•ื›ืš ืœืคื ื™ ืžืกืคืจ ืฉื ื™ื,
01:26
my cofounder and I were teaching university students just like these,
22
86683
4359
ื”ืžื™ื™ืกื“ ื”ืฉื•ืชืฃ ืฉืœื™ ื•ืื ื™ ืœื™ืžื“ื ื• ืกื˜ื•ื“ื ื˜ื™ื ื‘ืื•ื ื™ื‘ืจืกื™ื˜ื” ื›ืžื• ืืœื•,
01:31
only the students we were teaching looked a little bit more like this here.
23
91066
5114
ืจืง ืฉื”ืกื˜ื•ื“ื ื˜ื™ื ืฉืœื™ืžื“ื ื• ื ืจืื• ืžืขื˜ ื™ื•ืชืจ ื›ื›ื”.
01:36
(Laughter)
24
96204
1064
(ืฆื—ื•ืง)
01:37
And yes, this is really the reality out there
25
97292
2838
ื•ื›ืŸ, ื–ื• ื‘ืืžืช ื”ืžืฆื™ืื•ืช ืฉื
01:40
in way too many universities around the world:
26
100154
3525
ื‘ื”ืจื‘ื” ื™ื•ืชืจ ืžื“ื™ ืื•ื ื™ื‘ืจืกื™ื˜ืื•ืช ืžืกื‘ื™ื‘ ืœืขื•ืœื:
01:43
students that are bored, disengaged
27
103703
2653
ืกื˜ื•ื“ื ื˜ื™ื ืžืฉื•ืขืžืžื™ื, ืžื ื•ืชืงื™ื
01:46
and sometimes not even sure why they're learning about a topic
28
106380
3605
ื•ืœืคืขืžื™ื ืœื ื‘ื˜ื•ื—ื™ื ืืคื™ืœื• ืœืžื”
01:50
in the first place.
29
110009
1199
ื”ื ื‘ื›ืœืœ ืœื•ืžื“ื™ื ื ื•ืฉื.
01:51
So we started looking around for new, innovative teaching methods,
30
111763
4334
ืื– ื”ืชื—ืœื ื• ืœื—ืคืฉ ืฉื™ื˜ื•ืช ืœื™ืžื•ื“ ื—ื“ืฉื ื™ื•ืช ื•ื—ื“ืฉื•ืช,
01:56
but what we found was quite disappointing.
31
116121
2823
ืื‘ืœ ืžื” ืฉื’ื™ืœื™ื ื• ื”ื™ื” ื“ื™ ืžืื›ื–ื‘.
01:58
We saw that books were being turned into e-books,
32
118968
3665
ืจืื™ื ื• ืฉืกืคืจื™ื ื”ืคื›ื• ืœืกืคืจื™ื ืืœืงื˜ืจื•ื ื™ื™ื,
02:03
blackboards were being turned into YouTube videos
33
123495
3016
ืœื•ื—ื•ืช ื”ืคื›ื• ืœืกืจื˜ื•ื ื™ ื™ื•ื˜ื™ื•ื‘
02:06
and lecture hall monologues were being turned into MOOCs --
34
126535
3144
ื•ืžื•ื ื•ืœื•ื’ื™ื ืฉืœ ื—ื“ืจื™ ื”ืจืฆืื•ืช ื”ืคื›ื• ืœ MOOCs --
02:09
massive online open courses.
35
129703
2301
ืงื•ืจืกื™ื ืคืชื•ื—ื™ื ืžืกื™ื‘ื™ื™ื ืžืงื•ื•ื ื™ื.
02:12
And if you think about it,
36
132694
1247
ื•ืื ืืชื ื—ื•ืฉื‘ื™ื ืขืœ ื–ื”,
02:13
all we're really doing here is taking the same content
37
133965
3583
ื›ืœ ืžื” ืฉืื ื—ื ื• ื‘ืืžืช ืขื•ืฉื™ื ื–ื” ืœืงื—ืช ืืช ืื•ืชื• ืชื•ื›ืŸ
02:17
and the same format,
38
137572
1548
ื•ืื•ืชื• ืคื•ืจืžื˜,
02:19
and bringing it out to more students --
39
139144
2926
ื•ืžื‘ื™ืื™ื ืื•ืชื• ืœื™ื•ืชืจ ืกื˜ื•ื“ื ื˜ื™ื --
02:22
which is great, don't get me wrong, that is really great --
40
142565
2838
ืฉื–ื” ืžืขื•ืœื”, ืืœ ืชื˜ืขื•, ื–ื” ื‘ืืžืช ืžืขื•ืœื” --
02:25
but the teaching method is still more or less the same,
41
145427
3627
ืื‘ืœ ืฉื™ื˜ืช ื”ืœื™ืžื•ื“ ื”ื™ื ืขื“ื™ื™ืŸ ืคื—ื•ืช ืื• ื™ื•ืชืจ ืื•ืชื• ื”ื“ื‘ืจ,
02:29
no real innovation there.
42
149078
2296
ืื™ืŸ ื—ื™ื“ื•ืฉ ืžืžืฉื™ ืคื”.
02:31
So we started looking elsewhere.
43
151863
2019
ืื– ื”ืชื—ืœื ื• ืœื”ื‘ื™ื˜ ื‘ืžืงื•ืžื•ืช ืื—ืจื™ื.
02:33
What we found was that flight simulators had been proven over and over again
44
153906
4627
ืžื” ืฉื’ื™ืœื™ื ื• ื”ื™ื” ืฉืžื“ืžื™ ื˜ื™ืกื” ื”ื•ื›ื—ื• ืฉื•ื‘ ื•ืฉื•ื‘
02:38
to be far more effective
45
158557
1467
ื”ืจื‘ื” ื™ื•ืชืจ ืืคืงื˜ื™ื‘ื™ื™ื
02:40
when used in combination with real, in-flight training to train the pilots.
46
160048
5266
ื›ืฉื”ื™ื• ื‘ืฉื™ืžื•ืฉ ื™ื—ื“ ืขื ืฉื™ืขื•ืจื™ ื˜ื™ืกื” ืืžื™ืชื™ื™ื ื›ื“ื™ ืœืืžืŸ ื˜ื™ื™ืกื™ื.
02:45
And so we thought to ourselves:
47
165338
1625
ื•ื›ืš ื—ืฉื‘ื ื• ืœืขืฆืžื ื•:
02:47
Why not just apply that to science?
48
167532
2337
ืœืžื” ืœื ื”ืฉืชืžืฉ ื‘ื–ื” ืœืžื“ืข?
02:49
Why not build a virtual laboratory simulator?
49
169893
4551
ืœืžื” ืœื ื ื‘ื ื” ืกื™ืžื•ืœื˜ื•ืจ ืžืขื‘ื“ื” ื•ื™ืจื˜ื•ืืœื™ืช?
02:55
Well, we did it.
50
175563
1248
ื•ื‘ื›ืŸ, ืขืฉื™ื ื• ืืช ื–ื”.
02:56
We basically set out to create
51
176835
1818
ื‘ืขื™ืงืจื•ืŸ ื™ืฆืื ื• ืœื™ืฆื•ืจ
02:58
a fully simulated, one-to-one, virtual reality laboratory simulator,
52
178677
5615
ืกื™ืžื•ืœื˜ื•ืจ ืžืขื‘ื“ื” ื‘ืžืฆื™ืื•ืช ืžื“ื•ืžื”,
03:04
where the students could perform experiments
53
184316
2197
ื‘ื• ื”ืกื˜ื•ื“ื ื˜ื™ื ื™ื•ื›ืœื• ืœื‘ืฆืข ื ื™ืกื•ื™ื™ื
03:06
with mathematical equations
54
186537
1910
ืขื ืžืฉื•ื•ืื•ืช ืžืชืžื˜ื™ื•ืช
03:08
that would simulate what would happen in a real-world lab.
55
188471
3219
ืฉื™ื•ื›ืœื• ืœื“ืžื•ืช ืžื” ื™ืงืจื” ื‘ืžืขื‘ื“ื” ื‘ืขื•ืœื ื”ืืžื™ืชื™.
03:11
But not just simple simulations --
56
191714
1679
ืื‘ืœ ืœื ืจืง ื”ื“ืžื™ื•ืช ืคืฉื•ื˜ื•ืช --
03:13
we would also create advanced simulations
57
193417
2066
ื ื™ืฆื•ืจ ื’ื ื”ื“ืžื™ื•ืช ืžืชืงื“ืžื•ืช
03:15
with top universities like MIT,
58
195507
1924
ืขื ืื•ื ื™ื‘ืจืกื™ื˜ืื•ืช ื›ืžื• MIT,
03:17
to bring out cutting-edge cancer research to these students.
59
197455
4369
ื›ื“ื™ ืœื”ื‘ื™ื ืžื—ืงืจ ืกืจื˜ืŸ ืžืชืงื“ื ืœืกื˜ื•ื“ื ื˜ื™ื ื”ืืœื”.
03:22
And suddenly, the universities could save millions of dollars
60
202520
2883
ื•ืคืชืื•ื, ื”ืื•ื ื™ื‘ืจืกื™ื˜ืื•ืช ื™ื›ื•ืœื•ืช ืœื—ืกื•ืš ืžืœื™ื•ื ื™ ื“ื•ืœืจื™ื
03:25
by letting the students perform virtual experiments
61
205427
2930
ืขืœ ื™ื“ื™ ื›ืš ืฉื™ืชื ื• ืœืกื˜ื•ื“ื ื˜ื™ื ืœื‘ืฆืข ื ื™ืกื•ื™ื™ื ื•ื™ืจื˜ื•ืืœื™ื
03:28
before they go into the real laboratory.
62
208381
3112
ืœืคื ื™ ืฉื”ื ื ื›ื ืกื™ื ืœืžืขื‘ื“ื” ืืžื™ืชื™ืช.
03:32
And not only that; now, they could also understand --
63
212303
2532
ื•ืœื ืจืง ื–ื”, ืขื›ืฉื™ื•, ื”ื ื™ื•ื›ืœื• ื’ื ืœื”ื‘ื™ืŸ --
03:34
even on a molecular level inside the machine --
64
214859
2433
ืืคื™ืœื• ื‘ืจืžื” ื”ืžื•ืœืงื•ืœืจื™ืช ื‘ืชื•ืš ื”ืžื›ื•ื ื” --
03:37
what is happening to the machines.
65
217316
2676
ืžื” ืงื•ืจื” ืœืžื›ื•ื ื•ืช.
03:40
And then they could suddenly perform
66
220016
1899
ื•ื”ื ืคืชืื•ื ื™ื‘ืฆืขื•
03:41
dangerous experiments in the labs as well.
67
221939
2628
ื ื™ืกื•ื™ื™ื ืžืกื•ื›ื ื™ื ื’ื ื‘ืžืขื‘ื“ื•ืช.
03:44
For instance also here,
68
224591
1486
ืœื“ื•ื’ืžื” ื’ื ืคื”,
03:46
learning about salmonella bacteria, which is an important topic
69
226101
3612
ืœืœืžื•ื“ ืขืœ ื‘ืงื˜ืจื™ื•ืช ืกืœืžื•ื ืœื”, ืฉื–ื” ื ื•ืฉื ื—ืฉื•ื‘
03:49
that many schools cannot teach for good safety reasons.
70
229737
3971
ืฉื”ืจื‘ื” ื‘ืชื™ ืกืคืจ ืœื ื™ื›ื•ืœื™ื ืœืœืžื“ ืžืกื™ื‘ื•ืช ื‘ื˜ื™ื—ื•ืชื™ื•ืช ื˜ื•ื‘ื•ืช.
03:54
And we, of course, quiz the students
71
234315
1737
ื•ืื ื—ื ื•, ื›ืžื•ื‘ืŸ, ื‘ื•ื—ื ื™ื ืืช ื”ืกื˜ื•ื“ื ื˜ื™ื
03:56
and then give the teachers a full dashboard,
72
236076
2405
ื•ืื– ื ื•ืชื ื™ื ืœืžื•ืจื™ื ืœื•ื— ื‘ืงืจื” ืžืœื,
03:58
so they fully understand where the students are at.
73
238505
2926
ื›ืš ืฉื”ื ืžื‘ื™ื ื™ื ืœื’ืžืจื™ ืื™ืคื” ื”ืกื˜ื•ื“ื ื˜ื™ื.
04:02
But we didn't stop there,
74
242134
1208
ืื‘ืœ ืœื ืขืฆืจื ื• ืฉื,
04:03
because we had seen just how important meaning is
75
243366
2325
ื‘ื’ืœืœ ืฉืจืื™ื ื• ื›ืžื” ื—ืฉื•ื‘ื” ื”ืžืฉืžืขื•ืช
04:05
for the students' engagement in the class.
76
245715
2286
ืœื”ืฉืชืชืคื•ืช ืฉืœ ืกื˜ื•ื“ื ื˜ื™ื ื‘ื›ื™ืชื”.
04:08
So we brought in game designers
77
248025
1722
ืื– ื”ื‘ืื ื• ืžืขืฆื‘ื™ ืžืฉื—ืงื™ื
04:09
to create fun and engaging stories.
78
249771
2881
ื›ื“ื™ ืœื™ืฆื•ืจ ืกื™ืคื•ืจื™ื ื›ื™ืคื™ื™ื ื•ืžืขืจื‘ื™ื.
04:12
For instance, here in this case,
79
252676
1834
ืœื“ื•ื’ืžื”, ืคื” ื‘ืžืงืจื” ื”ื–ื”,
04:14
where the students have to solve a mysterious CSI murder case
80
254534
4123
ื‘ื• ื”ืกื˜ื•ื“ื ื˜ื™ื ืฆืจื™ื›ื™ื ืœืคืชื•ืจ ืžืงืจื” ืžื•ื•ืช ืžืกืชื•ืจื™ ื‘ืกื™ื’ื ื•ืŸ CSI
04:18
using their core science skills.
81
258681
2694
ื‘ืฉื™ืžื•ืฉ ื‘ื›ื™ืฉื•ืจื™ ื”ืžื“ืข ื”ื‘ืกื™ื™ืกื™ื ืฉืœื”ื.
04:23
And the feedback we got when we launched all of this
82
263861
2444
ื•ื”ืžืฉื•ื‘ ืฉืงื™ื‘ืœื ื• ื›ืฉื”ืฉืงื ื• ืืช ื›ืœ ื–ื”
04:26
was quite overwhelmingly positive.
83
266329
1952
ื”ื™ื” ื—ื™ื•ื‘ื™ ื‘ืฆื•ืจื” ื’ื•ืจืคืช.
04:28
Here we have 300 students,
84
268305
1803
ืคื” ื™ืฉ ืœื ื• 300 ืกื˜ื•ื“ื ื˜ื™ื,
04:30
all passionately solving CSI murder cases
85
270132
2715
ื›ื•ืœื ืคื•ืชืจื™ื ืžืงืจื™ ืจืฆื— ื‘ืชืฉื•ืงื”
04:32
while learning core science skills.
86
272871
1865
ื‘ืขื•ื“ื ืœื•ืžื“ื™ื ื›ื™ืฉื•ืจื™ ืžื“ืข ื‘ืกื™ืกื™ื™ื.
04:34
And what I love the most about this
87
274760
2245
ื•ืžื” ืฉืื ื™ ืื•ื”ื‘ ื”ื›ื™ ื”ืจื‘ื” ื‘ื ื•ื’ืข ืœื–ื”
04:37
is really when the students come up to me sometimes afterwards,
88
277029
3644
ื–ื” ื›ืฉื”ืกื˜ื•ื“ื ื˜ื™ื ื‘ืื™ื ืืœื™ ืœืคืขืžื™ื ืื—ืจื™ ื–ื”,
04:40
all surprised and a little confused,
89
280697
2115
ื›ื•ืœื ืžื•ืคืชืขื™ื ื•ืžืขื˜ ืžื‘ื•ืœื‘ืœื™ื,
04:42
and say, "I just spent two hours in this virtual lab,
90
282836
4703
ื•ืื•ืžืจื™ื, "ื‘ื™ืœื™ืชื™ ืขื›ืฉื™ื• ืฉืขืชื™ื™ื ื‘ืžืขื‘ื“ื” ื•ื™ืจื˜ื•ืืœื™ืช,
04:48
and ... and I didn't check Facebook."
91
288432
2179
ื•.... ื•ืœื ื‘ื“ืงืชื™ ืืช ืคื™ื™ืกื‘ื•ืง."
04:50
(Laughter)
92
290635
1329
(ืฆื—ื•ืง)
04:51
That's how engaging and immersive this really is for the students.
93
291988
4651
ื–ื” ื›ืžื” ืฉื”ืžืฆื™ืื•ืช ืžื›ื™ืœื” ื•ืžืขืจื‘ืช ืขื‘ื•ืจ ื”ืกื˜ื•ื“ื ื˜ื™ื.
04:56
And so, to investigate whether this really worked,
94
296663
2820
ื•ื›ืš, ื›ื“ื™ ืœื—ืงื•ืจ ืื ื–ื” ื‘ืืžืช ืขื‘ื“,
04:59
a learning psychologist did a study with 160 students --
95
299507
4403
ืคืกื™ื›ื•ืœื•ื’ ืœืžื™ื“ื” ืขืฉื” ืžื—ืงืจ ืขื 160 ืกื˜ื•ื“ื ื˜ื™ื --
05:03
that was from Stanford University and Technical University of Denmark.
96
303934
4246
ื–ื” ื”ื™ื” ืžืื•ื ื™ื‘ืจืกื™ื˜ืช ืกื˜ื ืคื•ืจื“ ื•ื”ืื•ื ื™ื‘ืจืกื™ื˜ื” ื”ื˜ื›ื ื™ืช ืฉืœ ื“ื ืžืจืง.
05:08
And what they did is split the students into two groups.
97
308204
3532
ื•ืžื” ืฉื”ื ืขืฉื• ื”ื™ื” ืœื—ืœืง ืืช ื”ืกื˜ื•ื“ื ื˜ื™ื ืœืฉืชื™ ืงื‘ื•ืฆื•ืช.
05:11
One group would only use the virtual laboratory simulations,
98
311760
4251
ืงื‘ื•ืฆื” ืื—ืช ื”ืฉืชืžืฉื” ืจืง ื‘ืกื™ืžื•ืœื˜ื•ืจ ื”ืžืขื‘ื“ื”,
05:16
the other group would only use traditional teaching methods,
99
316035
3700
ื•ื”ืฉื ื™ื” ื”ืฉืชืžืฉื” ืจืง ื‘ืฉื™ื˜ื•ืช ืœื™ืžื•ื“ ืžืกื•ืจืชื™ื•ืช,
05:19
and they had the same amount of time.
100
319759
1915
ื•ื”ื™ื” ืœื”ื ืื•ืชื” ื›ืžื•ืช ื–ืžืŸ.
05:22
Then, interestingly,
101
322801
1152
ืื–, ืœืžืจื‘ื” ื”ืขื ื™ื™ืŸ,
05:23
they gave the students a test before and after the experiment,
102
323977
3667
ื”ื ื ืชื ื• ืœืกื˜ื•ื“ื ื˜ื™ื ืžื‘ื—ืŸ ืœืคื ื™ ื•ืื—ืจื™ ื”ื ื™ืกื•ื™,
05:27
so they could clearly measure the learning impact of the students.
103
327668
4353
ื›ืš ืฉื”ื ื™ื›ืœื• ืœืžื“ื•ื“ ื‘ื‘ืจื•ืจ ืืช ื”ื”ืฉืคืขื” ื”ืœื™ืžื•ื“ื™ืช ืฉืœ ื”ืกื˜ื•ื“ื ื˜ื™ื.
05:32
And what they found
104
332045
1168
ื•ืžื” ืฉื”ื ื’ื™ืœื•
05:33
was a surprisingly high 76 percent increase in the learning effectiveness
105
333237
5801
ื”ื™ื” ืขืœื™ื” ื’ื“ื•ืœื” ืฉืœ 76 ืื—ื•ื– ื‘ืืคืงื˜ื™ื‘ื™ื•ืช ื”ืœืžื™ื“ื”
05:39
when using virtual laboratories over traditional teaching methods.
106
339062
4844
ื‘ืฉื™ืžื•ืฉ ื‘ืžืขื‘ื“ื” ื•ื™ืจื˜ื•ืืœื™ืช ืœืขื•ืžืช ืฉื™ื˜ื•ืช ืœื™ืžื•ื“ ืžืกื•ืจืชื™ื•ืช.
05:44
But even more interestingly,
107
344349
1485
ืื‘ืœ ืืคื™ืœื• ื™ื•ืชืจ ืžืขื ื™ื™ืŸ,
05:45
the second part of this study investigated
108
345858
3214
ื”ื—ืœืง ื”ืฉื ื™ ืฉืœ ื”ืžื—ืงืจ ื‘ื“ืง
05:49
what the teacher's impact was on the learning.
109
349096
2904
ืžื” ื”ื”ืฉืคืขื” ืฉืœ ื”ืžื•ืจื” ื”ื™ืชื” ืขืœ ื”ืœืžื™ื“ื”.
05:52
And what they found
110
352024
1151
ื•ืžื” ืฉื”ื ื’ื™ืœื•
05:53
was that when you combined the virtual laboratories
111
353199
2662
ื”ื™ื” ืฉื›ืฉื”ื ืฉื™ืœื‘ื• ืืช ื”ืžืขื‘ื“ื•ืช ื”ื•ื™ืจื˜ื•ืืœื™ื•ืช
05:55
with teacher-led coaching and mentoring,
112
355885
2604
ืขื ืœื™ืžื•ื“ ืžื•ื ื—ื” ืžื•ืจื”, ื•ืžื ื˜ื•ืจื™ื ื’,
05:58
then we saw a total 101 percent increase in the learning effectiveness,
113
358513
5816
ืื– ืจืื™ื ื• ืขืœื™ื” ืฉืœ 101 ืื—ื•ื– ื‘ืืคืงื˜ื™ื‘ื™ื•ืช ืœืžื™ื“ื”,
06:04
which effectively doubles the science teacher's impact
114
364353
4432
ืฉืืคืงื˜ื™ื‘ื™ืช ื”ื›ืคื™ืœื” ืืช ื”ื”ืฉืคืขื” ืฉืœ ืžื•ืจื” ื”ืžื“ืขื™ื
06:08
with the same amount of time spent.
115
368809
2358
ืขื ืื•ืชื” ื›ืžื•ืช ืฉืœ ื–ืžืŸ.
06:13
So a couple of months back,
116
373784
2710
ืื– ืœืคื ื™ ื›ืžื” ื—ื•ื“ืฉื™ื,
06:16
we started asking ourselves --
117
376518
1513
ื”ืชื—ืœื ื• ืœืฉืื•ืœ ืืช ืขืฆืžื ื• --
06:18
we have a wonderful team now of learning psychologists
118
378055
2547
ื™ืฉ ืœื ื• ืฆื•ื•ืช ื ืคืœื ืขื›ืฉื™ื• ืฉืœ ืคืกื™ื›ื•ืœื•ื’ื™ ืœืžื™ื“ื”
06:20
and teachers and scientists and game developers --
119
380626
2356
ื•ืžื•ืจื™ื ื•ืžื“ืขื ื™ื ื•ืžืคืชื—ื™ ืžืฉื—ืงื™ื --
06:23
and we started asking ourselves:
120
383006
1541
ื•ื”ืชื—ืœื ื• ืœืฉืื•ืœ ืืช ืขืฆืžื ื•:
06:24
How can we keep ourselves to our promise
121
384571
2595
ืื™ืš ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืขืžื•ื“ ื‘ื”ื‘ื˜ื—ื” ืฉืœื ื•
06:27
of constantly reimagining education?
122
387190
2964
ืœื“ืžื™ื™ืŸ ืžื—ื“ืฉ ืืช ื”ื—ื™ื ื•ืš?
06:30
And today, I am really excited to be presenting what we came up with
123
390178
5101
ื•ื”ื™ื•ื, ืื ื™ ื‘ืืžืช ืžืชืจื’ืฉ ืœื”ืฆื™ื’ ืœืžื” ื”ื’ืขื ื•
06:35
and have been working incredibly hard to create.
124
395303
2904
ื•ืขื‘ื“ื ื• ืขืœื™ื• ืžืžืฉ ืงืฉื” ื›ื“ื™ ืœื™ืฆื•ืจ.
06:40
I will explain briefly what this is.
125
400228
2633
ืื ื™ ืืกื‘ื™ืจ ื‘ืงืฆืจื” ืžื” ื–ื”.
06:42
Basically, I take my mobile phone --
126
402885
2736
ื‘ืขื™ืงืจื•ืŸ, ืื ื™ ืœื•ืงื— ืืช ื”ื˜ืœืคื•ืŸ ื”ืกืœื•ืœืจื™ ืฉืœื ื• --
06:45
most students already have these, smartphones --
127
405645
2706
ืœืจื•ื‘ ื”ืกื˜ื•ื“ื ื˜ื™ื ื›ื‘ืจ ื™ืฉ ืื•ืชื, ืกืžืจื˜ืคื•ื ื™ื --
06:48
and I plug it into this virtual-reality headset, a low-cost headset.
128
408375
4524
ื•ืื ื™ ืฉื ืื•ืชื ื‘ืชื•ืš ืžืฉืงืคื™ ืžืฆื™ืื•ืช ืžื“ื•ืžื”, ืกื˜ ื‘ืขืœื•ืช ื ืžื•ื›ื”.
06:52
And now what I can effectively do is,
129
412923
1969
ื•ืขื›ืฉื™ื• ืžื” ืฉืื ื™ ื™ื›ื•ืœ ืœืขืฉื•ืช ืืคืงื˜ื™ื‘ื™ืช,
06:54
I can literally step into this virtual world.
130
414916
3150
ืื ื™ ื™ื›ื•ืœ ืžืžืฉ ืœืฆืขื•ื“ ืœืชื•ืš ื”ืขื•ืœื ื”ืžื“ื•ืžื” ื”ื–ื”.
06:58
We'll have some of you in the audience also get to try this,
131
418090
3084
ื ื™ืชืŸ ื’ื ืœื›ืžื” ืžื›ื ื‘ืงื”ืœ ืœื ืกื•ืช ืืช ื–ื”,
07:01
because it is really something that you have to try
132
421198
3156
ื‘ื’ืœืœ ืฉื–ื” ื‘ืืžืช ืžืฉื”ื• ืฉืืชื ื—ื™ื™ื‘ื™ื ืœื ืกื•ืช
07:04
to fully feel how immersive it really is.
133
424378
2295
ื›ื“ื™ ืœื”ื‘ื™ืŸ ื‘ืื•ืคืŸ ืžืœื ื›ืžื” ื–ื” ื‘ืืžืช ืžื›ื™ืœ.
07:06
It literally feels like I just stepped inside this virtual lab.
134
426697
3777
ื–ื” ืžืžืฉ ืžืจื’ื™ืฉ ื›ืื™ืœื• ื ื›ื ืกืชื ืœืชื•ืš ืžืขื‘ื“ื” ืžื“ื•ืžื”.
07:10
Do you see me up on the screen?
135
430498
1503
ื”ืื ืืชื ืจื•ืื™ื ืื•ืชื™ ืขืœ ื”ืžืกืš?
07:12
Audience: Yes.
136
432025
1151
ืงื”ืœ: ื›ืŸ.
07:13
Michael Bodekaer: Great! Awesome.
137
433200
1603
ืžื™ื›ืืœ ื‘ื•ื“ืงืืจ: ืžืขื•ืœื”! ื ืคืœื.
07:14
So basically, I have just turned my mobile phone
138
434827
2898
ืื– ื‘ืขื™ืงืจื•ืŸ, ื”ืคื›ืชื™ ืืช ื”ื˜ืœืคื•ืŸ ื”ื ื™ื™ื“ ืฉืœื™
07:17
into a fully simulated, million-dollar Ivy League laboratory
139
437749
3664
ืœืžืขื‘ื“ื” ืžื“ื•ืžื” ืฉืœ ืžืœื™ื•ืŸ ื“ื•ืœืจ ืฉืœ ืœื™ื’ืช ื”ืงื™ืกื•ืก
07:21
with all this amazing equipment that I can interact with.
140
441437
2825
ืขื ื›ืœ ื”ืฆื™ื•ื“ ื”ืžื“ื”ื™ื ื”ื–ื” ืฉืื ื™ ื™ื›ื•ืœ ืœื”ืคืขื™ืœ.
07:24
I can, for instance, pick up the pipette and do experiments with it.
141
444286
3373
ืื ื™ ื™ื›ื•ืœ, ืœื“ื•ื’ืžื”, ืœื”ืจื™ื ืคื™ืคื˜ื” ื•ืœืขืฉื•ืช ืื™ืชื” ื ื™ืกื•ื™ื™ื.
07:27
I have my E-Ggel, my PCR and -- oh, look there,
142
447683
2420
ื™ืฉ ืœื™ ืืช ื” E-Ggel, ื” PCR ื•ืื•, ืชืจืื• ืคื”,
07:30
I have my next-generation sequencing machine,
143
450127
2521
ื™ืฉ ืœื™ ืžื›ื•ื ืช ืจื™ืฆื•ืฃ ื’ื ื™ื ืžื”ื“ื•ืจ ื”ื‘ื,
07:32
and there I even have my electron microscope.
144
452672
3498
ื•ื™ืฉ ืœื™ ืืคื™ืœื• ืืช ืžื™ืงืจื•ืกืงื•ืค ื”ืืœืงื˜ืจื•ื ื™ื ืฉืœื™ ืคื”.
07:36
I mean, who's carrying around an electron microscope in their pocket?
145
456194
3430
ืื ื™ ืžืชื›ื•ื•ืŸ, ืžื™ ื ื•ืฉื ืื™ืชื• ืžื™ืงืจื•ืกืงื•ืค ืืœืงื˜ืจื•ื ื™ ื‘ื›ื™ืก?
07:39
And here I have my machine,
146
459648
1872
ื•ืคื” ื™ืฉ ืœื ื• ืืช ื”ืžื›ื•ื ื” ืฉืœื™,
07:41
I can do different experiments on the machine.
147
461544
2170
ืื ื™ ื™ื•ื›ืœ ืœืขืฉื•ืช ื ื™ืกื•ื™ื™ื ืฉื•ื ื™ื ืขืœ ื”ืžื›ื•ื ื”.
07:43
And over here I have the door,
148
463738
1454
ื•ืคื” ื™ืฉ ืœื™ ืืช ื”ื“ืœืช,
07:45
I can go into other experiments,
149
465216
2368
ืื ื™ ื™ื›ื•ืœ ืœื”ื›ื ืก ืœืชื•ืš ื ื™ืกื•ื™ื™ื ืื—ืจื™ื,
07:47
I can perform in the laboratories.
150
467608
1933
ืื ื™ ื™ื›ื•ืœ ืœื‘ืฆืข ื‘ืชื•ืš ื”ืžืขื‘ื“ื”.
07:49
And here, I have my learning tablet.
151
469565
2206
ื•ืคื”, ื™ืฉ ืœื™ ื˜ืื‘ืœื˜ ืœื™ืžื•ื“.
07:51
This is an intelligent tablet
152
471795
1454
ื–ื” ื˜ืื‘ืœื˜ ื—ื›ื
07:53
that allows me to read about relevant theory.
153
473273
2848
ืฉืžืืคืฉืจ ืœื™ ืœืงืจื•ื ืขืœ ืชืื•ืจื™ื•ืช ืจืœื•ื•ื ื˜ื™ื•ืช.
07:56
As you can see, I can interact with it.
154
476145
2302
ื›ืžื• ืฉืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช, ืื ื™ ื™ื›ื•ืœ ืœื”ืฉืชืžืฉ ื‘ื•.
07:58
I can watch videos and see content that is relevant
155
478471
3894
ืื ื™ ื™ื›ื•ืœ ืœืฆืคื•ืช ื‘ืกืจื˜ื•ื ื™ื ื•ืœืจืื•ืช ืชื•ื›ืŸ ืจืœื•ื•ื ื˜ื™
08:02
to the experiment that I'm performing right now.
156
482389
2865
ืœื ื™ืกื•ื™ ืฉืื ื™ ืžื‘ืฆืข ืขื›ืฉื™ื•.
08:06
Then over here, I have Marie.
157
486074
1403
ืื– ืฉื, ื™ืฉ ืœื™ ืืช ืžืจื™.
08:07
She is my teacher -- my lab assistant --
158
487501
3519
ื”ื™ื ื”ืžื•ืจื” ืฉืœื™ -- ืขื•ื–ืจืช ื”ืžืขื‘ื“ื” ืฉืœื™ --
08:11
and what she does is guides me through this whole laboratory.
159
491044
3177
ื•ืžื” ืฉื”ื™ื ืขื•ืฉื” ื–ื” ืœื”ื“ืจื™ืš ืื•ืชื™ ื‘ื›ืœ ื”ืžืขื‘ื“ื”.
08:14
And very soon,
160
494245
1159
ื•ืžื”ืจ ืžืื•ื“,
08:15
the teachers will be able to literally teleport themselves
161
495428
2968
ื”ืžื•ืจื™ื ื™ื”ื™ื• ืžืกื•ื’ืœื™ื ืžืžืฉ ืœืฉื’ืจ ืืช ืขืฆืžื
08:18
into this virtual world that I'm in right now
162
498420
2559
ืœืขื•ืœื ื”ืžื“ื•ืžื” ืฉืื ื™ ื‘ืชื•ื›ื• ืžืžืฉ ืขื›ืฉื™ื•
08:21
and help me, guide me, through this whole experiment.
163
501003
3230
ื•ืœืขื–ื•ืจ ืœื™, ืœื”ื“ืจื™ืš ืื•ืชื™, ื“ืจืš ื›ืœ ื”ื ื™ืกื•ื™.
08:24
And now before I finalize this,
164
504257
2310
ื•ืขื›ืฉื™ื• ืœืคื ื™ ืฉื ืกื™ื™ื ืืช ื–ื”,
08:26
I want to show you an even cooler thing, I think --
165
506591
2968
ืื ื™ ืจื•ืฆื ืœื”ืจืื•ืช ืœื›ื ื“ื‘ืจ ืืคื™ืœื• ื™ื•ืชืจ ืžื’ื ื™ื‘, ืื ื™ ื—ื•ืฉื‘ --
08:29
something you cannot even do in real laboratories.
166
509583
3036
ืžืฉื”ื• ืฉืืชื ืœื ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ืืคื™ืœื• ื‘ืžืขื‘ื“ื•ืช ืืžื™ืชื™ื•ืช.
08:32
This is a PCR machine.
167
512643
1238
ื–ื• ืžื›ื•ื ืช PCR.
08:33
I'm now going to start this experiment.
168
513905
2480
ืื ื™ ืืชื—ื™ืœ ืืช ื”ื ื™ืกื•ื™ ืขื›ืฉื™ื•.
08:36
And what I just did is literally shrunk myself a million times
169
516409
4233
ื•ืžื” ืฉืขืฉื™ืชื™ ืขื›ืฉื™ื• ื–ื” ืžืžืฉ ื›ื™ื•ื•ืฆืชื™ ืืช ืขืฆืžื™ ืคื™ ืžืœื™ื•ืŸ
08:40
into the size of a molecule --
170
520666
1559
ืœื’ื•ื“ืœ ืฉืœ ืžื•ืœืงื•ืœื” --
08:42
and it really feels like it, you have to try this.
171
522249
2349
ื•ื–ื” ืžืžืฉ ืžืจื’ื™ืฉ ื›ื›ื”, ืืชื ื—ื™ื™ื‘ื™ื ืœื ืกื•ืช ืืช ื–ื”.
08:44
So now it feels like I'm standing inside the machine
172
524622
2603
ืื– ืขื›ืฉื™ื• ืื ื™ ืžืจื’ื™ืฉ ื›ืื™ืœื• ืื ื™ ืขื•ืžื“ ื‘ืชื•ืš ื”ืžื›ื•ื ื”
08:47
and I'm seeing all the DNA, and I see the molecules.
173
527249
2593
ืื ื™ ืจื•ืื” ืืช ื›ืœ ื”DNA, ื•ืื ื™ ืจื•ืื” ืžื•ืœืงื•ืœื•ืช.
08:49
I see the polymerase and the enzymes and so forth.
174
529866
3603
ืื ื™ ืจื•ืื” ืืช ื”ืคื•ืœื™ืžืจื– ื•ืืช ื”ืื ื–ื™ืžื™ื ื•ื›ืš ื”ืœืื”.
08:53
And I can see how in this case,
175
533493
1603
ื•ืื ื™ ื™ื›ื•ืœ ืœืจืื•ืช ืื™ืš ื‘ืžืงืจื” ื”ื–ื”,
08:55
DNA is being replicated millions of times,
176
535120
3077
DNA ืžืฉื•ื›ืคืœ ืžืœื™ื•ื ื™ ืคืขืžื™ื,
08:58
just like it's happening inside your body right now.
177
538221
2833
ืžืžืฉ ื›ืื™ืœื• ื–ื” ืžืชืจื—ืฉ ื‘ืชื•ืš ื”ื’ื•ืฃ ืฉืœื›ื ืžืžืฉ ืขื›ืฉื™ื•.
09:01
And I can really feel and understand how all of this works.
178
541078
4127
ื•ืื ื™ ืžืžืฉ ื™ื›ื•ืœ ืœื”ืจื’ื™ืฉ ื•ืœื”ื‘ื™ืŸ ืื™ืš ื›ืœ ื–ื” ืขื•ื‘ื“.
09:06
Now, I hope that gives you a little bit of a sense
179
546219
3294
ืขื›ืฉื™ื•, ืื ื™ ืžืงื•ื•ื” ืฉื–ื” ื ื•ืชืŸ ืœื›ื ืžืขื˜ ื™ื•ืชืจ ืชื•ื‘ื ื”
09:09
of the possibilities in these new teaching methods.
180
549537
4126
ืขืœ ื”ืืคืฉืจื•ื™ื•ืช ื‘ืฉื™ื˜ื•ืช ื”ืœื™ืžื•ื“ ื”ื—ื“ืฉื•ืช ื”ืืœื•.
09:16
And I want to also emphasize
181
556230
1342
ื•ืื ื™ ืจื•ืฆื” ื’ื ืœื”ื“ื’ื™ืฉ
09:17
that everything you just saw also works on iPads and laptops
182
557596
3691
ืฉื›ืœ ืžื” ืฉืจืื™ืชื ืขื›ืฉื™ื• ื’ื ืขื•ื‘ื“ ืขืœ ืื™ื™ืคื“ื™ื ื•ืœืคื˜ื•ืคื™ื
09:21
without the headsets.
183
561311
1171
ื‘ืœื™ ื”ืžืฉืงืคื™ื™ื.
09:22
I say that for a very important reason.
184
562506
2364
ื•ืื ื™ ืื•ืžืจ ืืช ื–ื” ืžืกื™ื‘ื” ืžืื•ื“ ื—ืฉื•ื‘ื”.
09:25
In order for us to really empower and inspire
185
565394
3485
ื›ื“ื™ ืฉืื ื—ื ื• ื‘ืืžืช ื ื—ื–ืง ื•ื ื™ืชืŸ ื”ืฉืจืื”
09:28
the next generation of scientists,
186
568903
2168
ืœื“ื•ืจ ื”ื‘ื ืฉืœ ืžื“ืขื ื™ื,
09:31
we really need teachers to drive the adoption
187
571095
3524
ืื ื—ื ื• ื‘ืืžืช ืฆืจื™ื›ื™ื ืฉืžื•ืจื™ื ื™ื“ื—ืคื• ืืช ื”ืื™ืžื•ืฅ
09:34
of new technologies in the classroom.
188
574643
2575
ืฉืœ ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ื—ื“ืฉื•ืช ื‘ื›ื™ืชื”.
09:38
And so in many ways,
189
578542
1878
ื•ื›ืš ื‘ื”ืจื‘ื” ื“ืจื›ื™ื,
09:40
I believe that the next big, quantum leap in science education
190
580444
4355
ืื ื™ ืžืืžื™ืŸ ืฉื”ืงืคื™ืฆื” ื”ื’ื“ื•ืœื” ื”ื‘ืื” ื‘ืžื“ืขื™ ื”ื—ื™ื ื•ืš
09:44
lies no longer with the technology,
191
584823
2309
ืœื ื ืžืฆืืช ื™ื•ืชืจ ื‘ื˜ื›ื ื•ืœื•ื’ื™ื”,
09:47
but rather with the teachers' decision
192
587156
1881
ืืœื ื‘ื”ื—ืœื˜ื•ืช ืฉืœ ื”ืžื•ืจื™ื
09:49
to push forward and adopt these technologies
193
589061
3205
ืœื“ื—ื•ืฃ ืงื“ื™ืžื” ื•ืœืืžืฅ ืืช ื”ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ื”ืืœื•
09:52
inside the classrooms.
194
592290
1747
ื‘ืชื•ืš ื”ื›ื™ืชื”.
09:54
And so it is our hope that more universities and schools and teachers
195
594061
3837
ื•ื›ืš ื–ื• ื”ืชืงื•ื•ื” ืฉืœื ื• ืฉื™ื•ืชืจ ืื•ื ื™ื‘ืจืกื™ื˜ืื•ืช ื•ื‘ืชื™ ืกืคืจ ื•ืžื•ืจื™ื
09:57
will collaborate with technology companies
196
597922
2865
ื™ืฉืชืคื• ืคืขื•ืœื” ืขื ื—ื‘ืจื•ืช ื˜ื›ื ื•ืœื•ื’ื™ื”
10:00
to realize this full potential.
197
600811
2524
ื›ื“ื™ ืœืžืžืฉ ืืช ื”ืคื•ื˜ื ืฆื™ืืœ ื”ืžืœื ืฉืœ ื–ื”.
10:04
And so,
198
604989
1445
ื•ื›ืš,
10:06
lastly, I'd like to leave you with a little story
199
606458
2833
ืœื‘ืกื•ืฃ, ื”ื™ื™ืชื™ ืจื•ืฆื” ืœื”ืฉืื™ืจ ืืชื›ื ืขื ืกื™ืคื•ืจ ืงื˜ืŸ
10:09
that really inspires me.
200
609315
1562
ืฉื‘ืืžืช ื ื•ืชืŸ ืœื™ ื”ืฉืจืื”.
10:10
And that is the story of Jack Andraka.
201
610901
2421
ื•ื–ื” ื”ืกื™ืคื•ืจ ืฉืœ ื’'ืง ืื ื“ืจืงื”.
10:13
Some of you might already know him.
202
613346
1762
ื›ืžื” ืžื›ื ืื•ืœื™ ื›ื‘ืจ ืžื›ื™ืจื™ื ืื•ืชื•.
10:15
Jack invented a new, groundbreaking low-cost test for pancreatic cancer
203
615132
6992
ื’'ืง ื”ืžืฆื™ื ื‘ื“ื™ืงื” ื—ื“ืฉื”, ื—ื“ืฉื ื™ืช ื•ื–ื•ืœื” ืœืกืจื˜ืŸ ื”ืœื‘ืœื‘
10:22
at the age 15.
204
622148
2421
ื‘ื’ื™ืœ 15.
10:25
And when Jack shares his story of how he did this huge breakthrough,
205
625758
3739
ื•ื›ืฉื’'ืง ื—ืœืง ืืช ื”ืกื™ืคื•ืจ ืฉืœื• ืฉืœ ืื™ืš ื”ื•ื ืขืฉื” ืืช ืคืจื™ืฆืช ื”ื“ืจืš ื”ื’ื“ื•ืœื” ืฉืœื•,
10:29
he also explains that one thing almost prevented him
206
629521
3825
ื”ื•ื ื’ื ื”ืกื‘ื™ืจ ืฉื“ื‘ืจ ืื—ื“ ื›ืžืขื˜ ืžื ืข ืžืžื ื•
10:33
from making this breakthrough.
207
633370
1793
ืžืœืขืฉื•ืช ืืช ืคืจื™ืฆืช ื”ื“ืจืš ื”ื–ื•.
10:35
And that was that he did not have access to real laboratories,
208
635543
5060
ื•ื–ื” ื”ื™ื” ืฉืœื ื”ื™ืชื” ืœื• ื’ื™ืฉื” ืœืžืขื‘ื“ื•ืช ืืžื™ืชื™ื•ืช,
10:40
because he was too inexperienced
209
640627
2529
ื‘ื’ืœืœ ืฉื”ื•ื ื”ื™ื” ื—ืกืจ ื ืกื™ื•ืŸ
10:43
to be allowed in.
210
643180
1441
ื›ื“ื™ ืœืืคืฉืจ ืœื• ืœื”ื›ื ืก.
10:45
Now, imagine if we could bring
211
645853
2202
ืขื›ืฉื™ื•, ื“ืžื™ื™ื ื• ืื ื”ื™ื™ื ื• ื™ื›ื•ืœื™ื ืœื”ื‘ื™ื
10:48
Ivy League, million-dollar virtual laboratories
212
648079
3269
ืžืขื‘ื“ื•ืช ืžื“ื•ืžื•ืช ื‘ืžืœื™ื•ื ื™ ื“ื•ืœืจื™ื ืžืœื™ื’ืช ื”ืงื™ืกื•ืก
10:51
out to all these students just like Jack,
213
651372
2071
ืœื›ืœ ื”ืชืœืžื™ื“ื™ื ื”ืืœื” ื›ืžื• ื’'ืง,
10:53
all over the world,
214
653467
1607
ื‘ื›ืœ ื”ืขื•ืœื,
10:55
and give them the latest, greatest, most fancy machines you can imagine
215
655098
3556
ื•ืœืชืช ืœื”ื ืืช ื”ืžื›ื•ื ื•ืช ื”ื›ื™ ื—ื“ืฉื ื™ื•ืช, ืžืขื•ืœื•ืช ื•ืžืฉื•ื›ืœืœื•ืช ืฉืืชื ื™ื›ื•ืœื™ื ืœื“ืžื™ื™ืŸ
10:58
that would quite literally make any scientist in here
216
658678
2546
ืฉืžื™ืœื•ืœื™ืช ื”ื™ื• ื’ื•ืจืžื•ืช ืœื›ืœ ืžื“ืขืŸ ืคื”
11:01
jump up and down out of pure excitement.
217
661248
2473
ืœืงืคื•ืฅ ืžืื•ืฉืจ.
11:03
And then imagine how that would empower and inspire
218
663745
4610
ื•ืื– ื“ืžื™ื™ื ื• ืื™ืš ื–ื” ื™ื›ื•ืœ ืœืชืช ื›ื•ื— ื•ื”ืฉืจืื”
11:08
a whole new generation of young and bright scientists,
219
668379
4179
ืœื“ื•ืจ ื—ื“ืฉ ืฉืœื ืฉืœ ืžื“ืขื ื™ื ืฆืขื™ืจื™ื ื•ืžื‘ืจื™ืงื™ื,
11:12
ready to innovate and change the world.
220
672582
3203
ืžื•ื›ื ื™ื ืœื—ื“ืฉ ื•ืœืฉื ื•ืช ืืช ื”ืขื•ืœื.
11:16
Thank you very much.
221
676187
1151
ืชื•ื“ื” ืจื‘ื” ืœื›ื.
11:17
(Applause)
222
677362
8063
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7