Nate Silver: How does race affect votes?

38,975 views ใƒป 2009-04-24

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Ido Dekkers ืžื‘ืงืจ: Sigal Tifferet
00:18
I want to talk about the election.
0
18330
3000
ืื ื™ ืจื•ืฆื” ืœื“ื‘ืจ ืขืœ ื‘ื—ื™ืจื•ืช.
00:21
For the first time in the United States, a predominantly white group of voters
1
21330
3000
ื‘ืคืขื ื”ืจืืฉื•ื ื” ื‘ืืจืฆื•ืช ื”ื‘ืจื™ืช, ืงื‘ื•ืฆืช ื‘ื•ื—ืจื™ื ืœื‘ื ื” ื‘ืขื™ืงืจื”
00:24
voted for an African-American candidate for President.
2
24330
3000
ื‘ื—ืจื” ืžืชืžื•ื“ื“ ืืคืจื• ืืžืจื™ืงืื™ ืœื ืฉื™ื.
00:27
And in fact Barack Obama did quite well.
3
27330
2000
ื•ืœืžืขืฉื” ื‘ืจืง ืื•ื‘ืžื” ื”ืฆืœื™ื— ื“ื™ ื˜ื•ื‘.
00:29
He won 375 electoral votes.
4
29330
2000
ื”ื•ื ื–ื›ื” ื‘375 ืืœืงื˜ื•ืจื™ื.
00:31
And he won about 70 million popular votes
5
31330
3000
ื•ื”ื•ื ื–ื›ื” ื‘70 ืžื™ืœื™ื•ืŸ ืงื•ืœื•ืช ืคื•ืคื•ืœืจื™ื™ื
00:34
more than any other presidential candidate --
6
34330
2000
ื™ื•ืชืจ ืžื›ืœ ืžืชืžื•ื“ื“ ืื—ืจ ืœื ืฉื™ืื•ืช,
00:36
of any race, of any party -- in history.
7
36330
3000
ืžื›ืœ ื’ื–ืข, ืžื›ืœ ืžืคืœื’ื”, ื‘ื”ื™ืกื˜ื•ืจื™ื”.
00:39
If you compare how Obama did against how John Kerry had done four years earlier --
8
39330
4000
ืื ืชืฉื•ื• ืืช ื”ื”ืฆืœื—ื” ืฉืœ ืื•ื‘ืžื” ืœืขื•ืžืช ื”ื”ืฆืœื—ื” ืฉืœ ื’'ื•ืŸ ืงืจื™ ืืจื‘ืข ืฉื ื™ื ืžื•ืงื“ื ื™ื•ืชืจ --
00:43
Democrats really like seeing this transition here,
9
43330
3000
ื”ื“ืžื•ืงืจื˜ื™ื™ื ื‘ืืžืช ื ื”ื ื™ื ืœืจืื•ืช ืืช ื”ืฉื™ื ื•ื™ ื›ืืŸ,
00:46
where almost every state becomes bluer, becomes more democratic --
10
46330
4000
ื›ืฉื›ืžืขื˜ ื›ืœ ืžื“ื™ื ื” ื ืขืฉื™ืช ื›ื—ื•ืœื” ื™ื•ืชืจ, ื ืขืฉื™ืช ื™ื•ืชืจ ื“ืžื•ืงืจื˜ื™ืช --
00:50
even states Obama lost, like out west,
11
50330
2000
ืืคื™ืœื• ืžื“ื™ื ื•ืช ืฉืื•ื‘ืžื” ื”ืคืกื™ื“ ื‘ื”ืŸ, ื›ืžื• ื‘ืžืขืจื‘.
00:52
those states became more blue.
12
52330
2000
ื”ืžื“ื™ื ื•ืช ื”ืืœื” ื ืขืฉื• ื›ื—ื•ืœื•ืช ื™ื•ืชืจ.
00:54
In the south, in the northeast, almost everywhere
13
54330
3000
ื‘ื“ืจื•ื, ื‘ืฆืคื•ืŸ ืžื–ืจื—, ื›ืžืขื˜ ื‘ื›ืœ ืžืงื•ื
00:57
but with a couple of exceptions here and there.
14
57330
3000
ืื‘ืœ ืขื ื›ืžื” ื—ืจื™ื’ื™ื ืคื” ื•ืฉื.
01:00
One exception is in Massachusetts.
15
60330
2000
ื—ืจื™ื’ื” ืื—ืช ื”ื™ื ืžืกืฆ'ื•ืกื˜ืก.
01:02
That was John Kerry's home state.
16
62330
2000
ืฉื”ื™ืชื” ืžื“ื™ื ืช ื”ื‘ื™ืช ืฉืœ ื’'ื•ืŸ ืงืจื™.
01:04
No big surprise, Obama couldn't do better than Kerry there.
17
64330
2000
ืœื ื”ืคืชืขื” ื’ื“ื•ืœื”, ืื•ื‘ืžื” ืœื ื”ื™ื” ื™ื›ื•ืœ ืœื”ืฆืœื™ื— ื™ื•ืชืจ ืžื’'ื•ืŸ ืงืจื™ ืฉื.
01:06
Or in Arizona, which is John McCain's home,
18
66330
2000
ืื• ื‘ืืจื™ื–ื•ื ื”, ืฉื”ื™ื ื‘ื™ืชื• ืฉืœ ื’'ื•ืŸ ืžืง'ืงื™ื™ืŸ,
01:08
Obama didn't have much improvement.
19
68330
2000
ืœืื•ื‘ืžื” ืœื ื”ื™ื” ืฉื™ืคื•ืจ ืžืฉืžืขื•ืชื™.
01:10
But there is also this part of the country, kind of in the middle region here.
20
70330
2000
ืื‘ืœ ื™ืฉ ื’ื ืืช ื”ื—ืœืง ื”ื–ื” ืฉืœ ื”ืืจืฅ, ื”ืื–ื•ืจ ื”ืžืจื›ื–ื™ ื”ื–ื”.
01:12
This kind of Arkansas, Tennessee, Oklahoma, West Virginia region.
21
72330
4000
ื”ืื–ื•ืจ ื”ื–ื” ืฉืœ ืืจืงื ืกื•, ื˜ื ืกื™, ืื•ืงืœื”ื•ืžื” ื•ืžืขืจื‘ ื•ืจื’'ื™ื ื™ื”.
01:16
Now if you look at '96, Bill Clinton --
22
76330
2000
ืขื›ืฉื™ื• ืื ืชื‘ื™ื˜ื• ื‘96, ื‘ื™ืœ ืงืœื™ื ื˜ื•ืŸ,
01:18
the last Democrat to actually win -- how he did in '96,
23
78330
3000
ื”ื“ืžื•ืงืจื˜ ื”ืื—ืจื•ืŸ ืฉื–ื›ื”, ืื™ืš ื”ื•ื ื”ืฆืœื™ื— ื‘96,
01:21
you see real big differences in this part of the country right here,
24
81330
3000
ืืชื ืจื•ืื™ื ื”ื‘ื“ืœื™ื ื’ื“ื•ืœื™ื ื‘ื—ืœืง ื”ื–ื” ืฉืœ ื”ืืจืฅ ื›ืืŸ --
01:24
the kind of Appalachians, Ozarks, highlands region, as I call it:
25
84330
4000
ื”ืื–ื•ืจ ื”ื’ื‘ื•ื” ืฉืœ ื”ืืคืœืืฆ'ื™ื, ืื•ื–ืืจืง, ื›ืš ืื ื™ ืงื•ืจื ืœื•.
01:28
20 or 30 point swings
26
88330
2000
20 ืื• 30 ื ืงื•ื“ื•ืช ืขื•ื‘ืจื•ืช
01:30
from how Bill Clinton did in '96 to how Obama did
27
90330
2000
ืžืžื” ืฉืงืœื™ื ื˜ื•ืŸ ืงื™ื‘ืœ ื‘96 ืœืžื” ืฉืื•ื‘ืžื” ืงื™ื‘ืœ
01:32
in 2008.
28
92330
2000
ื‘2008.
01:34
Yes Bill Clinton was from Arkansas, but these are very, very profound differences.
29
94330
5000
ื›ืŸ ื‘ื™ืœ ืงืœื™ื ื˜ื•ืŸ ื”ื™ื” ืžืืจืงื ืกื•, ืื‘ืœ ืืœื” ื”ื‘ื“ืœื™ื ืขืžื•ืงื™ื.
01:39
So, when we think about parts of the country like Arkansas, you know.
30
99330
2000
ืื–, ื›ืฉืื ื—ื ื• ื—ื•ืฉื‘ื™ื ืขืœ ื”ื—ืœืงื™ื ื”ืืœื” ืฉืœ ื”ืืจืฅ ื›ืžื• ืืจืงื ืกื•, ืืชื ื™ื•ื“ืขื™ื.
01:41
There is a book written called, "What's the Matter with Kansas?"
31
101330
3000
ื™ืฉ ืกืคืจ ืฉื ื›ืชื‘, ืžื” ื”ื‘ืขื™ื” ืขื ืงื ืกืก?
01:44
But really the question here -- Obama did relatively well in Kansas.
32
104330
3000
ืื‘ืœ ื”ืฉืืœื” ื”ืืžื™ืชื™ืช ื›ืืŸ ื”ื™ื -- ืื•ื‘ืžื” ื”ืฆืœื™ื— ื“ื™ ื˜ื•ื‘ ื‘ืงื ืกืก.
01:47
He lost badly but every Democrat does.
33
107330
2000
ื”ื•ื ื”ืคืกื™ื“ ื“ื™ ื’ืจื•ืข ืื‘ืœ ื›ืœ ื“ืžื•ืงืจื˜ ื›ื›ื”.
01:49
He lost no worse than most people do.
34
109330
2000
ื”ื•ื ืœื ื”ืคืกื™ื“ ื™ื•ืชืจ ื’ืจื•ืข ืžืื—ืจื™ื.
01:51
But yeah, what's the matter with Arkansas?
35
111330
4000
ืื‘ืœ ื›ืŸ, ืžื” ื”ื‘ืขื™ื” ืขื ืืจืงื ืกื•?
01:55
(Laughter)
36
115330
1000
(ืฆื—ื•ืง)
01:56
And when we think of Arkansas we tend to have pretty negative connotations.
37
116330
3000
ื›ืฉืื ื—ื ื• ื—ื•ืฉื‘ื™ื ืขืœ ืืจืงื ืกื• ื ื•ื˜ื•ืช ืœื”ื™ื•ืช ืœื ื• ืงื•ื ื•ื˜ืฆื™ื•ืช ืฉืœื™ืœื™ื•ืช.
01:59
We think of a bunch of rednecks, quote, unquote, with guns.
38
119330
3000
ืื ื—ื ื• ื—ื•ืฉื‘ื™ื ืขืœ ื—ื‘ื•ืจื” ืฉืœ ืื“ื•ืžื™ ืฆื•ื•ืืจ, ืคืชื— ืžืจื›ืื•ืช, ืกื’ื•ืจ ืžืจื›ืื•ืช, ืขื ืจื•ื‘ื™ื.
02:02
And we think people like this probably don't want to vote
39
122330
3000
ื•ืื ื—ื ื• ื—ื•ืฉื‘ื™ื ืฉืื ืฉื™ื ื›ืืœื” ืœื ืจื•ืฆื™ื ืœื‘ื—ื•ืจ
02:05
for people who look like this and are named Barack Obama.
40
125330
3000
ื‘ืื ืฉื™ื ืฉื ืจืื™ื ื›ื›ื”, ื•ื ืงืจืื™ื ื‘ืจืง ืื•ื‘ืžื”.
02:08
We think it's a matter of race. And is this fair?
41
128330
3000
ืื ื—ื ื• ื—ื•ืฉื‘ื™ื ืฉื–ื” ืขื ื™ื™ืŸ ืฉืœ ื’ื–ืข. ื•ื”ืื ื–ื” ืคื™ื™ืจ?
02:11
Are we kind of stigmatizing people from Arkansas, and this part of the country?
42
131330
3000
ื”ืื ืื ื—ื ื• ืžืชื™ื™ื’ื™ื ืื ืฉื™ื ืžืืจืงื ืกื•, ื•ื”ื—ืœืง ื”ื–ื” ืฉืœ ื”ืืจืฅ?
02:14
And the answer is: it is at least partially fair.
43
134330
3000
ื•ื”ืชืฉื•ื‘ื” ื”ื™ื ื›ืŸ, ื–ื” ืœืคื—ื•ืช ื—ืœืงื™ืช ืฆื•ื“ืง.
02:17
We know that race was a factor, and the reason why we know that
44
137330
2000
ืื ื—ื ื• ื™ื•ื“ืขื™ื ืฉื’ื–ืข ื”ื™ื” ื’ื•ืจื, ื•ื”ืกื™ื‘ื” ืฉืื ื—ื ื• ื™ื•ื“ืขื™ื ื–ืืช
02:19
is because we asked those people.
45
139330
2000
ื”ื™ื ืžืคื ื™ ืฉืฉืืœื ื• ืืช ื”ืื ืฉื™ื ื”ืืœื”.
02:21
Actually we didn't ask them, but when they conducted
46
141330
2000
ืœืžืขืŸ ื”ืืžืช ืœื ืฉืืœื ื• ืื•ืชื, ืื‘ืœ ื›ืฉื”ื ืขืจื›ื•
02:23
exit polls in every state,
47
143330
2000
ืกืงืจื™ ื™ืฆื™ืื” ื‘ื›ืœ ืžื“ื™ื ื”,
02:25
in 37 states, out of the 50,
48
145330
2000
ื‘37 ืžื“ื™ื ื•ืช ืžืชื•ืš 50,
02:27
they asked a question, that was pretty direct, about race.
49
147330
3000
ื”ื ืฉืืœื• ืฉืืœื”, ืฉื”ื™ืชื” ื“ื™ ื™ืฉื™ืจื”, ืขืœ ื’ื–ืข.
02:30
They asked this question.
50
150330
2000
ื”ื ืฉืืœื• ืืช ื”ืฉืืœื” ื”ื–ื•.
02:32
In deciding your vote for President today, was the race
51
152330
2000
ื‘ื”ื—ืœื˜ื” ืžื™ ื™ื”ื™ื” ื ืฉื™ื ื”ื™ื•ื, ื”ืื ื”ื’ื–ืข
02:34
of the candidate a factor?
52
154330
2000
ืฉืœ ื”ืžืชืžื•ื“ื“ ื”ื™ื” ืฉื™ืงื•ืœ?
02:36
We're looking for people that said, "Yes, race was a factor;
53
156330
3000
ืื ื—ื ื• ืžื—ืคืฉื™ื ืื ืฉื™ื ืฉืืžืจื•, "ื›ืŸ, ื”ื’ื–ืข ื”ื™ื” ืฉื™ืงื•ืœ;
02:39
moreover it was an important factor, in my decision,"
54
159330
2000
ื™ื•ืชืจ ืžื–ื” ื–ื” ื”ื™ื” ืฉื™ืงื•ืœ ืžื›ืจื™ืข, ื‘ื”ื—ืœื˜ื” ืฉืœื™."
02:41
and people who voted for John McCain
55
161330
3000
ื•ืื ืฉื™ื ืฉื”ืฆื‘ื™ืขื• ื‘ืฉื‘ื™ืœ ื’'ื•ืŸ ืžืง'ืงื™ื™ืŸ
02:44
as a result of that factor,
56
164330
2000
ื›ืชื•ืฆืื” ืžื”ืฉื™ืงื•ืœ ื”ื–ื”,
02:46
maybe in combination with other factors, and maybe alone.
57
166330
2000
ืื•ืœื™ ื‘ื ื•ืกืฃ ืœืฉื™ืงื•ืœื™ื ืื—ืจื™ื, ื•ืื•ืœื™ ืœื.
02:48
We're looking for this behavior among white voters
58
168330
3000
ืื ื—ื ื• ืžื—ืคืฉื™ื ืืช ื”ื”ืชื ื”ื’ื•ืช ื”ื–ื• ื‘ื‘ื•ื—ืจื™ื,
02:51
or, really, non-black voters.
59
171330
3000
ืื• ืœืžืขืŸ ื”ืืžืช, ื‘ื•ื—ืจื™ื ืœื ืฉื—ื•ืจื™ื.
02:54
So you see big differences in different parts
60
174330
2000
ืื– ืืชื ืจื•ืื™ื, ื”ื‘ื“ืœื™ื ื’ื“ื•ืœื™ื ื‘ื—ืœืงื™ื ืฉื•ื ื™ื
02:56
of the country on this question.
61
176330
2000
ืฉืœ ื”ืืจืฅ, ื‘ืฉืืœื” ื”ื–ื•.
02:58
In Louisiana, about one in five white voters
62
178330
3000
ื‘ืœื•ืื™ื–ื™ืื ื”, ืื—ื“ ืžื—ืžื™ืฉื” ื‘ื•ื—ืจื™ื ืœื‘ื ื™ื
03:01
said, "Yes, one of the big reasons why I voted against Barack Obama
63
181330
3000
ืืžืจ, "ื›ืŸ, ืื—ืช ื”ืกื™ื‘ื•ืช ื”ืขื™ืงืจื™ื•ืช ืฉื”ืฆื‘ืขืชื™ ื ื’ื“ ื‘ืจืง ืื•ื‘ืžื”
03:04
is because he was an African-American."
64
184330
2000
ื”ื™ื ื‘ื’ืœืœ ืฉื”ื•ื ื”ื™ื” ืืคืจื•-ืืžืจื™ืงืื™."
03:06
If those people had voted for Obama,
65
186330
2000
ืื ื”ืื ืฉื™ื ื”ืืœื” ื”ื™ื• ืžืฆื‘ื™ืขื™ื ืœืื•ื‘ืžื”,
03:08
even half of them, Obama would have won Louisiana safely.
66
188330
4000
ืืคื™ืœื• ื—ืฆื™ ืžื”ื, ืื•ื‘ืžื” ื”ื™ื” ื–ื•ื›ื” ื‘ืœื•ืื™ื–ื™ืื ื” ื‘ืงืœื•ืช.
03:12
Same is true with, I think, all of these states you see on the top of the list.
67
192330
2000
ืื•ืชื• ื“ื‘ืจ, ืœื“ืขืชื™, ื‘ื›ืœ ื”ืžื“ื™ื ื•ืช ืฉืืชื ืจื•ืื™ื ื‘ืจืืฉ ื”ืจืฉื™ืžื”.
03:14
Meanwhile, California, New York, we can say, "Oh we're enlightened"
68
194330
4000
ื‘ื™ื ืชื™ื™ื, ืงืœื™ืคื•ืจื ื™ื”, ื ื™ื• ื™ื•ืจืง. ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื”ื’ื™ื“, "ืื• ืื ื—ื ื• ื ืื•ืจื™ื,"
03:18
but you know, certainly a much lower incidence of this
69
198330
2000
ืื‘ืœ ืืชื ื™ื•ื“ืขื™ื, ื‘ื”ื—ืœื˜ ื”ื•ื“ื• ื‘ื›ืžื•ืช ืงื˜ื ื” ื™ื•ืชืจ
03:20
admitted, I suppose,
70
200330
2000
ืื ื™ ืžื ื™ื—,
03:22
manifestation of racially-based voting.
71
202330
3000
ื”ื”ืชื’ืฉืžื•ืช ืฉืœ ื‘ื—ื™ืจื” ืžื•ื˜ืช ื’ื–ืข.
03:25
Here is the same data on a map.
72
205330
2000
ื”ื ื” ืื•ืชื• ืžื™ื“ืข ืขืœ ืžืคื”.
03:27
You kind of see the relationship between
73
207330
2000
ืืชื ื“ื™ ืจื•ืื™ื ืืช ื”ื™ื—ืก ื‘ื™ืŸ
03:29
the redder states of where more people responded and said,
74
209330
2000
ื”ืžื“ื™ื ื•ืช ื”ืื“ื•ืžื•ืช ื‘ื”ืŸ ื™ื•ืชืจ ืื ืฉื™ื ื”ื’ื™ื‘ื• ื•ืขื ื•,
03:31
"Yes, Barack Obama's race was a problem for me."
75
211330
3000
"ื›ืŸ, ื”ื’ื–ืข ืฉืœ ื‘ืจืง ืื•ื‘ืžื” ื”ื™ื” ื‘ืขื™ื” ื‘ืฉื‘ื™ืœื™."
03:34
You see, comparing the map to '96, you see an overlap here.
76
214330
3000
ืืชื ืจื•ืื™ื, ื”ืฉื•ื•ืื” ื‘ื™ืŸ ื”ืžืคื” ืฉืœ 96, ืืชื ืจื•ืื™ื ืืช ื”ื—ืคื™ืคื” ืคื”.
03:37
This really seems to explain
77
217330
2000
ื–ื” ื“ื™ ืžืฆืœื™ื— ืœื”ืกื‘ื™ืจ
03:39
why Barack Obama did worse
78
219330
2000
ืœืžื” ื‘ืจืง ืื•ื‘ืžื” ื™ืฆื ื’ืจื•ืข
03:41
in this one part of the country.
79
221330
2000
ื‘ื—ืœืง ื”ื–ื” ืฉืœ ื”ืืจืฅ.
03:43
So we have to ask why.
80
223330
2000
ืื– ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœืฉืื•ืœ ืœืžื”.
03:45
Is racism predictable in some way?
81
225330
2000
ื”ืื ื’ื–ืขื ื•ืช ืฆืคื•ื™ื” ื‘ืฆื•ืจื” ื›ืœืฉื”ื™?
03:47
Is there something driving this?
82
227330
2000
ื”ืื ืžืฉื”ื• ืžื ื™ืข ืืช ื–ื”?
03:49
Is it just about some weird stuff that goes on in Arkansas
83
229330
2000
ื–ื” ืจืง ืขืœ ืžืฉื”ื• ืžื•ื–ืจ ืฉืžืชืจื—ืฉ ื‘ืืจืงื ืกื•
03:51
that we don't understand, and Kentucky?
84
231330
2000
ืฉืื ื—ื ื• ืœื ืžื‘ื™ื ื™ื, ื•ืงื ื˜ืืงื™?
03:53
Or are there more systematic factors at work?
85
233330
2000
ืื• ืฉืืœื” ื’ื•ืจืžื™ื ื™ื•ืชืจ ืฉื™ื˜ืชื™ื™ื?
03:55
And so we can look at a bunch of different variables.
86
235330
2000
ืื– ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื”ืกืชื›ืœ ืขืœ ืงื‘ื•ืฆื” ืฉืœ ืžืฉืชื ื™ื.
03:57
These are things that economists and political scientists look at all the time --
87
237330
3000
ื–ื” ื“ื‘ืจื™ื ืฉื›ืœื›ืœื ื™ื ื•ืžื“ืขื ื™ ืคื•ืœื™ื˜ื™ืงื” ื‘ื•ื“ืงื™ื ื›ืœ ื”ื–ืžืŸ --
04:00
things like income, and religion, education.
88
240330
3000
ื“ื‘ืจื™ื ื›ืžื• ื”ื›ื ืกื”, ื•ื“ืช, ื”ืฉื›ืœื”.
04:03
Which of these seem to drive
89
243330
2000
ืื™ื–ื” ืžื”ื ื ืจืื” ืฉืžืงื“ื
04:05
this manifestation of racism
90
245330
2000
ืืช ื”ื”ืชื’ืœืžื•ืช ื”ื–ื• ืฉืœ ืฉืœ ื’ื–ืขื ื•ืช
04:07
in this big national experiment we had on November 4th?
91
247330
3000
ื‘ื ื™ืกื•ื™ ื”ืœืื•ืžื™ ื”ื–ื” ืฉื”ื™ื” ืœื ื• ื‘ืืจื‘ืขื” ื‘ื ื•ื‘ืžื‘ืจ?
04:10
And there are a couple of these that have
92
250330
2000
ื•ื™ืฉ ื›ืžื” ื›ืืœื” ืฉื™ืฉ ืœื”ื
04:12
strong predictive relationships,
93
252330
2000
ื”ืฉืคืขื” ื—ื™ื–ื•ื™ื™ืช ื—ื–ืงื” --
04:14
one of which is education,
94
254330
3000
ืื—ื“ ืžื”ื ื”ื•ื ื”ืฉื›ืœื”.
04:17
where you see the states with the fewest years of schooling
95
257330
2000
ื”ื™ื›ืŸ ืฉืจื•ืื™ื ืืช ื”ืžื“ื™ื ื•ืช ืขื ืคื—ื•ืช ืฉื ื™ื ืฉืœ ืœื™ืžื•ื“
04:19
per adult are in red,
96
259330
2000
ืœืžื‘ื•ื’ืจ, ื‘ืื“ื•ื,
04:21
and you see this part of the country, the kind of Appalachians region,
97
261330
3000
ื•ืืชื ืจื•ืื™ื ืืช ื”ื—ืœืง ืฉืœ ื”ืืจืฅ, ืื–ื•ืจ ื”ืืคืœืฆ'ื™ื,
04:24
is less educated. It's just a fact.
98
264330
2000
ืฉื”ื•ื ืคื—ื•ืช ืžืœื•ืžื“. ื–ื• ืคืฉื•ื˜ ืขื•ื‘ื“ื”.
04:26
And you see the relationship there
99
266330
2000
ื•ืืชื ืจื•ืื™ื ืืช ื”ื™ื—ืก ืฉื
04:28
with the racially-based voting patterns.
100
268330
3000
ืขื ื“ืคื•ืกื™ ื”ื”ืฆื‘ืขื” ืžื‘ื•ืกืก ื”ื’ื–ืขื ื•ืช.
04:31
The other variable that's important is
101
271330
2000
ื”ืžืฉืชื ื” ื”ืื—ืจ ืฉื—ืฉื•ื‘ ื”ื•ื
04:33
the type of neighborhood that you live in.
102
273330
3000
ืกื•ื’ ื”ืฉื›ื•ื ื” ืฉื‘ื” ื’ืจื™ื.
04:36
States that are more rural --
103
276330
2000
ืžื“ื™ื ื•ืช ื™ื•ืชืจ ื›ืคืจื™ื•ืช,
04:38
even to some extent of the states like New Hampshire and Maine --
104
278330
2000
ืืคื™ืœื• ื—ืœืง ืžื”ืžื“ื™ื ื•ืช ื›ืžื• ื ื™ื• ื”ืžืคืฉื™ื™ืจ ื•ืžื™ื™ืŸ,
04:40
they exhibit a little bit of
105
280330
2000
ื”ื ืžืฆื™ื’ื•ืช ืžืขื˜
04:42
this racially-based voting against Barack Obama.
106
282330
3000
ืžื”ื”ืฆื‘ืขื” ื”ื’ื–ืขื ื™ืช ื ื’ื“ ื‘ืจืง ืื•ื‘ืžื”.
04:45
So it's the combination of these two things: it's education
107
285330
2000
ืื– ื–ื” ื”ืฆืจื•ืฃ ืฉืœ ืฉื ื™ ื“ื‘ืจื™ื. ื–ื• ื”ื”ืฉื›ืœื”
04:47
and the type of neighbors that you have,
108
287330
2000
ื•ืกื•ื’ ื”ืื–ื•ืจ ื‘ื• ื’ืจื™ื,
04:49
which we'll talk about more in a moment.
109
289330
2000
ืขืœื™ื• ื ื“ื‘ืจ ืขื•ื“ ืžื™ื™ื“.
04:51
And the thing about states like Arkansas and Tennessee
110
291330
2000
ื”ืขื ื™ื™ืŸ ื‘ืžื“ื™ื ื•ืช ื›ืžื• ืืจืงื ืกื• ื•ื˜ื ืกื™
04:53
is that they're both very rural,
111
293330
2000
ื”ื•ื ืฉืฉืชื™ื™ื”ืŸ ืžืื•ื“ ื›ืคืจื™ื•ืช,
04:55
and they are educationally impoverished.
112
295330
4000
ื•ื”ืŸ ืœื ืžืชืงื“ืžื•ืช ืžื‘ื—ื™ื ื” ื”ืฉื›ืœืชื™ืช.
04:59
So yes, racism is predictable.
113
299330
2000
ืื– ื›ืŸ, ื”ื’ื–ืขื ื•ืช ืฆืคื•ื™ื™ื”.
05:01
These things, among maybe other variables,
114
301330
2000
ื”ื“ื‘ืจื™ื ื”ืืœื”, ืื•ืœื™ ื‘ื ื•ืกืฃ ืœืžืฉืชื ื™ื ืื—ืจื™ื,
05:03
but these things seem to predict it.
115
303330
2000
ืื‘ืœ ื ืจืื” ืฉื”ื“ื‘ืจื™ื ื”ืืœื” ืฆื•ืคื™ื ืืช ื–ื”.
05:05
We're going to drill down a little bit more now,
116
305330
2000
ืื ื—ื ื• ืขื•ืžื“ื™ื ืœื”ื›ื ืก ืขืžื•ืง ื™ื•ืชืจ ืขื›ืฉื™ื•,
05:07
into something called the General Social Survey.
117
307330
2000
ืœืชื•ืš ืžืฉื”ื• ืฉื ืงืจื ื”ืกืงืจ ื”ืกื•ืฆื™ืืœื™ ื”ื›ืœืœื™.
05:09
This is conducted by the University of Chicago
118
309330
2000
ื”ื•ื ื ืขืจืš ืขืœ ื™ื“ื™ ืื•ื ื™ื‘ืจืกื™ื˜ืช ืฉื™ืงื’ื•
05:11
every other year.
119
311330
2000
ื›ืœ ืฉื ืชื™ื™ื.
05:13
And they ask a series of really interesting questions.
120
313330
2000
ื•ื”ื ืฉื•ืืœื™ื ืกื“ืจื” ืฉืœ ืฉืืœื•ืช ืžืžืฉ ืžืขื ื™ื ื•ืช.
05:15
In 2000 they had particularly interesting questions
121
315330
2000
ื‘ืฉื ืช 2000 ื”ื™ื• ืœื”ื ืฉืืœื•ืช ืžืขื ื™ื™ื ื•ืช ื‘ืžื™ื•ื—ื“
05:17
about racial attitudes.
122
317330
2000
ืขืœ ื™ื—ืก ื’ื–ืขื ื™.
05:19
One simple question they asked is,
123
319330
2000
ืฉืืœื” ืื—ืช ืคืฉื•ื˜ื” ืฉื”ื ืฉืืœื• ื”ื™ืชื”,
05:21
"Does anyone of the opposite race live in your neighborhood?"
124
321330
4000
"ื”ืื ืžื™ืฉื”ื• ืžื”ื’ื–ืข ื”ืฉื ื™ ื—ื™ ื‘ืฉื›ื•ื ื” ืฉืœื›ื?"
05:25
We can see in different types of communities that the results are quite different.
125
325330
3000
ืืคืฉืจ ืœืจืื•ืช ืกื•ื’ื™ื ืฉื•ื ื™ื ืฉืœ ืงื”ื™ืœื•ืช ืฉื”ืชื•ืฆืื•ืช ืฉื•ื ื•ืช ืžืื•ื“.
05:28
In cites, about 80 percent of people
126
328330
3000
ื‘ืขืจื™ื, ื‘ืขืจืš ืœ80 ืื—ื•ื– ืžื”ืื ืฉื™ื
05:31
have someone whom they consider a neighbor of another race,
127
331330
3000
ื™ืฉ ืžื™ืฉื”ื• ืฉื”ื ืžื—ืฉื™ื‘ื™ื ืœืฉื›ืŸ, ืžื’ื–ืข ืื—ืจ.
05:34
but in rural communities, only about 30 percent.
128
334330
3000
ืื‘ืœ ื‘ืงื”ื™ืœื•ืช ื›ืคืจื™ื•ืช, ืจืง ืœ30 ืื—ื•ื–.
05:37
Probably because if you live on a farm, you might not have a lot of neighbors, period.
129
337330
3000
ื›ื ืจืื” ืžืคื ื™ ืฉื›ืฉืืชื” ื—ื™ ื‘ื—ื•ื•ื” ืื™ืŸ ืœืš ื”ืจื‘ื” ืฉื›ื ื™ื, ื ืงื•ื“ื”.
05:40
But nevertheless, you're not having a lot of interaction with people
130
340330
3000
ืื‘ืœ ืขื“ื™ื™ืŸ, ืื™ืŸ ืœื›ื ื”ืจื‘ื” ืื™ื ื˜ืจืืงืฆื™ื” ืขื ืื ืฉื™ื
05:43
who are unlike you.
131
343330
2000
ืฉืœื ื›ืžื•ืชื›ื.
05:45
So what we're going to do now is take the white people in the survey
132
345330
3000
ืื– ืžื” ืฉื ืขืฉื” ืขื›ืฉื™ื• ื–ื” ื ื™ืงื— ืืช ื”ืื ืฉื™ื ื”ืœื‘ื ื™ื ื‘ืกืงืจ
05:48
and split them between those who have black neighbors --
133
348330
3000
ื•ื ื—ืœืง ืื•ืชื ื‘ื™ืŸ ืืœื” ืฉื™ืฉ ืœื”ื ืฉื›ื ื™ื ืฉื—ื•ืจื™ื
05:51
or, really, some neighbor of another race --
134
351330
2000
ืื• ืœืžืขืŸ ื”ืืžืช, ืฉื›ื ื™ื ืžื’ื–ืข ืื—ืจ.
05:53
and people who have only white neighbors.
135
353330
3000
ื•ืื ืฉื™ื ืจืง ืขื ืฉื›ื ื™ื ืœื‘ื ื™ื.
05:56
And we see in some variables
136
356330
2000
ื•ืื ื—ื ื• ืจื•ืื™ื ื‘ื—ืœืง ืžื”ืžืฉืชื ื™ื
05:58
in terms of political attitudes, not a lot of difference.
137
358330
2000
ืžื‘ื—ื™ื ืช ืฉื™ื•ืš ืคื•ืœื™ื˜ื™, ืื™ืŸ ื”ืจื‘ื” ื”ื‘ื“ืœื™ื.
06:00
This was eight years ago, some people were more Republican back then.
138
360330
3000
ื–ื” ื”ื™ื” ืœืคื ื™ 8 ืฉื ื™ื, ื—ืœืง ืžื”ืื ืฉื™ื ื”ื™ื• ื™ื•ืชืจ ืจืคื•ื‘ืœื™ืงื ื™ื ืื–.
06:03
But you see Democrats versus Republican,
139
363330
2000
ืื‘ืœ ืจื•ืื™ื ื“ืžื•ืงืจื˜ื™ื ืžื•ืœ ืจืคื•ื‘ืœื™ืงื ื™ื,
06:05
not a big difference based on who your neighbors are.
140
365330
3000
ืื™ืŸ ื”ืจื‘ื” ื”ื‘ื“ืœ ื‘ื”ืชื‘ืกืก ืขืœ ืžื™ ื”ืฉื›ื ื™ื ืฉืœืš.
06:08
And even some questions about race -- for example
141
368330
2000
ื•ืืคื™ืœื• ื›ืžื” ืฉืืœื•ืช ืขืœ ื’ื–ืข, ืœื“ื•ื’ืžื”
06:10
affirmative action, which is kind of a political question,
142
370330
2000
ืคืขื•ืœื” ื—ื™ื•ื‘ื™ืช, ืฉื”ื™ื ืกื•ื’ ืฉืœ ืฉืืœื” ืคื•ืœื™ื˜ื™ืช,
06:12
a policy question about race, if you will --
143
372330
2000
ืฉืืœืช ืžื“ื™ื ื™ื•ืช ืขืœ ื’ื–ืข, ืื ืชืจืฆื•.
06:14
not much difference here.
144
374330
2000
ืื™ืŸ ื”ืจื‘ื” ื”ื‘ื“ืœ ื›ืืŸ.
06:16
Affirmative action is not very popular frankly, with white voters, period.
145
376330
3000
ืคืขื•ืœื” ื—ื™ื•ื‘ื™ืช ื”ื™ื ืœื ืคื•ืคื•ืœืืจื™ืช ืœืžืขืŸ ื”ืืžืช, ืืฆืœ ื‘ื•ื—ืจื™ื ืœื‘ื ื™ื, ื ืงื•ื“ื”.
06:19
But people with black neighbors and people with mono-racial neighborhoods
146
379330
3000
ืื‘ืœ ืื ืฉื™ื ืขื ืฉื›ื ื™ื ืฉื—ื•ืจื™ื ื•ืื ืฉื™ื ืขื ืฉื›ื ื™ื ืžื’ื–ืข ื™ื—ื™ื“
06:22
feel no differently about it really.
147
382330
3000
ืœื ืžืจื’ื™ืฉื™ื ื”ื‘ื“ืœ ื‘ื ื•ืฉื.
06:25
But if you probe a bit deeper and get a bit more personal if you will,
148
385330
4000
ืื‘ืœ ืื ืžื’ืฉืฉื™ื ืงืฆืช ื™ื•ืชืจ ืขืžื•ืง, ืงืฆืช ื™ื•ืชืจ ืื™ืฉื™ื™ื ืื ืชืจืฆื•,
06:29
"Do you favor a law banning interracial marriage?"
149
389330
2000
"ื”ื ืชืชืžื›ื• ื‘ื—ื•ืง ืฉืื•ืกืจ ื ื™ืฉื•ืื™ื ื‘ื™ืŸ ื’ื™ื–ืขื™ื™ื?"
06:31
There is a big difference.
150
391330
2000
ื™ืฉ ื”ื‘ื“ืœ ื’ื“ื•ืœ.
06:33
People who don't have neighbors of a different race
151
393330
2000
ืœืื ืฉื™ื ืฉืื™ืŸ ืฉื›ื ื™ื ืžื’ื–ืขื™ื ืฉื•ื ื™ื
06:35
are about twice as likely
152
395330
2000
ื™ืชื ื’ื“ื• ืคื™ ืฉืชื™ื™ื
06:37
to oppose interracial marriage as people who do.
153
397330
3000
ืœื ื™ืฉื•ืื™ื ื‘ื™ืŸ ื’ื™ื–ืขื™ื™ื, ืœืขื•ืžืช ืื ืฉื™ื ืฉื›ืŸ.
06:40
Just based on who lives in your immediate neighborhood around you.
154
400330
3000
ืจืง ื‘ื”ืชื‘ืกืก ืขืœ ืžื™ ื’ืจ ื‘ืฉื›ื ื•ืช ืžื™ื™ื“ื™ืช ืืœื™ื›ื.
06:43
And likewise they asked, not in 2000, but in the same survey in 1996,
155
403330
4000
ื•ื›ืš ื”ื ืฉืืœื• ื’ื, ืœื ื‘2000, ืืœื ื‘ืกืงืจ ืฉืœ 1996,
06:47
"Would you not vote for a qualified black president?"
156
407330
4000
"ื”ืื ืœื ืชื‘ื—ืจื• ื‘ื ืฉื™ื ืฉื—ื•ืจ?"
06:51
You see people without neighbors who are African-American who
157
411330
2000
ืชืจืื• ืื ืฉื™ื ืœืœื ืฉื›ื ื™ื ืืคืจื•-ืืžืจื™ืงืื™ื
06:53
were much more likely to say, "That would give me a problem."
158
413330
3000
ื ื˜ื• ื™ื•ืชืจ ืœื”ื’ื™ื“, "ื–ื” ื™ื’ืจื•ื ืœื™ ืœื‘ืขื™ื”."
06:56
So it's really not even about urban versus rural.
159
416330
2000
ืื– ื–ื” ืืคื™ืœื• ืœื ืขืœ ืขื™ืจื•ื ื™ ืžื•ืœ ื›ืคืจื™.
06:58
It's about who you live with.
160
418330
2000
ื–ื” ืขืœ ืขื ืžื™ ืืชื” ื—ื™.
07:00
Racism is predictable. And it's predicted by
161
420330
2000
ื’ื–ืขื ื•ืช ื”ื™ื ื‘ืจืช ื—ื™ื–ื•ื™. ื•ื ื™ืชืŸ ืœื—ื–ื•ืช ืื•ืชื” ืขืœ ื™ื“ื™
07:02
interaction or lack thereof with people unlike you, people of other races.
162
422330
4000
ื™ื—ืกื™ ื’ื•ืžืœื™ืŸ ืื• ื—ื•ืกืจ ื‘ื”ื ืขื ืื ืฉื™ื ืฉื•ื ื™ื ืžืžืš, ืื ืฉื™ื ืžื’ื–ืข ืื—ืจ.
07:06
So if you want to address it,
163
426330
2000
ืื– ืื ืชืจืฆื• ืœื”ืชื™ื™ื—ืก ืœื–ื”,
07:08
the goal is to facilitate interaction with people of other races.
164
428330
3000
ื”ืžื˜ืจื” ื”ื™ื ืœื™ืฆื•ืจ ื™ื—ืกื™ ื’ื•ืžืœื™ืŸ ืขื ืื ืฉื™ื ืžื’ื–ืขื™ื ืื—ืจื™ื.
07:11
I have a couple of very obvious, I suppose,
165
431330
2000
ื™ืฉ ืœื™ ื›ืžื” ืจืขื™ื•ื ื•ืช ื‘ืจื•ืจื™ื ืžืืœื™ื”ื, ืื ื™ ืžื ื™ื—,
07:13
ideas for maybe how to do that.
166
433330
3000
ืœืื™ืš ืœืขืฉื•ืช ืืช ื–ื”.
07:16
I'm a big fan of cities.
167
436330
2000
ืื ื™ ื—ืกื™ื“ ื’ื“ื•ืœ ืฉืœ ืขืจื™ื.
07:18
Especially if we have cites that are diverse and sustainable,
168
438330
3000
ื‘ืขื™ืงืจ ืื ื™ืฉ ืœื ื• ืขืจื™ื ืžื’ื•ื•ื ื•ืช ื•ื‘ืจื•ืช ืงื™ื™ืžื,
07:21
and can support people of different ethnicities and different income groups.
169
441330
3000
ื•ื™ื›ื•ืœื•ืช ืœืชืžื•ืš ื‘ืื ืฉื™ื ืžืชืจื‘ื•ื™ื•ืช ืฉื•ื ื•ืช ื•ืงื‘ื•ืฆื•ืช ื”ื›ื ืกื” ืฉื•ื ื•ืช.
07:24
I think cities facilitate more of the kind of networking,
170
444330
3000
ืื ื™ ื—ื•ืฉื‘ ืฉืขืจื™ื ืชื•ืžื›ื•ืช ื™ื•ืชืจ ื‘ืชืงืฉื•ืจืช,
07:27
the kind of casual interaction than you might have on a daily basis.
171
447330
3000
ื•ืื™ื ื˜ืจืืงืฆื™ื” ืžืงืจื™ืช ืžืฉื™ืฉ ืœื›ื ืขืœ ื‘ืกื™ืก ื™ื•ืžื™.
07:30
But also not everyone wants to live in a city, certainly not a city like New York.
172
450330
3000
ืื‘ืœ ื›ืžื•ื‘ืŸ ืœื ื›ืœ ืื—ื“ ืจื•ืฆื” ืœื’ื•ืจ ื‘ืขื™ืจ, ื‘ื•ื•ื“ืื™ ืœื ืขื™ืจ ื›ืžื• ื ื™ื• ื™ื•ืจืง.
07:33
So we can think more about things like street grids.
173
453330
3000
ืื– ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื—ืฉื•ื‘ ื™ื•ืชืจ ืขืœ ื“ื‘ืจื™ื ื›ืžื• ืจืฉืช ืฉืœ ืจื—ื•ื‘ื•ืช.
07:36
This is the neighborhood where I grew up in East Lansing, Michigan.
174
456330
2000
ื–ื• ื”ืฉื›ื•ื ื” ื‘ื” ื’ื“ืœืชื™ ื‘ืžื–ืจื— ืœื ืกื™ื ื’, ืžื™ืฉื™ื’ืŸ.
07:38
It's a traditional Midwestern community, which means you have real grid.
175
458330
3000
ื–ื• ืงื”ื™ืœื” ืžืขืจื‘ ืชื™ื›ื•ื ื™ืช ืžืกื•ืจืชื™ืช, ืžื” ืฉืื•ืžืจ ืฉื™ืฉ ืจืฉืช ืืžื™ืชื™ืช.
07:41
You have real neighborhoods and real trees, and real streets you can walk on.
176
461330
3000
ื™ืฉ ืฉื›ื•ื ื•ืช ืืžื™ืชื™ื•ืช ื•ืขืฆื™ื ืืžื™ืชื™ื™ื, ื•ืจื—ื•ื‘ื•ืช ืืžื™ืชื™ื™ื ืฉืืคืฉืจ ืœืœื›ืช ื‘ื”ื.
07:44
And you interact a lot with your neighbors --
177
464330
3000
ื•ืžืชืงืฉืจื™ื ื”ืจื‘ื” ืขื ื”ืฉื›ื ื™ื ืฉืœื›ื,
07:47
people you like, people you might not know.
178
467330
2000
ืื ืฉื™ื ื›ืžื•ื›ื, ืื ืฉื™ื ืฉืื•ืœื™ ืืชื ืœื ืžื›ื™ืจื™ื.
07:49
And as a result it's a very tolerant community,
179
469330
3000
ื•ื›ืชื•ืฆืื” ืžื–ื” ื–ื• ืงื”ื™ืœื” ืžืื•ื“ ืกื•ื‘ืœื ื™ืช,
07:52
which is different, I think, than something like this,
180
472330
2000
ืฉืฉื•ื ื”, ืื ื™ ื—ื•ืฉื‘ ืžืžืฉื”ื• ื›ื–ื”,
07:54
which is in Schaumburg, Illinois,
181
474330
2000
ืฉื–ื• ืฉืื•ืžื‘ื•ืจื’, ืื™ืœื™ื ื•ื™.
07:56
where every little set of houses has their own cul-de-sac
182
476330
3000
ืฉื ืœื›ืœ ืกื˜ ืฉืœ ื‘ืชื™ื ื™ืฉ ืจื—ื•ื‘ ืœืœื ืžื•ืฆื
07:59
and drive-through Starbucks and stuff like that.
183
479330
2000
ื•ืกื˜ืืจื‘ืงืก ื•ื“ื‘ืจื™ื ื›ืžื• ื–ื”.
08:01
I think that actually this type of urban design,
184
481330
3000
ืื ื™ ื—ื•ืฉื‘ ืฉืœืžืขืฉื” ืกื•ื’ ื–ื” ืฉืœ ืชื›ื ื•ืŸ ืขื™ืจื•ื ื™,
08:04
which became more prevalent in the 1970s and 1980s --
185
484330
3000
ืฉื ืขืฉื” ื ืคื•ืฅ ื™ื•ืชืจ ื‘ืฉื ื•ืช ื”70 ื•ื”80,
08:07
I think there is a relationship between that and the country becoming
186
487330
3000
ืื ื™ ื—ื•ืฉื‘ ืฉื™ืฉ ืงืฉืจ ื‘ื™ืŸ ื–ื” ื•ื‘ื™ืŸ ื”ืืจืฅ ืฉื ืขืฉื™ืช
08:10
more conservative under Ronald Reagan.
187
490330
2000
ื™ื•ืชืจ ืฉืžืจื ื™ืช, ืชื—ืช ืจื•ื ืืœื“ ืจื™ื™ื’ืŸ.
08:12
But also here is another idea we have --
188
492330
3000
ืื‘ืœ ื’ื, ื”ื ื” ืขื•ื“ ืจืขื™ื•ืŸ ืฉืœื ื• --
08:15
is an intercollegiate exchange program
189
495330
2000
ืชื•ื›ื ื™ืช ื—ืœื•ืคืช ืกื˜ื•ื“ื ื˜ื™ื
08:17
where you have students going from New York abroad.
190
497330
3000
ื›ืฉื™ืฉ ืกื˜ื•ื“ื ื˜ื™ื ืžื ื™ื• ื™ื•ืจืง ืฉื ื•ืกืขื™ื ืœื—ื•"ืœ,
08:20
But frankly there are enough differences within the country now
191
500330
2000
ืื‘ืœ ืœืžืขืŸ ื”ืืžืช ื™ืฉ ืžืกืคื™ืง ื”ื‘ื“ืœื™ื ื‘ืชื•ืš ื”ืืจืฅ ืขื›ืฉื™ื•
08:22
where maybe you can take a bunch of kids from NYU,
192
502330
3000
ืฉืื•ืœื™ ืืคืฉืจ ืœืงื—ืช ื›ืžื” ื—ื‘ืจื” ืžืื•ื ื™ื‘ืจืกื™ื˜ืช ื ื™ื• ื™ื•ืจืง,
08:25
have them go study for a semester at the University of Arkansas,
193
505330
2000
ื•ืœืฉืœื•ื— ืื•ืชื ืœืœืžื•ื“ ืกื™ืžืกื˜ืจ ื‘ืื•ื ื™ื‘ืจืกื™ื˜ืช ืืจืงื ืกื•,
08:27
and vice versa. Do it at the high school level.
194
507330
3000
ื•ืœื”ืคืš. ื•ืœืขืฉื•ืช ืืช ื–ื” ื‘ืจืžืช ื‘ื™ืช ื”ืกืคืจ ื”ืชื™ื›ื•ืŸ.
08:30
Literally there are people who might be in school in Arkansas or Tennessee
195
510330
3000
ื‘ืืžืช ื™ื›ื•ืœ ืœื”ื™ื•ืช ืื ืฉื™ื ืฉื ืžืฆืื™ื ื‘ื‘ื™ืช ืกืคืจ ื‘ืืจืงื ืกื• ืื• ื˜ื ืกื™,
08:33
and might never interact in a positive affirmative way
196
513330
3000
ื•ืœื ื™ืชืงืฉืจื• ื‘ืฆื•ืจื” ื—ื™ื•ื‘ื™ืช
08:36
with someone from another part of the country, or of another racial group.
197
516330
4000
ืขื ืžื™ืฉื”ื• ืžื—ืœืง ืื—ืจ ืฉืœ ื”ืืจืฅ, ืื• ืžืงื‘ื•ืฆื” ืืชื ื™ืช ืื—ืจืช.
08:40
I think part of the education variable we talked about before
198
520330
3000
ืื ื™ ื—ื•ืฉื‘ ืฉื—ืœืง ืžื”ืžืฉืชื ื™ื ื‘ื—ื™ื ื•ืš ืฉื“ื™ื‘ืจื ื• ืขืœื™ื”ื ืงื•ื“ื
08:43
is the networking experience you get when you go to college
199
523330
2000
ื–ื” ื”ื ืกื™ื•ืŸ ื‘ื™ื—ืก ื’ื•ืžืœื™ืŸ ืฉืžืงื‘ืœื™ื ื›ืฉื”ื•ืœื›ื™ื ืœืงื•ืœื’'
08:45
where you do get a mix of people that you might not interact with otherwise.
200
525330
4000
ื›ืฉืžืชืขืจื‘ื‘ื™ื ืขื ืื ืฉื™ื ืฉืื—ืจืช ืœื ื”ื™ื™ืชื ืžืชืงืฉืจื™ื ืื™ืชื.
08:49
But the point is, this is all good news,
201
529330
2000
ืื‘ืœ ื”ื ืงื•ื“ื” ื”ื™ื, ื›ืœ ื–ื” ื—ื“ืฉื•ืช ื˜ื•ื‘ื•ืช.
08:51
because when something is predictable,
202
531330
3000
ืžืคื ื™ ืฉื›ืฉืžืฉื”ื• ืฆืคื•ื™,
08:54
it is what I call designable.
203
534330
2000
ื–ื” ืžื” ืฉืื ื™ ืงื•ืจื ื‘ืจ ืขื™ืฆื•ื‘.
08:56
You can start thinking about solutions to solving that problem,
204
536330
2000
ืืชื ื™ื›ื•ืœื™ื ืœื”ืชื—ื™ืœ ืœื—ืฉื•ื‘ ืขืœ ืคืชืจื•ื ื•ืช ืœื‘ืขื™ื”.
08:58
even if the problem is pernicious and as intractable as racism.
205
538330
3000
ืืคื™ืœื• ืื ื”ื‘ืขื™ื” ื”ื™ื ื–ื“ื•ื ื™ืช, ื•ืขืงืฉื ื™ืช ื›ืžื• ื’ื–ืขื ื•ืช.
09:01
If we understand the root causes of the behavior
206
541330
2000
ืื ื ื‘ื™ืŸ ืืช ืฉื•ืจืฉ ื”ื”ืชื ื”ื’ื•ืช
09:03
and where it manifests itself and where it doesn't,
207
543330
2000
ื•ืื™ืคื” ื”ื™ื ื ื’ืœื™ืช ื•ืื™ืคื” ืœื,
09:05
we can start to design solutions to it.
208
545330
3000
ื ื•ื›ืœ ืœื”ืชื—ื™ืœ ืœืชื›ื ืŸ ืคืชืจื•ื ื•ืช,
09:08
So that's all I have to say. Thank you very much.
209
548330
2000
ืื– ื–ื” ื›ืœ ืžื” ืฉื™ืฉ ืœื™ ืœื•ืžืจ, ืชื•ื“ื” ืจื‘ื” ืœื›ื.
09:10
(Applause)
210
550330
1000
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7