Stephen Friend: The hunt for "unexpected genetic heroes"

62,612 views ใƒป 2014-05-29

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Ido Dekkers ืžื‘ืงืจ: Tal Dekkers
00:12
Approximately 30 years ago,
0
12602
2338
ืœืคื ื™ 30 ืฉื ื” ื‘ืขืจืš,
00:14
when I was in oncology at the Children's Hospital
1
14940
2693
ื›ืฉื”ื™ื™ืชื™ ื‘ืžื—ืœืงื” ื”ืื•ื ืงื•ืœื•ื’ื™ืช ื‘ื‘ื™ืช ื”ื—ื•ืœื™ื ืœื™ืœื“ื™ื
00:17
in Philadelphia,
2
17633
1389
ื‘ืคื™ืœื“ืœืคื™ื”,
00:19
a father and a son walked into my office
3
19022
3154
ืื‘ ื•ื‘ื ื• ื ื›ื ืกื• ืœืžืฉืจื“ ืฉืœื™
00:22
and they both had their right eye missing,
4
22176
3144
ื•ืœืฉื ื™ื™ื”ื ื”ื™ืชื” ื—ืกืจื” ืขื™ืŸ ื™ืžื™ืŸ.
00:25
and as I took the history, it became apparent
5
25320
2811
ื•ื›ืฉืœืงื—ืชื™ ืืช ื”ื”ืกื˜ื•ืจื™ื” ืฉืœื”ื ื–ื” ื ืขืฉื” ื‘ืจื•ืจ
00:28
that the father and the son had a rare form
6
28131
2769
ืฉืœืื‘ ื•ืœื‘ืŸ ื”ื™ืชื” ืฆื•ืจื” ื ื“ื™ืจื”
00:30
of inherited eye tumor, retinoblastoma,
7
30900
3542
ืฉืœ ื’ื™ื“ื•ืœ ืžื•ืจืฉ ื‘ืขื™ืŸ, ืจื˜ื™ื ื•ื‘ืœืกื˜ื•ืžื”,
00:34
and the father knew that he had passed that fate
8
34442
3114
ื•ื”ืื‘ ื™ื“ืข ืฉื”ื•ื ื”ืขื‘ื™ืจ ืืช ื”ื’ื•ืจืœ
00:37
on to his son.
9
37556
1875
ืœื‘ื ื•.
00:39
That moment changed my life.
10
39431
2412
ื”ืจื’ืข ื”ื–ื” ืฉื™ื ื” ืืช ื—ื™ื™.
00:41
It propelled me to go on
11
41843
1904
ื”ื•ื ื“ื—ืฃ ืื•ืชื™ ืœื”ืžืฉื™ืš
00:43
and to co-lead a team that discovered
12
43747
3532
ื•ืœื”ื•ื‘ื™ืœ ื‘ืžืฉื•ืชืฃ ืฆื•ื•ืช ืฉื’ื™ืœื”
00:47
the first cancer susceptibility gene,
13
47279
3197
ืืช ื”ื’ืŸ ื”ืจืืฉื•ืŸ ืœืจื’ื™ืฉื•ืช ืœืกืจื˜ืŸ,
00:50
and in the intervening decades since then,
14
50476
2721
ื•ื‘ืขืฉื•ืจื™ื ืฉืœืื—ืจ ืžื›ืŸ,
00:53
there has been literally a seismic shift
15
53197
3420
ื”ื™ื” ืฉื™ื ื•ื™ ืกื™ืกืžื™ ืžื™ืœื•ืœื™ืช
00:56
in our understanding of what goes on,
16
56617
2026
ื‘ื”ื‘ื ื” ืฉืœื ื• ื‘ืžื” ืฉืงื•ืจื”,
00:58
what genetic variations are sitting behind
17
58643
2888
ืื™ื–ื” ืฉื™ื ื•ื™ื™ื ื’ื ื˜ื™ื ื™ื•ืฉื‘ื™ื ืžืื—ื•ืจื™
01:01
various diseases.
18
61531
1559
ืžื—ืœื•ืช ืฉื•ื ื•ืช.
01:03
In fact, for thousands of human traits,
19
63090
3384
ืœืžืขืฉื”, ืขื‘ื•ืจ ืืœืคื™ ืชื›ื•ื ื•ืช ืื ื•ืฉื™ื•ืช,
01:06
a molecular basis that's known for that,
20
66474
2218
ื”ื‘ืกื™ืก ื”ืžื•ืœืงื•ืœืจื™ ืฉื™ื“ื•ืข ืœื–ื”,
01:08
and for thousands of people, every day,
21
68692
3295
ื•ืœืืœืคื™ ืื ืฉื™ื, ื›ืœ ื™ื•ื,
01:11
there's information that they gain
22
71987
2081
ื™ืฉ ืžื™ื“ืข ืฉื”ื ืžืงื‘ืœื™ื
01:14
about the risk of going on to get this disease
23
74068
2442
ืขืœ ื”ืกื™ื›ื•ื ื™ื ืฉืœ ืœื”ื“ื‘ืง ื‘ืžื—ืœื” ื”ื–ื•
01:16
or that disease.
24
76510
2226
ืื• ื”ืžื—ืœื” ื”ื”ื™ื.
01:18
At the same time, if you ask,
25
78736
2305
ื‘ืื•ืชื• ื”ื–ืžืŸ, ืื ื”ื™ื™ืชื ื™ื›ื•ืœื™ื ืœืฉืื•ืœ,
01:21
"Has that impacted the efficiency,
26
81041
2707
"ื”ืื ื–ื” ื”ืฉืคื™ืข ืขืœ ื”ื™ืขื™ืœื•ืช,
01:23
how we've been able to develop drugs?"
27
83748
2092
ืื™ืš ืฉื”ื™ื™ื ื• ืžืกื•ื’ืœื™ื ืœืคืชื— ืชืจื•ืคื•ืช?"
01:25
the answer is not really.
28
85840
1782
ื”ืชืฉื•ื‘ื” ื”ื™ื ืœื ืžืžืฉ.
01:27
If you look at the cost of developing drugs,
29
87622
2330
ืื ืชื‘ื™ื˜ื• ื‘ืขืœื•ืช ืฉืœ ืคื™ืชื•ื— ืชืจื•ืคื•ืช,
01:29
how that's done, it basically hasn't budged that.
30
89952
3389
ืื™ืš ื–ื” ื ืขืฉื”, ื–ื” ื‘ืขื™ืงืจื•ืŸ ืœื ื”ื–ื™ื– ืืช ื–ื”.
01:33
And so it's as if we have the power to diagnose
31
93341
4473
ื•ื›ืš ื–ื” ื›ืื™ืœื• ื™ืฉ ืœื ื• ืืช ื”ื›ื•ื— ืœืื‘ื—ืŸ
01:37
yet not the power to fully treat.
32
97814
2812
ืื‘ืœ ืขื“ื™ื™ืŸ ืœื ืืช ื”ื›ื•ื— ืœื˜ืคืœ.
01:40
And there are two commonly given reasons
33
100626
2466
ื•ื™ืฉ ืฉืชื™ ืกื™ื‘ื•ืช ืขื™ืงืจื™ื•ืช
01:43
for why that happens.
34
103092
1468
ืœืœืžื” ื–ื” ืงื•ืจื”.
01:44
One of them is it's early days.
35
104560
3472
ืื—ืช ืžื”ืŸ ื”ื™ื ืฉืืœื” ื”ื™ืžื™ื ื”ืžื•ืงื“ืžื™ื.
01:48
We're just learning the words, the fragments,
36
108032
3590
ืจืง ื”ืชื—ืœื ื• ืœืœืžื•ื“ ืืช ื”ืžื™ืœื™ื, ืืช ื”ื—ืœืงื™ื,
01:51
the letters in the genetic code.
37
111622
1776
ื”ืื•ืชื™ื•ืช ืฉืœ ื”ืงื•ื“ ื”ื’ื ื˜ื™.
01:53
We don't know how to read the sentences.
38
113398
2155
ืื ื—ื ื• ืœื ื™ื•ื“ืขื™ื ืื™ืš ืœืงืจื•ื ืืช ื”ืžืฉืคื˜ื™ื.
01:55
We don't know how to follow the narrative.
39
115553
2570
ืื ื—ื ื• ืœื ื™ื•ื“ืขื™ื ืื™ืš ืœืขืงื•ื‘ ืื—ืจื™ ื”ื ืจื˜ื™ื‘.
01:58
The other reason given is that
40
118123
2479
ื”ืกื™ื‘ื” ื”ื ื•ืกืคืช ื”ื™ื
02:00
most of those changes are a loss of function,
41
120602
2218
ืฉืจื•ื‘ ื”ืฉื™ื ื•ื™ื™ื ื”ื ืื™ื‘ื•ื“ ืคืขื•ืœื•ืช,
02:02
and it's actually really hard to develop drugs
42
122820
2925
ื•ื–ื” ืœืžืขืฉื” ื‘ืืžืช ืงืฉื” ืœืคืชื— ืชืจื•ืคื•ืช
02:05
that restore function.
43
125745
1915
ืฉืžืฉืงืžื•ืช ืคืขื™ืœื•ืช.
02:07
But today, I want us to step back
44
127660
2182
ืื‘ืœ ื”ื™ื•ื, ืื ื™ ืจื•ืฆื” ืœื—ื–ื•ืจ ืื—ื•ืจื”
02:09
and ask a more fundamental question,
45
129842
2028
ื•ืœืฉืื•ืœ ืฉืืœื” ื™ื•ืชืจ ื‘ืกื™ืกื™ืช,
02:11
and ask, "What happens if we're thinking
46
131870
2189
ื•ืœืฉืื•ืœ, "ืžื” ืงื•ืจื” ืื ืื ื—ื ื• ื—ื•ืฉื‘ื™ื
02:14
about this maybe in the wrong context?"
47
134059
2733
ืขืœ ื–ื” ื‘ื”ืงืฉืจ ื”ืœื ื ื›ื•ืŸ?"
02:16
We do a lot of studying of those who are sick
48
136792
3159
ืื ื—ื ื• ืขื•ืฉื™ื ื”ืจื‘ื” ืžื—ืงืจ ืขืœ ื”ื—ื•ืœื™ื
02:19
and building up long lists
49
139951
2600
ื•ื‘ื•ื ื™ื ืจืฉื™ืžื•ืช ืืจื•ื›ื•ืช
02:22
of altered components.
50
142551
3118
ืฉืœ ื—ืœืงื™ื ืฉื”ืฉืชื ื•.
02:25
But maybe, if what we're trying to do
51
145669
2399
ืื‘ืœ ืื•ืœื™, ืื ืžื” ืฉืื ื—ื ื• ืžื ืกื™ื ืœืขืฉื•ืช
02:28
is to develop therapies for prevention,
52
148068
3222
ื–ื” ืœืคืชื— ืชืจื•ืคื•ืช ืœืžื ื™ืขื”,
02:31
maybe what we should be doing
53
151290
1553
ืื•ืœื™ ืžื” ืฉืื ื—ื ื• ืฆืจื™ื›ื™ื ืœืขืฉื•ืช
02:32
is studying those who don't get sick.
54
152843
2382
ื–ื” ืœื—ืงื•ืจ ืืช ืืœื” ืฉืœื ื—ื•ืœื™ื.
02:35
Maybe we should be studying those
55
155225
2347
ืื•ืœื™ ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœื—ืงื•ืจ ืืช ืืœื”
02:37
that are well.
56
157572
2175
ืฉื—ื™ื™ื ื˜ื•ื‘.
02:39
A vast majority of those people
57
159747
1797
ื”ืจื•ื‘ ื”ืžื•ื—ืœื˜ ืฉืœ ื”ืื ืฉื™ื ื”ืืœื”
02:41
are not necessarily carrying a particular
58
161544
2336
ืœื ื‘ื”ื›ืจื— ื ื•ืฉืื™ื ืืช
02:43
genetic load or risk factor.
59
163880
1936
ื”ืžื˜ืขืŸ ื”ื’ื ื˜ื™ ื”ืกืคืฆื™ืคื™ ืื• ื’ื•ืจื ื”ืกื™ื›ื•ืŸ ื”ื–ื”.
02:45
They're not going to help us.
60
165816
1984
ื”ื ืœื ื™ืขื–ืจื• ืœื ื•.
02:47
There are going to be those individuals
61
167800
1599
ื”ื ื™ื”ื™ื• ื”ืื ืฉื™ื ื”ืืœื”
02:49
who are carrying a potential future risk,
62
169399
2669
ืฉื ื•ืฉืื™ื ืืช ื”ืกื™ื›ื•ืŸ ื”ืขืชื™ื“ื™,
02:52
they're going to go on to get some symptom.
63
172068
1844
ื”ื ื™ืžืฉื™ื›ื• ื•ื™ืงื‘ืœื• ื›ืžื” ืกื™ืžืคื˜ื•ืžื™ื.
02:53
That's not what we're looking for.
64
173912
1788
ื–ื” ืœื ืžื” ืฉืื ื—ื ื• ืžื—ืคืฉื™ื.
02:55
What we're asking and looking for is,
65
175700
1848
ืžื” ืฉืื ื—ื ื• ืžื‘ืงืฉื™ื ื•ืžื—ืคืฉื™ื,
02:57
are there a very few set of individuals
66
177548
2770
ื”ื ื”ืื ืฉื™ื ื”ืžืื•ื“ ืžืขื˜ื™ื ื”ืืœื”
03:00
who are actually walking around
67
180318
2836
ืฉืœืžืขืฉื” ื”ื•ืœื›ื™ื ืขื
03:03
with the risk that normally would cause a disease,
68
183154
4019
ื”ืกื™ื›ื•ืŸ ืฉื‘ื“ืจืš ื›ืœืœ ื”ื™ื” ื’ื•ืจื ืžื—ืœื”,
03:07
but something in them, something hidden in them
69
187173
2963
ืื‘ืœ ืžืฉื”ื• ื‘ื”ื, ืžืฉื”ื• ื—ื‘ื•ื™ ื‘ื”ื
03:10
is actually protective
70
190136
1834
ืœืžืขืฉื” ืžื’ืŸ
03:11
and keeping them from exhibiting those symptoms?
71
191970
3175
ื•ืฉื•ืžืจ ืขืœื™ื”ื ืžืœื”ืฆื™ื’ ืืช ื”ืกืžืคื˜ื•ืžื™ื ื”ืืœื”?
03:15
If you're going to do a study like that, you can imagine
72
195145
2053
ืื ืืชื ืขื•ืžื“ื™ื ืœื—ืงื•ืจ ืืช ื–ื”, ืืชื ื™ื›ื•ืœื™ื ืœื“ืžื™ื™ืŸ
03:17
you'd like to look at lots and lots of people.
73
197198
2832
ืฉื”ื™ื™ืชื ืจื•ืฆื™ื ืœื‘ื—ื•ืŸ ื”ืžื•ืŸ ื”ืžื•ืŸ ืื ืฉื™ื.
03:20
We'd have to go and have a pretty wide study,
74
200030
3292
ื ืฆื˜ืจืš ืœืœื›ืช ื•ืœืขืฉื•ืช ืžื—ืงืจ ื“ื™ ื ืจื—ื‘,
03:23
and we realized that actually
75
203322
1735
ื•ื”ื‘ื ื• ืฉืœืžืขืฉื”
03:25
one way to think of this is,
76
205057
1529
ื“ืจืš ืื—ืช ืœื—ืฉื•ื‘ ืขืœ ื–ื” ื”ื™ื,
03:26
let us look at adults who are over 40 years of age,
77
206586
4277
ื‘ื•ืื• ื ื‘ื™ื˜ ื‘ืžื‘ื•ื’ืจื™ื ืžืขืœ ื’ื™ืœ 40,
03:30
and let's make sure that we look at those
78
210863
2970
ื•ื‘ื•ืื• ื ื“ืื’ ืœื”ื‘ื™ื˜ ื‘ืืœื”
03:33
who were healthy as kids.
79
213833
1480
ืฉื”ื™ื• ื™ืœื“ื™ื ื‘ืจื™ืื™ื.
03:35
They might have had individuals in their families
80
215313
2402
ืื•ืœื™ ื”ื™ื• ืœื”ื ืื ืฉื™ื ื‘ืžืฉืคื—ื”
03:37
who had had a childhood disease,
81
217715
1812
ืฉื”ื™ื• ืœื”ื ืžื—ืœื•ืช ื™ืœื“ื•ืช,
03:39
but not necessarily.
82
219527
1506
ืื‘ืœ ืœื ื‘ื”ื›ืจื—.
03:41
And let's go and then screen those
83
221033
2767
ื•ื‘ื•ืื• ื ืœืš ื•ื ืกื ืŸ ืืช ืืœื•
03:43
to find those who are carrying genes
84
223800
1993
ื›ื“ื™ ืœืžืฆื•ื ืžื™ ื ื•ืฉื ื’ื ื™ื
03:45
for childhood diseases.
85
225793
1678
ืœืžื—ืœื•ืช ื™ืœื“ื•ืช.
03:47
Now, some of you, I can see you
86
227471
1564
ืขื›ืฉื™ื•, ื›ืžื” ืžื›ื, ืื ื™ ื™ื›ื•ืœ ืœืจืื•ืช ืืชื›ื
03:49
putting your hands up going, "Uh, a little odd.
87
229035
3295
ืžืจื™ืžื™ื ืืช ื”ื™ื“ื™ื™ื ื•ืื•ืžืจื™ื, "ืื”, ืžืขื˜ ืžื•ื–ืจ.
03:52
What's your evidence
88
232330
1417
ืžื” ื”ืขื“ื•ืช ืฉืœืš
03:53
that this could be feasible?"
89
233747
1662
ืฉื–ื” ื™ื›ื•ืœ ืœื”ื™ื•ืช ืืคืฉืจื™?"
03:55
I want to give you two examples.
90
235409
2064
ืื ื™ ืจื•ืฆื” ืœืชืช ืœื›ื ืฉืชื™ ื“ื•ื’ืžืื•ืช.
03:57
The first comes from San Francisco.
91
237473
2948
ื”ืจืืฉื•ื ื” ื‘ืื” ืžืกืŸ ืคืจื ืกื™ืกืงื•,
04:00
It comes from the 1980s and the 1990s,
92
240421
2941
ื–ื” ืžื’ื™ืข ืžืฉื ื•ืช ื”80 ื•ื” 90,
04:03
and you may know the story where
93
243362
2394
ื•ืืชื ืื•ืœื™ ืžื›ื™ืจื™ื ืืช ื”ืกื™ืคื•ืจ
04:05
there were individuals who had very high levels
94
245756
2397
ื‘ื• ื”ื™ื• ืื ืฉื™ื ืฉื”ื™ื• ืœื”ื ืจืžื•ืช ืžืื•ื“ ื’ื‘ื•ื”ื•ืช
04:08
of the virus HIV.
95
248153
1268
ืฉืœ ื ื’ื™ืฃ ื” HIV.
04:09
They went on to get AIDS.
96
249421
2479
ื”ื ืงื™ื‘ืœื• ืื™ื™ื“ืก.
04:11
But there was a very small set of individuals
97
251900
2317
ืื‘ืœ ื”ื™ืชื” ืงื‘ื•ืฆื” ืžืื•ื“ ืงื˜ื ื” ืฉืœ ืื ืฉื™ื
04:14
who also had very high levels of HIV.
98
254217
2968
ืฉื’ื ืœื”ื ื”ื™ืชื” ืจืžื” ื’ื‘ื•ื”ื” ืžืื•ื“ ืฉืœ HIV.
04:17
They didn't get AIDS.
99
257185
1386
ื”ื ืœื ืงื™ื‘ืœื• ืื™ื™ื“ืก.
04:18
And astute clinicians tracked that down,
100
258571
2962
ื•ืงืœื™ื ื™ืงืื™ื ืคื™ืงื—ื™ื ืขืงื‘ื• ืื—ืจื™ ื–ื”,
04:21
and what they found was they were carrying mutations.
101
261533
3387
ื•ืžื” ืฉื”ื ืžืฆืื• ื”ื™ื” ืฉื”ื ื ืฉืื• ืžื•ื˜ืฆื™ื•ืช.
04:24
Notice, they were carrying mutations from birth
102
264920
3085
ืฉื™ืžื• ืœื‘, ื”ื ื ืฉืื• ืžื•ื˜ืฆื™ื•ืช ืžืœื™ื“ื”
04:28
that were protective, that were protecting them
103
268005
2015
ืฉื”ื’ื ื•, ืฉื”ื’ื ื• ืขืœื™ื”ื
04:30
from going on to get AIDS.
104
270020
1641
ืžืœืงื‘ืœ ืื™ื™ื“ืก,
04:31
You may also know that actually a line of therapy
105
271661
3165
ืืชื ืื•ืœื™ ื’ื ื™ื•ื“ืขื™ื ืฉืœืžืขืฉื” ืงื• ื˜ื™ืคื•ืœื™
04:34
has been coming along based on that fact.
106
274826
3120
ื™ืฆื ืฉืžืชื‘ืกืก ืขืœ ื”ืขื•ื‘ื“ื” ื”ื–ื•.
04:37
Second example, more recent, is elegant work
107
277946
3224
ื“ื•ื’ืžื” ืฉื ื™ื”, ืขื“ื›ื ื™ืช ื™ื•ืชืจ, ื”ื™ื ืขื‘ื•ื“ื” ืืœื’ื ื˜ื™ืช
04:41
done by Helen Hobbs,
108
281170
1403
ืฉื ืขืฉืชื” ืขืœ ื™ื“ื™ ื”ืœืŸ ื”ื•ื‘ืก,
04:42
who said, "I'm going to look at individuals
109
282573
2662
ืฉืืžืจื”, "ืื ื™ ืขื•ืžื“ืช ืœื‘ื—ื•ืŸ ืื ืฉื™ื
04:45
who have very high lipid levels,
110
285235
2716
ืฉื™ืฉ ืœื”ื ืจืžื•ืช ืœื™ืคื™ื“ื™ื ืžืื•ื“ ื’ื‘ื•ื”ื•ืช,
04:47
and I'm going to try to find those people
111
287951
1939
ื•ืื ื™ ืื ืกื” ืœืžืฆื•ื ืืช ื”ืื ืฉื™ื
04:49
with high lipid levels
112
289890
1802
ืขื ืจืžื•ืช ืœื™ืคื™ื“ื™ื ื’ื‘ื•ื”ื•ืช
04:51
who don't go on to get heart disease."
113
291692
2168
ืฉืœื ืžืคืชื—ื™ื ืžื—ืœื•ืช ืœื‘."
04:53
And again, what she found was
114
293860
2438
ื•ืฉื•ื‘, ืžื” ืฉื”ื™ื ืžืฆืื” ื”ื™ื”
04:56
some of those individuals had mutations
115
296298
2560
ืฉืœื›ืžื” ืžื”ืื ืฉื™ื ื”ื™ื• ืžื•ื˜ืฆื™ื•ืช
04:58
that were protective from birth that kept them,
116
298858
2719
ืฉื”ื’ื ื• ืขืœื™ื”ื ืžืœื™ื“ื” ืฉืฉืžืจื• ืขืœื™ื”ื,
05:01
even though they had high lipid levels,
117
301577
1445
ืืคื™ืœื• ืฉื”ื™ื• ืœื”ื ืจืžื•ืช ืœื™ืคื™ื“ื™ื ื’ื‘ื•ื”ื•ืช,
05:03
and you can see this is an interesting way
118
303022
3371
ื•ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืืช ื–ื” ื‘ื“ืจืš ืžืขื ื™ื™ื ืช
05:06
of thinking about how you could develop
119
306393
1961
ืฉืœ ื—ืฉื™ื‘ื” ืขืœ ืื™ืš ืชื•ื›ืœื• ืœืคืชื—
05:08
preventive therapies.
120
308354
2260
ืชืจืคื™ื•ืช ืžื ื™ืขื”.
05:10
The project that we're working on
121
310614
1944
ื”ืคืจื•ื™ื™ืงื˜ ืฉืื ื—ื ื• ืขื•ื‘ื“ื™ื ืขืœื™ื•
05:12
is called "The Resilience Project:
122
312558
2462
ื ืงืจื "ืคืจื•ื™ื™ืงื˜ ื”ืขืžื™ื“ื•ืช:
05:15
A Search for Unexpected Heroes,"
123
315020
1400
ื—ื™ืคื•ืฉ ืื—ืจ ื’ื™ื‘ื•ืจื™ื ืœื ืฆืคื•ื™ื™ื,"
05:16
because what we are interested in doing is saying,
124
316420
2490
ืžืคื ื™ ืฉืžื” ืฉืื ื—ื ื• ืžืขื•ื ื™ื™ื ื™ื ื‘ืœืขืฉื•ืช ื–ื” ืœื”ื’ื™ื“,
05:18
can we find those rare individuals
125
318910
2648
ื”ืื ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืžืฆื•ื ืื ืฉื™ื ื ื“ื™ืจื™ื
05:21
who might have these hidden protective factors?
126
321558
4325
ืฉืื•ืœื™ ื™ืฉ ืœื”ื ืืช ื”ื’ื•ืจืžื™ื ื”ืžื’ื™ื ื™ื ื”ื—ื‘ื•ื™ื™ื ื”ืืœื•?
05:25
And in some ways, think of it as a decoder ring,
127
325883
2980
ื•ื‘ื“ืจื›ื™ื ืžืกื•ื™ื™ืžื•ืช, ืœื—ืฉื•ื‘ ืขืœ ื–ื” ื›ื˜ื‘ืขืช ืคื™ืขื ื•ื—,
05:28
a sort of resilience decoder ring
128
328863
1926
ืกื•ื’ ืฉืœ ื˜ื‘ืขืช ืคื™ืขื ื•ื— ืขืžื™ื“ื•ืช
05:30
that we're going to try to build.
129
330789
1632
ืฉืื ื—ื ื• ื ื ืกื” ืœื‘ื ื•ืช.
05:32
We've realized that we should do this in a systematic way,
130
332421
3849
ื”ื‘ื ื• ืฉืื ื—ื ื• ืฆืจื™ื›ื™ื ืœืขืฉื•ืช ืืช ื–ื” ื‘ื“ืจืš ืฉื™ื˜ืชื™ืช,
05:36
so we've said, let's take every single
131
336270
2627
ืื– ืืžืจื ื•, ื‘ื•ืื• ื ื™ืงื— ื›ืœ
05:38
childhood inherited disease.
132
338897
1243
ืžื—ืœืช ื™ืœื“ื•ืช ืชื•ืจืฉืชื™ืช.
05:40
Let's take them all, and let's pull them back a little bit
133
340140
2564
ื‘ื•ืื• ื ื™ืงื— ืืช ื›ื•ืœืŸ, ื•ื‘ื•ืื• ื ืžืฉื•ืš ืื•ืชืŸ ืžืขื˜
05:42
by those that are known to have severe symptoms,
134
342704
3186
ืขืœ ื™ื“ื™ ืืœื” ืฉื™ื“ื•ืขื•ืช ืฉื™ืฉ ืœื”ืŸ ืกื™ืžืคื˜ื•ืžื™ื ื—ืžื•ืจื™ื,
05:45
where the parents, the child,
135
345890
1920
ื”ื™ื›ืŸ ืฉื”ื”ื•ืจื™ื, ื”ื™ืœื“,
05:47
those around them would know
136
347810
1050
ืืœื” ืฉืกื‘ื™ื‘ื ื™ื“ืขื•
05:48
that they'd gotten sick,
137
348860
1330
ืฉื”ื ื—ืœื•,
05:50
and let's go ahead and then frame them again
138
350190
3700
ื•ื‘ื•ืื• ื ืžืฉื™ืš ื•ืื– ื ืžืกื’ืจ ืื•ืชื ืฉื•ื‘
05:53
by those parts of the genes where we know
139
353890
2581
ืœื—ืœืงื™ื ืฉืœ ื”ื’ื ื™ื ืฉืื ื—ื ื• ื™ื•ื“ืขื™ื
05:56
that there is a particular alteration
140
356471
2507
ืฉื™ืฉ ืฉื™ื ื•ื™ ืžืกื•ื™ื™ื
05:58
that is known to be highly penetrant
141
358978
2798
ืฉื™ื“ื•ืข ืฉื™ืฉ ืกื™ื›ื•ื™ ื’ื‘ื•ื”
06:01
to cause that disease.
142
361776
2654
ืฉื™ื’ืจื•ื ืœืžื—ืœื”.
06:04
Where are we going to look?
143
364430
1228
ืื™ืคื” ื ืกืชื›ืœ?
06:05
Well, we could look locally. That makes sense.
144
365658
2488
ื•ื‘ื›ืŸ, ื ื•ื›ืœ ืœื”ื‘ื™ื˜ ืžืงื•ืžื™ืช. ื–ื” ื”ื’ื™ื•ื ื™.
06:08
But we began to think, maybe we should look
145
368146
2261
ืื‘ืœ ื”ืชื—ืœื ื• ืœื—ืฉื•ื‘, ืื•ืœื™ ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœื”ืกืชื›ืœ
06:10
all over the world.
146
370407
1451
ื‘ื›ืœ ื”ืขื•ืœื.
06:11
Maybe we should look not just here
147
371858
1653
ืื•ืœื™ ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœื—ืคืฉ ืœื ืจืง ืคื”
06:13
but in remote places where their might be
148
373511
1960
ืืœื ื‘ืžืงื•ืžื•ืช ืžืจื•ื—ืงื™ื ื‘ื”ื ืื•ืœื™ ื™ืฉ
06:15
a distinct genetic context,
149
375471
3030
ื”ืงืฉืจ ื’ื ื˜ื™ ืžื•ื‘ื”ืง,
06:18
there might be environmental factors
150
378501
1642
ืื•ืœื™ ื™ื”ื™ื• ื’ื•ืจืžื™ื ืกื‘ื™ื‘ืชื™ื™ื
06:20
that protect people.
151
380143
1382
ืฉื™ื’ื ื• ืขืœ ืื ืฉื™ื.
06:21
And let's look at a million individuals.
152
381525
4462
ื•ื‘ื•ืื• ื ื‘ื“ื•ืง ืžื™ืœื™ื•ืŸ ืื ืฉื™ื.
06:25
Now the reason why we think it's a good time
153
385987
2970
ืขื›ืฉื™ื• ื”ืกื™ื‘ื” ืฉืื ื—ื ื• ื—ื•ืฉื‘ื™ื ืฉื–ื” ื–ืžืŸ ื˜ื•ื‘
06:28
to do that now
154
388957
1072
ืœืขืฉื•ืช ืืช ื–ื” ืขื›ืฉื™ื•
06:30
is, in the last couple of years,
155
390029
1760
ื–ื”, ื‘ื›ืžื” ืฉื ื™ื ื”ืื—ืจื•ื ื•ืช,
06:31
there's been a remarkable plummeting in the cost
156
391789
2588
ื”ื™ืชื” ื ืคื™ืœื” ื—ื“ื” ื‘ืขืœื•ืช
06:34
to do this type of analysis,
157
394377
2235
ืฉืœ ืื ืœื™ื–ื” ืžื”ืกื•ื’ ื”ื–ื”,
06:36
this type of data generation,
158
396612
1739
ื™ืฆื•ืจ ืžื™ื“ืข ืžื”ืกื•ื’ ื”ื–ื”,
06:38
to where it actually costs less to do
159
398351
2608
ืœืžืงื•ื ืฉื–ื” ืœืžืขืฉื” ืขื•ืœื” ืคื—ื•ืช ืœืขืฉื•ืช
06:40
the data generation and analysis
160
400959
2194
ืืช ื™ืฆื•ืจ ื”ืžื™ื“ืข ื•ื”ืื ืœื™ื–ื”
06:43
than it does to do the sample processing and the collection.
161
403153
3184
ืžืฉื–ื” ืขื•ืœื” ืœื ืชื— ื•ืœืืกื•ืฃ ื“ื•ื’ืžื™ื•ืช.
06:46
The other reason is that in the last five years,
162
406337
4304
ื”ืกื™ื‘ื” ื”ื ื•ืกืคืช ื”ื™ื ืฉื‘ื—ืžืฉ ื”ืฉื ื™ื ื”ืื—ืจื•ื ื•ืช,
06:50
there have been awesome tools,
163
410641
1964
ื”ื™ื• ื›ืœื™ื ืžื’ื ื™ื‘ื™ื,
06:52
things about network biology, systems biology,
164
412605
2662
ื“ื‘ืจื™ื ื›ืžื• ื‘ื™ื•ืœื•ื’ื™ื™ืช ืจืฉืช, ื‘ื™ื•ืœื•ื’ื™ื™ืช ืžืขืจื›ื•ืช,
06:55
that have come up that allow us to think
165
415267
1961
ืฉืฆืฆื• ืฉืžืืคืฉืจื™ื ืœื ื• ืœื—ืฉื•ื‘
06:57
that maybe we could decipher
166
417228
1940
ืฉืื•ืœื™ ื ื•ื›ืœ ืœืคืขื ื—
06:59
those positive outliers.
167
419168
2481
ืืช ื”ืงื™ืฆื•ื ื™ื ื”ื—ื™ื•ื‘ื™ื™ื ื”ืืœื”.
07:01
And as we went around talking to researchers
168
421649
2172
ื•ื›ืฉื”ืœื›ื ื• ื•ื“ื™ื‘ืจื ื• ืขื ื—ื•ืงืจื™ื
07:03
and institutions
169
423821
1904
ื•ืžื›ื•ื ื™ื
07:05
and telling them about our story,
170
425725
1569
ื•ืกื™ืคืจื ื• ืœื”ื ืืช ื”ืกื™ืคื•ืจ ืฉืœื ื•,
07:07
something happened.
171
427294
1667
ืžืฉื”ื• ืงืจื”.
07:08
They started saying, "This is interesting.
172
428961
2229
ื”ื ื”ืชื—ื™ืœื• ืœื”ื’ื™ื“, "ื–ื” ืžืขื ื™ื™ืŸ.
07:11
I would be glad to join your effort.
173
431190
3347
ื”ื™ื™ื ื• ืฉืžื—ื™ื ืœื”ืฆื˜ืจืฃ ืœืžืืžืฅ ืฉืœื›ื.
07:14
I would be willing to participate."
174
434537
1927
ื”ื™ื™ื ื• ืฉืžื—ื™ื ืœื”ืฉืชืชืฃ."
07:16
And they didn't say, "Where's the MTA?"
175
436464
2579
ื•ื”ื ืœื ืืžืจื•, "ืื™ืคื” ื” MTA?"
07:19
They didn't say, "Where is my authorship?"
176
439043
3293
ื”ื ืœื ืืžืจื• "ืื™ืคื” ื”ื‘ืขืœื•ืช?"
07:22
They didn't say, "Is this data going to be mine? Am I going to own it?"
177
442336
4611
ื”ื ืœื ืืžืจื•, "ื”ืื ื”ืžื™ื“ืข ื”ื–ื” ื™ื”ื™ื” ืฉืœื™? ืื ื™ ืื”ื™ื” ื”ื‘ืขืœื™ื ืฉืœื•?"
07:26
They basically said, "Let's work on this
178
446947
2279
ื”ื ืืžืจื• ื‘ืขื™ืงืจื•ืŸ, " ื‘ื•ืื• ื ืขื‘ื•ื“ ืขืœ ื–ื”
07:29
in an open, crowd-sourced, team way
179
449226
2881
ื‘ื“ืจืš ืคืชื•ื—ื”, ื‘ืื•ืคืŸ ืžืฉื•ืชืฃ, ื‘ืฆื•ื•ืช
07:32
to do this decoding."
180
452107
3074
ื›ื“ื™ ืœืขืฉื•ืช ืืช ื”ืคื™ืขื ื•ื— ื”ื–ื”."
07:35
Six months ago, we locked down
181
455181
2515
ืœืคื ื™ ืฉื™ืฉื” ื—ื•ื“ืฉื™ื, ื ืขืœื ื•
07:37
the screening key for this decoder.
182
457696
3315
ืืช ืžืคืชื— ื”ืกื™ื ื•ืŸ ืœืžืคืขื ื— ื”ื–ื”.
07:41
My co-lead, a brilliant scientist, Eric Schadt
183
461011
4578
ื”ืžื•ื‘ื™ืœ ื”ืฉื•ืชืฃ ืฉืœื™, ืžื“ืขืŸ ืžื‘ืจื™ืง, ืืจื™ืง ืฉื˜
07:45
at the Icahn Mount Sinai School of Medicine in New York,
184
465589
3306
ื‘ื‘ื™ืช ื”ืกืคืจ ืื™ืงืืŸ ื”ืจ ืกื™ื ื™ ืœืจืคื•ืื” ื‘ื ื™ื• ื™ื•ืจืง,
07:48
and his team,
185
468895
1392
ื•ื”ืฆื•ื•ืช ืฉืœื•,
07:50
locked in that decoder key ring,
186
470287
2869
ื ืขืœื• ืืช ืžืคืชื—ื•ืช ื”ืžืคืขื ื—.
07:53
and we began looking for samples,
187
473156
2395
ื•ื”ืชื—ืœื ื• ืœื—ืคืฉ ื“ื•ื’ืžื™ื•ืช,
07:55
because what we realized is,
188
475551
1486
ืžืคื ื™ ืฉืžื” ืฉื”ื‘ื ื• ื–ื”,
07:57
maybe we could just go and look
189
477037
1794
ืื•ืœื™ ืคืฉื•ื˜ ื ื•ื›ืœ ืœื›ืช ืœื”ื‘ื™ื˜
07:58
at some existing samples to get some sense of feasibility.
190
478831
3086
ื‘ื›ืžื” ื“ื•ื’ืžืื•ืช ืงื™ื™ืžื•ืช ื›ื“ื™ ืœืงื‘ืœ ืžื•ืฉื’ ืฉืœ ื”ืชื›ื ื•ืช.
08:01
Maybe we could take two, three percent of the project on,
191
481917
2577
ืื•ืœื™ ื ื•ื›ืœ ืœืงื—ืช ืฉื ื™ื™ื ืฉืœื•ืฉื” ืื—ื•ื–ื™ื ืฉืœ ื”ืคืจื•ื™ื™ืงื˜ ืงื“ื™ืžื”,
08:04
and see if it was there.
192
484494
1417
ื•ืœืจืื•ืช ืื ื–ื” ืฉื.
08:05
And so we started asking people
193
485911
1998
ื•ื›ืš ื”ืชื—ืœื ื• ืœืฉืื•ืœ ืื ืฉื™ื
08:07
such as Hakon at the Children's Hospital in Philadelphia.
194
487909
3537
ื›ืžื• ื”ืืงื•ืŸ ื‘ื‘ื™ืช ื”ื—ื•ืœื™ื ืœื™ืœื“ื™ื ื‘ืคื™ืœื“ืœืคื™ื”.
08:11
We asked Leif up in Finland.
195
491446
2245
ืฉืืœื ื• ืืช ืœื™ืฃ ื‘ืคื™ื ืœื ื“.
08:13
We talked to Anne Wojcicki at 23andMe,
196
493691
3673
ื“ื™ื‘ืจื ื• ืขื ืืŸ ื•ื•ื’'ืฆ'ื™ืงื™ ื‘ 23 ื•ืื ื™,
08:17
and Wang Jun at BGI,
197
497364
1767
ื•ื•ื•ืื ื’ ื’'ื•ืŸ ื‘ BGI,
08:19
and again, something remarkable happened.
198
499131
2188
ื•ืฉื•ื‘, ืžืฉื”ื• ืžื“ื”ื™ื ืงืจื”.
08:21
They said, "Huh,
199
501319
1809
ื”ื ืืžืจื•, "ื”ื,
08:23
not only do we have samples,
200
503128
1744
ืœื ืจืง ืฉื™ืฉ ืœื ื• ื“ื•ื’ืžื™ื•ืช,
08:24
but often we've analyzed them,
201
504872
2196
ืืœื ื”ืจื‘ื” ืคืขืžื™ื ื ื™ืชื—ื ื• ืื•ืชืŸ,
08:27
and we would be glad to go into
202
507068
1487
ื•ื”ื™ื™ื ื• ืฉืžื—ื™ื ืœื”ื›ื ืก
08:28
our anonymized samples
203
508555
1403
ืœื“ื•ื’ืžื™ื•ืช ื”ืื ื•ื ื™ืžื™ื•ืช ืฉืœื ื•
08:29
and see if we could find those
204
509958
2062
ื•ืœืจืื•ืช ืื ื ื•ื›ืœ ืœืžืฆื•ื ืืช ืืœื”
08:32
that you're looking for."
205
512020
1163
ืฉืืชื ืžื—ืคืฉื™ื."
08:33
And instead of being 20,000 or 30,000,
206
513183
2707
ื•ื‘ืžืงื•ื ืฉื™ื”ื™ื• ืœื ื• 20,000 ืื• 30,000,
08:35
last month we passed one half million samples
207
515890
3152
ื‘ื—ื•ื“ืฉ ืฉืขื‘ืจ ืขื‘ืจื ื• ืืช ื”ื—ืฆื™ ืžืœื™ื•ืŸ ื“ื•ื’ืžื™ื•ืช
08:39
that we've already analyzed.
208
519042
1905
ืฉื›ื‘ืจ ื ื™ืชื—ื ื•.
08:40
So you must be going,
209
520947
1493
ืื– ืืชื ื‘ื˜ื— ืื•ืžืจื™ื,
08:42
"Huh, did you find any unexpected heroes?"
210
522440
5625
"ื”ื, ืžืฆืืชื ื’ื™ื‘ื•ืจื™ื ื‘ืœืชื™ ืฆืคื•ื™ื™ื?"
08:48
And the answer is, we didn't find one or two.
211
528065
2583
ื•ื”ืชืฉื•ื‘ื” ื”ื™ื, ืœื ืžืฆืื ื• ืื—ื“ ืื• ืฉื ื™ื™ื.
08:50
We found dozens of these strong candidate
212
530648
3038
ืžืฆืื ื• ืขืฉืจื•ืช ืžื•ืขืžื“ื™ื ื—ื–ืงื™ื
08:53
unexpected heroes.
213
533686
1729
ืœื’ื™ื‘ื•ืจื™ื ืœื ืฆืคื•ื™ื™ื.
08:55
So we think that the time is now
214
535415
2697
ืื– ืื ื—ื ื• ื—ื•ืฉื‘ื™ื ืฉื”ื’ื™ืข ื”ื–ืžืŸ
08:58
to launch the beta phase of this project
215
538112
2340
ืœืฉื’ืจ ืืช ืฉืœื‘ ื”ื‘ื˜ื ืฉืœ ื”ืคืจื•ื™ื™ืงื˜
09:00
and actually start getting prospective individuals.
216
540452
3117
ื•ืœืžืขืฉื” ืœื”ืชื—ื™ืœ ืœืงื‘ืœ ืื ืฉื™ื ืฉื™ื›ื•ืœื™ื ืœื”ืชืื™ื.
09:03
Basically all we need is information.
217
543569
3171
ื‘ืขื™ืงืจื•ืŸ ื›ืœ ืžื” ืฉืื ื—ื ื• ืฆืจื™ื›ื™ื ื–ื” ืžื™ื“ืข.
09:06
We need a swab of DNA
218
546740
1659
ืื ื—ื ื• ืฆืจื™ื›ื™ื ื“ื’ื™ืžืช DNA
09:08
and a willingness to say, "What's inside me?
219
548399
3405
ื•ืจืฆื•ืŸ ืœื”ื’ื™ื“, "ืžื” ื™ืฉ ื‘ืชื•ื›ื™?
09:11
I'm willing to be re-contacted."
220
551804
3263
ืื ื™ ืžื•ื›ืŸ ืฉืชื™ืฆืจื• ืืชื™ ืงืฉืจ ืฉื•ื‘."
09:15
Most of us spend our lives,
221
555067
3791
ืจื•ื‘ื ื• ืžื‘ืœื™ื ืืช ื—ื™ื™ื ื•,
09:18
when it comes to health and disease,
222
558858
1954
ื›ืฉื–ื” ืžื’ื™ืข ืœื‘ืจื™ืื•ืช ื•ืžื—ืœื•ืช,
09:20
acting as if we're voyeurs.
223
560812
3080
ืžืชื ื”ื’ื™ื ื›ืžื• ืฉืื ื—ื ื• ืžืฆื™ืฆื™ื.
09:23
We delegate the responsibility
224
563892
2337
ืื ื—ื ื• ืžืขื‘ื™ืจื™ื ืืช ื”ืื—ืจื™ื•ืช
09:26
for the understanding of our disease,
225
566229
2043
ืœื”ื‘ื ื” ืฉืœ ื”ืžื—ืœื•ืช ืฉืœื ื•,
09:28
for the treatment of our disease,
226
568272
1872
ืœื˜ื™ืคื•ืœ ื‘ืžื—ืœื•ืช ืฉืœื ื•,
09:30
to anointed experts.
227
570144
3536
ืœืžื•ืžื—ื™ื ื ื‘ื—ืจื™ื.
09:33
In order for us to get this project to work,
228
573680
3340
ื›ื“ื™ ืฉื ื•ื›ืœ ืœื’ืจื•ื ืœืคืจื•ื™ื™ืงื˜ ื”ื–ื” ืœืขื‘ื•ื“,
09:37
we need individuals to step up
229
577020
2150
ืื ื—ื ื• ืฆืจื™ื›ื™ื ืื ืฉื™ื ืฉื™ื‘ื•ืื•
09:39
in a different role and to be engaged,
230
579170
3892
ื‘ืชืคืงื™ื“ ืฉื•ื ื” ื•ืœื”ืชืขืจื‘,
09:43
to realize this dream,
231
583062
2925
ืœืžืžืฉ ืืช ื”ื—ืœื•ื ื”ื–ื”,
09:45
this open crowd-sourced project,
232
585987
3135
ื”ืคืจื•ื™ื™ืงื˜ ื”ืคืชื•ื— ื‘ืฉื™ืชื•ืฃ ื”ืงื”ืœ,
09:49
to find those unexpected heroes,
233
589122
3680
ื›ื“ื™ ืœืžืฆื•ื ืืช ื”ื’ื™ื‘ื•ืจื™ื ื”ืœื ืฆืคื•ื™ื™ื ื”ืืœื”,
09:52
to evolve from the current concepts
234
592802
2660
ื›ื“ื™ ืœื”ืชืคืชื— ืžื”ืจืขื™ื•ื ื•ืช ื”ื ื•ื›ื—ื™ื™ื
09:55
of resources and constraints,
235
595462
2334
ืฉืœ ืžืฉืื‘ื™ื ื•ืžื’ื‘ืœื•ืช,
09:57
to design those preventive therapies,
236
597796
3251
ืœืขื™ืฆื•ื‘ ืฉืœ ืชืจืคื™ื•ืช ืžื•ื ืขื•ืช,
10:01
and to extend it beyond childhood diseases,
237
601047
2773
ื•ืœื”ืจื—ื™ื‘ ืืช ื–ื” ืžืขื‘ืจ ืœืžื—ืœื•ืช ื™ืœื“ื•ืช,
10:03
to go all the way up to ways
238
603820
1577
ืœืขืœื•ืช ื›ืœ ื”ื“ืจืš ืœื“ืจื›ื™ื
10:05
that we could look at Alzheimer's or Parkinson's,
239
605397
3871
ืฉื ื•ื›ืœ ืœื”ื‘ื™ื˜ ื‘ืืœืฆื”ื™ื™ืžืจ ื•ืคืจืงื™ื ืกื•ืŸ,
10:09
we're going to need us
240
609268
2262
ืื ื—ื ื• ื ืฆื˜ืจืš ืฉืื ื—ื ื•
10:11
to be looking inside ourselves and asking,
241
611530
3106
ื ื‘ื™ื˜ ืœืชื•ื›ื ื• ื•ื ืฉืืœ,
10:14
"What are our roles?
242
614636
2204
"ืžื”ื ื”ืชืคืงื™ื“ื™ื ืฉืœื ื•?
10:16
What are our genes?"
243
616840
1673
ืžื”ื ื”ื’ื ื™ื ืฉืœื ื•?"
10:18
and looking within ourselves for information
244
618513
2785
ื•ืœื”ื‘ื™ื˜ ืœืชื•ืš ืขืฆืžื ื• ืœืžื™ื“ืข
10:21
we used to say we should go to the outside,
245
621298
2642
ืฉื”ื™ื™ื ื• ืื•ืžืจื™ื ืฉืื ื—ื ื• ืฆืจื™ื›ื™ื ืœืœื›ืช ื”ื—ื•ืฆื”,
10:23
to experts,
246
623940
1208
ืœืžื•ืžื—ื™ื,
10:25
and to be willing to share that with others.
247
625148
4052
ื•ืœื”ื™ื•ืช ืžื•ื›ื ื™ื ืœื—ืœื•ืง ืืช ื–ื” ืขื ืื—ืจื™ื.
10:29
Thank you very much.
248
629200
3558
ืชื•ื“ื” ืจื‘ื” ืœื›ื.
10:32
(Applause)
249
632758
1815
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7