You don't have to be an expert to solve big problems | Tapiwa Chiwewe

162,602 views ใƒป 2018-03-16

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืชืจื’ื•ื: Shlomo Adam ืขืจื™ื›ื”: Nurit Noy
00:12
One winter morning, a couple of years ago,
0
12849
3857
ื‘ื‘ื•ืงืจ ื—ื•ืจืคื™ ืื—ื“, ืœืคื ื™ ื›ืžื” ืฉื ื™ื,
00:16
I was driving to work in Johannesburg, South Africa,
1
16730
2975
ื ื”ื’ืชื™ ืœืขื‘ื•ื“ื” ืฉืœื™ ื‘ื™ื•ื”ื ืกื‘ื•ืจื’ ืฉื‘ื“ืจื•ื-ืืคืจื™ืงื”,
00:19
and noticed a haze hanging over the city.
2
19729
2301
ื•ืฉืžืชื™ ืœื‘ ืœืื•ื‘ืš ืฉืžืจื—ืฃ ืžืขืœ ืœืขื™ืจ.
00:22
I make that drive on most days,
3
22895
2095
ืื ื™ ืขื•ืฉื” ืืช ื”ื“ืจืš ื”ื–ืืช ื‘ืจื•ื‘ ื”ื™ืžื™ื,
00:25
so it was unusual that I hadn't noticed this before.
4
25014
2873
ื•ืœื›ืŸ ื”ื™ื” ืžื•ื–ืจ ืฉืขื“ ืื– ืœื ื”ืฉื’ื—ืชื™ ื‘ื›ืš.
00:28
Johannesburg is known for its distinctive skyline,
5
28559
3089
ื™ื•ื”ื ืกื‘ื•ืจื’ ื™ื“ื•ืขื” ื‘ืงื• ื”ืจืงื™ืข ื”ืžื•ื‘ื”ืง ืฉืœื”,
00:31
which I could barely see that morning.
6
31672
1817
ื•ื‘ืื•ืชื• ื‘ื•ืงืจ, ื‘ืงื•ืฉื™ ืจืื™ืชื™ ืื•ืชื•.
00:34
It didn't take long for me to realize that I was looking at an enormous cloud
7
34322
4521
ืชื•ืš ื–ืžืŸ ืงืฆืจ ื”ื‘ื ืชื™ ืฉืื ื™ ืจื•ืื” ืขื ืŸ ืขืฆื•ื
00:38
of air pollution.
8
38867
1198
ืฉืœ ื–ื™ื”ื•ื ืื•ื•ื™ืจ.
00:40
The contrast between the scenic environment I knew
9
40994
3571
ื”ื ื™ื’ื•ื“ ื‘ื™ืŸ ื”ื ื•ืฃ ื”ื™ืคื” ืฉื”ื›ืจืชื™
00:44
and this smog-covered skyline
10
44589
2285
ืœื‘ื™ืŸ ืงื•-ื”ืจืงื™ืข ืžื›ื•ืกื” ื”ืขืจืคื™ื— ื”ื–ื”,
00:46
stirred up something within me.
11
46898
1603
ื”ืขื™ืจ ื‘ื™ ืžืฉื”ื•.
00:49
I was appalled by the possibility of this city of bright and vivid sunsets
12
49092
5476
ื”ื–ื“ืขื–ืขืชื™ ืœืžื—ืฉื‘ื” ืฉื”ืขื™ืจ ื”ื–ืืช, ืฉืœ ืฉืงื™ืขื•ืช ืขื–ื•ืช-ืฆื‘ืข
00:54
being overrun by a dull haze.
13
54592
2134
ื™ื›ื•ืœื” ืœื”ืชื›ืกื•ืช ืขืจืคืœ ืขื›ื•ืจ.
00:57
At that moment, I felt an urge to do something about it,
14
57258
4004
ื‘ืื•ืชื• ืจื’ืข ื—ืฉืชื™ ื“ื—ืฃ ืœืขืฉื•ืช ืžืฉื”ื• ื‘ื ื•ื’ืข ืœื›ืš,
01:01
but I didn't know what.
15
61286
1656
ืื‘ืœ ืœื ื™ื“ืขืชื™ ืžื”.
01:03
All I knew was I couldn't just stand idly by.
16
63808
3175
ื™ื“ืขืชื™ ืจืง ืฉืื™ื ื ื™ ื™ื›ื•ืœ ืœืขืžื•ื“ ื‘ื—ื™ื‘ื•ืง-ื™ื“ื™ื™ื.
01:07
The main challenge was,
17
67564
2097
ื”ืืชื’ืจ ื”ืขื™ืงืจื™ ื”ื™ื”,
01:09
I didn't know much about environmental science
18
69685
4237
ืฉืœื ื™ื“ืขืชื™ ื”ืจื‘ื” ืขืœ ืžื“ืขื™ ื”ืกื‘ื™ื‘ื”,
01:13
air-quality management
19
73946
1525
ืขืœ ื ื™ื”ื•ืœ ืื™ื›ื•ืช ืื•ื•ื™ืจ
01:15
or atmospheric chemistry.
20
75495
1423
ืื• ืขืœ ื”ื›ื™ืžื™ื” ืฉืœ ื”ืื˜ืžื•ืกืคื™ืจื”.
01:17
I am a computer engineer,
21
77827
1889
ืื ื™ ืžื”ื ื“ืก ืžื—ืฉื‘ื™ื,
01:19
and I was pretty sure I couldn't code my way out of this air pollution problem.
22
79740
4019
ื•ื”ื™ื™ืชื™ ื“ื™ ื‘ื˜ื•ื— ืฉืœื ืื•ื›ืœ ืœืคืชื•ืจ ืืช ื‘ืขื™ื™ืช ื–ื™ื”ื•ื ื”ืื•ื•ื™ืจ ื‘ืขื–ืจืช ืชื›ื ื•ืช.
01:23
(Laughter)
23
83783
1061
(ืฆื—ื•ืง)
01:24
Who was I to do anything about this issue?
24
84868
2532
ืžื™ ืื ื™ ืฉืืขืฉื” ืžืฉื”ื• ื‘ื ื™ื“ื•ืŸ?
01:27
I was but a citizen.
25
87888
2544
ื”ื™ื™ืชื™ ืกืชื ืื–ืจื—.
01:31
In the following years, I learned a very important lesson,
26
91786
3881
ื‘ืฉื ื™ื ื”ื‘ืื•ืช ืœืžื“ืชื™ ืœืงื— ื—ืฉื•ื‘ ืžืื“,
01:35
a lesson we all need to take to heart if we are to work towards a better future.
27
95691
4158
ืœืงื— ืฉื›ื“ืื™ ืœื›ื•ืœื ื• ืœืืžืฅ
ืื ื‘ืจืฆื•ื ื ื• ืœืคืขื•ืœ ืœืžืขืŸ ืขืชื™ื“ ื˜ื•ื‘ ื™ื•ืชืจ.
01:40
Even if you're not an expert in a particular domain,
28
100738
3674
ื’ื ืื ืื™ื ืš ืžื•ืžื—ื” ื‘ืชื—ื•ื ืžืกื•ื™ื,
01:44
your outside expertise may hold the key
29
104436
2763
ื‘ืžื•ืžื—ื™ื•ืช ืฉืžืกื‘ื™ื‘ืš ืขืฉื•ื™ ืœื”ื™ืžืฆื ื”ืžืคืชื—
01:47
to solving big problems within that domain.
30
107223
2595
ืœืคืชืจื•ืŸ ื‘ืขื™ื•ืช ื’ื“ื•ืœื•ืช ื‘ืื•ืชื• ืชื—ื•ื.
01:50
Sometimes the unique perspective you have
31
110381
2692
ืœืคืขืžื™ื, ื ืงื•ื“ืช ื”ืžื‘ื˜ ื”ื™ื™ื—ื•ื“ื™ืช ืฉื™ืฉ ืœืš
01:53
can result in unconventional thinking that can move the needle,
32
113097
4461
ื™ื›ื•ืœื” ืœื”ื•ืœื™ื“ ื—ืฉื™ื‘ื” ื™ื•ืฆืืช-ื“ื•ืคืŸ ืฉืชื•ื›ืœ ืœื”ื–ื™ื– ืืช ื”ืžื—ื˜,
01:57
but you need to be bold enough to try.
33
117582
3400
ืื‘ืœ ืขืœื™ืš ืœื”ืขื– ื•ืœื ืกื•ืช.
02:01
That's the only way you'll ever know.
34
121752
2182
ืจืง ื›ืš ืชื“ืข.
02:04
What I knew back then
35
124889
1546
ืžื” ืฉื™ื“ืขืชื™ ืื– ื”ื™ื”
02:06
was that if I was even going to try to make a difference,
36
126459
3952
ืฉืื ืื ื™ ืจื•ืฆื” ืœืฉื ื•ืช ืžืฉื”ื•,
02:10
I had to get smart about air pollution first,
37
130435
3024
ืชื—ื™ืœื” ืขืœื™ ืœื”ื—ื›ื™ื ื‘ื ื•ื’ืข ืœื–ื™ื”ื•ื ื”ืื•ื•ื™ืจ,
02:13
and so I became a student again.
38
133483
3095
ื•ืœื›ืŸ ื—ื–ืจืชื™ ืœืกืคืกืœ ื”ืœื™ืžื•ื“ื™ื.
02:17
I did a bit of basic research
39
137522
2106
ืขืจื›ืชื™ ืงืฆืช ืžื—ืงืจ ืคืฉื•ื˜
02:19
and soon learned that air pollution
40
139652
2000
ื•ื‘ืžื”ืจื” ืœืžื“ืชื™ ืฉื–ื™ื”ื•ื ื”ืื•ื•ื™ืจ
02:21
is the world's biggest environmental health risk.
41
141676
3134
ื”ื•ื ื”ืกื™ื›ื•ืŸ ื”ื‘ืจื™ืื•ืชื™ ื”ืกื‘ื™ื‘ืชื™ ื”ื›ื™ ื’ื“ื•ืœ ื‘ืขื•ืœื.
02:25
Data from the World Health Organization
42
145816
2374
ื ืชื•ื ื™ ืืจื’ื•ืŸ ื”ื‘ืจื™ืื•ืช ื”ืขื•ืœืžื™
02:28
shows that almost 14 percent of all deaths worldwide in 2012
43
148214
5142
ืžืจืื™ื ืฉื›ืžืขื˜ 14% ืžื›ืœ ืžืงืจื™ ื”ืžื•ื•ืช ื‘ืขื•ืœื ื‘-2012
02:33
were attributable to household and ambient air pollution,
44
153380
3684
ืžื™ื•ื—ืกื™ื ืœื–ื™ื”ื•ื ืื•ื•ื™ืจ ื‘ื‘ื™ืช ื•ื‘ืกื‘ื™ื‘ืชื•,
02:37
with most occurring in low- and middle-income countries.
45
157088
3459
ืฉืจื•ื‘ื• ืžืชืจื—ืฉ ื‘ืืจืฆื•ืช ื‘ืขืœื•ืช ื”ื›ื ืกื” ื ืžื•ื›ื” ื•ื‘ื™ื ื•ื ื™ืช.
02:41
Ambient air pollution alone causes more deaths each year
46
161449
3731
ื–ื™ื”ื•ื ื”ืื•ื•ื™ืจ ื”ืกื‘ื™ื‘ืชื™ ืœื‘ื“ื• ื’ื•ืจื ื‘ื›ืœ ืฉื ื” ืœื™ื•ืชืจ ืชืžื•ืชื”
02:45
than malaria and HIV/AIDS.
47
165204
2316
ืžืืฉืจ ืžืœืจื™ื” ื•ืื™ื™ื“ืก.
02:48
In Africa, premature deaths from unsafe sanitation
48
168355
3833
ื‘ืืคืจื™ืงื”, ืžื•ื•ืช ื‘ื˜ืจื-ืขืช ื‘ื’ืœืœ ืชื‘ืจื•ืื” ื’ืจื•ืขื”
02:52
or childhood malnutrition
49
172212
1739
ืื• ืชื–ื•ื ืช ื™ืœื“ื™ื ืœืงื•ื™ื”
02:53
pale in comparison to deaths due to air pollution,
50
173975
3540
ืžื—ื•ื•ื™ืจื™ื ื‘ื”ืฉื•ื•ืื” ืœืชืžื•ืชื” ื‘ื’ืœืœ ื–ื™ื”ื•ื ืื•ื•ื™ืจ,
02:57
and it comes at a huge economic cost:
51
177539
2706
ื•ื”ืžื—ื™ืจ ื”ื›ืœื›ืœื™ ื”ื•ื ืขืฆื•ื:
03:00
over 400 billion US dollars as of 2013,
52
180269
4133
ืžืขืœ 400 ืžื™ืœื™ืืจื“ ื“ื•ืœืจ ืืจื”"ื‘ ื ื›ื•ืŸ ืœ-2013,
03:04
according to a study by the Organisation for Economic Cooperation and Development.
53
184426
4992
ืœืคื™ ืžื—ืงืจ ืฉืœ ื”ืืจื’ื•ืŸ ืœืฉื™ืชื•ืฃ-ืคืขื•ืœื” ื•ืคื™ืชื•ื— ื›ืœื›ืœื™.
03:09
Now, in my work,
54
189862
3112
ื‘ืขื‘ื•ื“ืชื™,
03:12
I explore new frontiers for artificial intelligence,
55
192998
4186
ืื ื™ ื‘ื•ื—ืŸ ืื•ืคืงื™ื ื—ื“ืฉื™ื ื‘ืชื—ื•ื ื”ืชื‘ื•ื ื” ื”ืžืœืื›ื•ืชื™ืช,
03:17
where the symbiotic relationship between man and machine
56
197208
3437
ื›ืฉื”ืกื™ืžื‘ื™ื•ื–ื” ื‘ื™ืŸ ื”ืื“ื ืœืžื›ื•ื ื”
03:20
can find a beneficial footing and help us to make better decisions.
57
200669
3912
ืชื•ื›ืœ ืœื”ื˜ื‘ื™ืข ื—ื•ืชื ื—ื™ื•ื‘ื™ ื•ืœืฉืคืจ ืืช ืงื‘ืœืช ื”ื”ื—ืœื˜ื•ืช ืฉืœื ื•.
03:25
As I thought about the air pollution problem,
58
205249
3064
ื›ืฉื—ืฉื‘ืชื™ ืขืœ ื‘ืขื™ื™ืช ื–ื™ื”ื•ื ื”ืื•ื•ื™ืจ,
03:28
it became clear that we needed to find a way to make better decisions
59
208337
3946
ื”ืชื‘ืจืจ ืœื™ ืฉืขืœื™ื ื• ืœืžืฆื•ื ื“ืจืš ืœืงื‘ืœ ื”ื—ืœื˜ื•ืช ื˜ื•ื‘ื•ืช ื™ื•ืชืจ
03:32
about how we manage air pollution,
60
212307
2633
ืœื’ื‘ื™ ื ื™ื”ื•ืœ ื–ื™ื”ื•ื ื”ืื•ื•ื™ืจ,
03:34
and given the scale of the problem,
61
214964
1983
ื•ื‘ื”ื™ื ืชืŸ ื”ื™ืงืฃ ื”ื‘ืขื™ื™ื”,
03:36
it was necessary to do it in a collaborative way.
62
216971
2515
ื”ื›ืจื—ื™ ืœืขืฉื•ืช ื–ืืช ื‘ื“ืจืš ืฉืœ ืฉื™ืชื•ืฃ-ืคืขื•ืœื”.
03:40
So I decided I'd better get to know some people working within the field.
63
220310
4190
ื•ืœื›ืŸ ื”ื—ืœื˜ืชื™ ืฉื›ื“ืื™ ืฉืื›ื™ืจ ืื ืฉื™ื ืฉืขื•ื‘ื“ื™ื ื‘ืชื—ื•ื ื–ื”.
03:45
I started to speak to officials from the City of Johannesburg
64
225500
3422
ื”ืชื—ืœืชื™ ืœืฉื•ื—ื— ืขื ื‘ื›ื™ืจื™ื ื‘ืขื™ืจื™ื™ืช ื™ื•ื”ื ืกื‘ื•ืจื’
03:48
and other surrounding cities,
65
228946
1627
ื•ื‘ืขืจื™ื ืฉื›ื ื•ืช,
03:50
and I engaged the local scientific community,
66
230597
2959
ื’ื™ื™ืกืชื™ ืืช ื”ืงื”ื™ืœื” ื”ืžื“ืขื™ืช ื”ืžืงื•ืžื™ืช,
03:53
and I also made a few cold calls.
67
233580
2190
ื•ื’ื ื”ื™ื• ืœื™ ื›ืžื” ืฉื™ื—ื•ืช ืœืœื ืžืขื ื”.
03:57
The process of engagement I embarked upon
68
237016
2553
ืชื”ืœื™ืš ื”ื’ื‘ืจืช ื”ืžื•ื“ืขื•ืช ืฉื‘ื• ื”ืชื—ืœืชื™
03:59
helped me to develop a deeper understanding of the problem.
69
239593
3273
ืขื–ืจ ืœื™ ืœื”ื‘ื™ืŸ ื™ื•ืชืจ ืœืขื•ืžืง ืืช ื”ื‘ืขื™ื”.
04:03
It also helped me to avoid the trap
70
243510
2346
ื”ื•ื ื’ื ืขื–ืจ ืœื™ ืœื—ืžื•ืง ืžื”ืžืœื›ื•ื“ืช
04:05
people in my profession sometimes fall into when trying to innovate,
71
245880
3424
ืฉืื ืฉื™ื ื‘ืชื—ื•ื ืฉืœื™ ื ื•ืคืœื™ื ืืœื™ื” ืœืคืขืžื™ื ื›ืฉื”ื ืžื ืกื™ื ืœื—ื“ืฉ,
04:09
where we are quick to apply a technology
72
249328
2327
ื›ืฉืื ื• ืžืžื”ืจื™ื ืœื™ื™ืฉื ื˜ื›ื ื•ืœื•ื’ื™ื” ืžืกื•ื™ืžืช
04:11
before we've firmly grasped the problem at hand.
73
251679
2794
ืœืคื ื™ ืฉื”ื‘ื ื• ืœื’ืžืจื™ ืืช ื”ื‘ืขื™ื™ื”.
04:15
I began to develop an idea
74
255534
2138
ื”ืชื—ืœืชื™ ืœืคืชื— ืจืขื™ื•ืŸ
04:17
about what I could do to improve the situation.
75
257696
2468
ืื™ืš ืœืฉืคืจ ืืช ื”ืžืฆื‘.
04:20
I started by simply asking myself
76
260742
2416
ืชื—ื™ืœื”, ืคืฉื•ื˜ ืฉืืœืชื™ ืืช ืขืฆืžื™,
04:23
how I could bring together in some meaningful way
77
263182
2698
ืื™ืš ืื•ื›ืœ ืœืฉืœื‘ ื‘ืื•ืคืŸ ืžืฉืžืขื•ืชื™
04:25
my skills in software engineering and artificial intelligence
78
265904
3868
ืืช ื”ื›ื™ืฉื•ืจื™ื ืฉืœื™ ื‘ื”ื ื“ืกืช ืชื•ื›ื ื” ื•ื‘ืชื‘ื•ื ื” ืžืœืื›ื•ืชื™ืช
04:29
and the expertise of the people I'd reached out to.
79
269796
2642
ืขื ื”ืžื•ืžื—ื™ื•ืช ืฉืœ ื”ืื ืฉื™ื ืขื™ืžื ื™ืฆืจืชื™ ืงืฉืจ.
04:33
I wanted to create an online air-quality management platform
80
273075
3993
ืจืฆื™ืชื™ ืœื™ืฆื•ืจ ืคืœื˜ืคื•ืจืžื” ืžืงื•ื•ื ืช ืœื ื™ื”ื•ืœ ืื™ื›ื•ืช ื”ืื•ื•ื™ืจ
04:37
that would uncover trends in pollution
81
277092
2081
ืฉืชื•ื›ืœ ืœื–ื”ื•ืช ืžื’ืžื•ืช ื‘ื–ื™ื”ื•ื
04:39
and project into the future
82
279197
1926
ื•ืœืฉืขืจ ืœืคื™ื”ืŸ ืืช ื”ืขืชื™ื“
04:41
to determine what outcomes can be expected.
83
281147
2399
ื›ื“ื™ ืœืงื‘ื•ืข ืžื”ืŸ ื”ืชื•ืฆืื•ืช ืฉืืคืฉืจ ืœืฆืคื•ืช ืœื”ืŸ.
04:44
I was determined to see my idea translate into a practical solution,
84
284462
5388
ื”ื™ื™ืชื™ ื ื—ื•ืฉ ืœืจืื•ืช ืืช ื”ืจืขื™ื•ืŸ ืฉืœื™ ื”ื•ืคืš ืœืคืชืจื•ืŸ ืžืขืฉื™,
04:49
but I faced uncertainty
85
289874
2828
ืื‘ืœ ื”ื™ืชื” ืื™-ื•ื•ื“ืื•ืช
04:52
and had no guarantee of success.
86
292726
1901
ื•ื”ื”ืฆืœื—ื” ืœื ื”ื™ืชื” ืžื•ื‘ื˜ื—ืช.
04:55
What I had was a very particular set of engineering skills,
87
295576
5318
ืœื™ ื”ื™ื• ืจืง ื›ื™ืฉื•ืจื™ ื”ื ื“ืกื” ืžืกื•ื™ืžื™ื,
05:00
skills I'd acquired over my career
88
300918
2436
ื›ื™ืฉื•ืจื™ื ืฉืจื›ืฉืชื™ ื‘ืžื”ืœืš ื”ืงืจื™ื™ืจื” ืฉืœื™
05:03
(Laughter)
89
303378
1245
(ืฆื—ื•ืง)
05:04
that were new to people who had been working on the air pollution problem
90
304647
3462
ืฉื”ื™ื• ื—ื“ืฉื™ื ืœืื•ืชื ืื ืฉื™ื ืฉืขื‘ื“ื• ืขืœ ื‘ืขื™ื™ืช ื–ื™ื”ื•ื ื”ืื•ื•ื™ืจ
05:08
for so many years.
91
308133
1518
ืžื–ื” ืฉื ื™ื ื›ื” ืจื‘ื•ืช.
05:09
What I have come to realize is that sometimes just one fresh perspective,
92
309675
4969
ื‘ืกื•ืคื• ืฉืœ ื“ื‘ืจ ื”ื‘ื ืชื™ ืฉืœืคืขืžื™ื, ื“ื™ ื‘ื ืงื•ื“ืช-ืžื‘ื˜ ืจืขื ื ื”,
05:14
one new skill set,
93
314668
1293
ืื• ื‘ื›ื™ืฉื•ืจื™ื ื—ื“ืฉื™ื,
05:15
can make the conditions right for something remarkable to happen.
94
315985
3421
ื›ื“ื™ ืœื”ื›ื™ืŸ ืืช ื”ืงืจืงืข ืœื”ื™ื•ื•ืฆืจื•ืชื• ืฉืœ ืžืฉื”ื• ื—ื“ืฉ ื•ื˜ื•ื‘.
05:20
Our willpower and imagination are a guiding light,
95
320066
3691
ื›ื•ื— ื”ืจืฆื•ืŸ ื•ื”ื“ืžื™ื•ืŸ ืฉืœื ื• ื”ื ื”ืื•ืจ ืฉืžื ื—ื” ืื•ืชื ื•
05:23
enabling us to chart new paths and navigate through obstacles.
96
323781
3737
ื•ืžืืคืฉืจ ืœื ื• ืœืฉืจื˜ื˜ ื ืชื™ื‘ื™ื ื—ื“ืฉื™ื ื•ืœื ื•ื•ื˜ ื“ืจืš ืžื›ืฉื•ืœื™ื.
05:28
Armed with a firmer understanding of the air pollution problem,
97
328241
3658
ืจื›ืฉื ื• ื”ื‘ื ื” ื—ื“ืฉื” ืฉืœ ื‘ืขื™ื™ืช ื–ื™ื”ื•ื ื”ืื•ื•ื™ืจ,
05:31
and having managed to source over a decade's worth of data
98
331923
3362
ื”ืฆืœื—ื ื• ืœืงื•ื“ื“ ื ืชื•ื ื™ื ืฉืœ ืขืฉื•ืจ ืฉืœื
05:35
on air pollutant levels
99
335309
1452
ื‘ื ื•ื’ืข ืœืจืžื•ืช ื–ื™ื”ื•ื ื”ืื•ื•ื™ืจ
05:36
and the meteorological conditions for in and around Johannesburg,
100
336785
4474
ื•ื”ืชื ืื™ื ื”ืžื˜ืื•ืจื•ืœื•ื’ื™ื™ื ื‘ื™ื•ื”ืกื ื‘ื•ืจื’ ื•ื‘ืกื‘ื™ื‘ืชื”,
05:41
my colleagues from South Africa and China and myself
101
341283
4112
ื•ืขืžื™ืชื™ ืžื“ืจื•ื-ืืคืจื™ืงื”, ืกื™ืŸ ื•ืื ื•ื›ื™
05:45
created an air-quality decision support system
102
345419
2737
ื™ืฆืจื ื• ืžืขืจื›ืช ืชืžื™ื›ื” ื‘ืงื‘ืœืช ื”ื—ืœื˜ื•ืช ืœื’ื‘ื™ ืื™ื›ื•ืช ื”ืื•ื•ื™ืจ
05:48
that lives in the cloud.
103
348180
1350
ืฉืฉื•ื›ื ืช ื‘ืขื ืŸ.
05:50
This software system analyzes historical and real-time data
104
350210
4071
ืžืขืจื›ืช ืชื•ื›ื ื” ื–ื• ืžื ืชื—ืช ื ืชื•ื ื™ื ื”ื™ืกื˜ื•ืจื™ื™ื ื•ืขื›ืฉื•ื•ื™ื
05:54
to uncover the spatial-temporal trends in pollution.
105
354305
2668
ื›ื“ื™ ืœื–ื”ื•ืช ืžื’ืžื•ืช ื–ื™ื”ื•ื ืื•ื•ื™ืจ ื‘ื–ืžืŸ ื•ื‘ืžืจื—ื‘.
05:57
We then used new machine learning technology
106
357695
2855
ืœืื—ืจ ืžื›ืŸ ื”ืฉืชืžืฉื ื• ื‘ื˜ื›ื ื•ืœื•ื’ื™ื” ื—ื“ืฉื” ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื”
06:00
to predict future levels of pollution
107
360574
2639
ื›ื“ื™ ืœื—ื–ื•ืช ืจืžื•ืช ื–ื™ื”ื•ื ืขืชื™ื“ื™ื•ืช
06:03
for several different pollutants days in advance.
108
363237
2897
ืฉืœ ืžื–ื”ืžื™ื ืฉื•ื ื™ื ื›ืžื” ื™ืžื™ื ืžืจืืฉ.
06:06
This means that citizens can make better decisions
109
366849
3458
ื–ื” ืื•ืžืจ ืฉืื–ืจื—ื™ื ื™ื•ื›ืœื• ืœืงื‘ืœ ื”ื—ืœื˜ื•ืช ื˜ื•ื‘ื•ืช ื™ื•ืชืจ
06:10
about their daily movements
110
370331
1715
ืœื’ื‘ื™ ืžื”ืœื›ื™ ื”ื™ื•ืžื™ื•ื ืฉืœื”ื
06:12
and about where to settle their families.
111
372070
2015
ื•ืื™ืคื” ืœื™ื™ืฉื‘ ืืช ืžืฉืคื—ื•ืชื™ื”ืŸ.
06:14
We can predict adverse pollution events ahead of time,
112
374575
3484
ืื ื• ืžืกื•ื’ืœื™ื ืœื—ื–ื•ืช ืžืจืืฉ ืื™ืจื•ืขื™ ื–ื™ื”ื•ื ืฉืœื™ืœื™ื™ื,
06:18
identify heavy polluters,
113
378083
1801
ืœื–ื”ื•ืช ืžื–ื”ืžื™ื ื›ื‘ื“ื™ื,
06:19
and they can be ordered by the relevant authorities
114
379908
2523
ื•ื›ืš ืชื•ื›ืœื ื” ื”ืจืฉื•ื™ื•ืช ื”ืžืชืื™ืžื•ืช ืœื”ื•ืจื•ืช ืœื”ื
06:22
to scale back their operations.
115
382455
2008
ืœืฆืžืฆื ืืช ืคืขื™ืœื•ืชื.
06:25
Through assisted scenario planning,
116
385315
2515
ื‘ืขื–ืจืช ืชื›ื ื•ืŸ ื ืชืžืš-ืชืจื—ื™ืฉื™ื,
06:27
city planners can also make better decisions
117
387854
2698
ื”ืžืชื›ื ื ื™ื ื”ืขื™ืจื•ื ื™ื™ื ื™ื•ื›ืœื• ืœืงื‘ืœ ื”ื—ืœื˜ื•ืช ื˜ื•ื‘ื•ืช ื™ื•ืชืจ
06:30
about how to extend infrastructure,
118
390576
2005
ืœื’ื‘ื™ ื”ืจื—ื‘ืช ื”ืชืฉืชื™ื•ืช
06:32
such as human settlements or industrial zones.
119
392605
2787
ื‘ื™ื™ืฉื•ื‘ื™ื ืื ื•ืฉื™ื™ื ืื• ื‘ืื–ื•ืจื™ื ืชืขืฉื™ื™ืชื™ื™ื.
06:36
We completed a pilot of our technology
120
396160
2745
ื”ืฉืœืžื ื• ื”ืจืฆืช-ื ืกื™ื•ืŸ ืฉืœ ื”ื˜ื›ื ื•ืœื•ื’ื™ื” ืฉืœื ื•
06:38
that was run over a period of 120 days,
121
398929
3328
ืฉื‘ื•ืฆืขื” ื‘ืžืฉืš 120 ื™ื•ื,
06:42
covering all of South Africa.
122
402281
2175
ื•ื”ืงื™ืคื” ืืช ื›ืœ ื“ืจื•ื-ืืคืจื™ืงื”.
06:45
Our results were confirmed
123
405376
1819
ื”ืชื•ืฆืื•ืช ืฉืœื ื• ื–ื›ื• ืœืื™ืฉื•ืฉ
06:47
when we demonstrated a tight correlation
124
407219
2563
ื›ืฉื”ืจืื™ื ื• ื–ื™ืงื” ื”ื“ื•ืงื”
06:49
between the forecasting data
125
409806
2397
ื‘ื™ืŸ ื”ื ืชื•ื ื™ื ื”ื—ื–ื•ื™ื™ื
06:52
and the data we were getting on the ground.
126
412227
2595
ืœื‘ื™ืŸ ื”ื ืชื•ื ื™ื ืฉืงื™ื‘ืœื ื• ื‘ืฉื˜ื—.
06:55
Through our leadership,
127
415631
1670
ื”ืฆืขื“ ื”ื—ืœื•ืฆื™ ืฉืœื ื•
06:57
we have brought cutting-edge, world-leading assets
128
417325
3849
ื™ืฆืจ ื ื›ืกื™ื ืคื•ืจืฆื™-ื“ืจืš ื‘ืงื ื”-ืžื™ื“ื” ืขื•ืœืžื™
07:01
that can perform air-quality forecasting
129
421198
2666
ืฉื™ื›ื•ืœื™ื ืœื‘ืฆืข ื—ื™ื–ื•ื™ ืฉืœ ื–ื™ื”ื•ื-ืื•ื•ื™ืจ
07:03
at an unprecedented resolution and accuracy,
130
423888
4120
ื‘ืจืžืช ื”ืคืจื“ื” ื•ื“ื™ื•ืง ื—ืกืจื™-ืชืงื“ื™ื
07:08
benefiting the city that I drove into one winter morning not very long ago,
131
428032
6849
ืฉื™ื•ืขื™ืœื• ืœืขื™ืจ ืฉืืœื™ื” ื ื›ื ืกืชื™ ื‘ืžื›ื•ื ื™ืชื™ ื‘ื‘ื•ืงืจ ื—ื•ืจืคื™ ืื—ื“, ืœืคื ื™ ื–ืžืŸ ืœื ืจื‘,
07:14
and thought to myself,
132
434905
1531
ื•ื—ืฉื‘ืชื™ ืœืขืฆืžื™,
07:16
"Something is wrong here. I wonder what can be done?"
133
436460
2849
"ืžืฉื”ื• ื›ืืŸ ืœื ื‘ืกื“ืจ. ืžื” ืืคืฉืจ ืœืขืฉื•ืช ืœื’ื‘ื™ ื–ื”?"
07:20
So here is the point:
134
440563
2341
ืื– ื”ื ื” ืžื•ืกืจ ื”ื”ืฉื›ืœ:
07:23
What if I'd not investigated the problem of air pollution further?
135
443895
3857
ืžื” ื”ื™ื” ืงื•ืจื” ืื™ืœื•ืœื ื”ืชืขืžืงืชื™ ื‘ื‘ืขื™ื™ืช ื–ื™ื”ื•ื ื”ืื•ื•ื™ืจ,
07:28
What if I'd not shown some concern for the state of the environment
136
448951
3923
ืื™ืœื•ืœื ื”ื™ื™ืชื™ ืžืจืื” ืงืฆืช ื“ืื’ื” ืœืžืฆื‘ ื”ืกื‘ื™ื‘ื”,
07:32
and just hoped that someone, somewhere, was taking care of the matter?
137
452898
3976
ื•ืกืชื ืžืงื•ื•ื” ืฉืžื™ืฉื”ื•, ืžืชื™ืฉื”ื• ื™ื“ืื’ ืœื–ื”?
07:37
What I have learned is that,
138
457858
1445
ื”ืœืงื— ืฉืœืžื“ืชื™ ื”ื•ื,
07:39
when embarking on a challenging endeavor
139
459327
2144
ืฉื›ืืฉืจ ื™ื•ืฆืื™ื ืœืžืฉื™ืžื” ืžืืชื’ืจืช
07:41
that advances a cause that we firmly believe in,
140
461495
2638
ืฉืžืงื“ืžืช ืžื˜ืจื” ืฉืื ื• ืžืื“ ืžืืžื™ื ื™ื ื‘ื”,
07:44
it is important to focus on the possibility of success
141
464157
3485
ื—ืฉื•ื‘ ืœื”ืชืžืงื“ ื‘ืืคืฉืจื•ืช ืœื”ืฆืœื™ื—
07:47
and consider the consequence of not acting.
142
467666
3046
ื•ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืืช ื”ืชื•ืฆืื•ืช ืฉืœ ื™ืฉื™ื‘ื” ืœืœื ืžืขืฉ.
07:51
We should not get distracted by resistance and opposition,
143
471426
3905
ืืกื•ืจ ืœื ื• ืœื”ื ื™ื— ืœื”ืชื ื’ื“ื•ื™ื•ืช ืœื”ืกื™ื˜ ืื•ืชื ื• ืžื”ื›ื™ื•ื•ืŸ
07:55
but this should motivate us further.
144
475355
2397
ืืœื ืœืฉืื•ื‘ ืžื”ืŸ ืžื•ื˜ื™ื‘ืฆื™ื”.
07:58
So wherever you are in the world,
145
478405
4507
ืื– ื‘ื›ืœ ืžืงื•ื ื‘ืขื•ืœื ืฉื‘ื• ืืชื ื ืžืฆืื™ื,
08:02
the next time you find
146
482936
1439
ื‘ืคืขื ื”ื‘ืื” ืฉื‘ื” ืชื’ืœื•
08:04
that there's some natural curiosity you have
147
484399
2194
ืฉืžืชืขื•ืจืจืช ื‘ื›ื ืกืงืจื ื•ืช ื˜ื‘ืขื™ืช
08:06
that is being piqued,
148
486617
1600
08:08
and it's about something you care about,
149
488241
2055
ืœื’ื‘ื™ ืžืฉื”ื• ืฉื—ืฉื•ื‘ ืœื›ื,
08:10
and you have some crazy or bold ideas,
150
490320
2785
ื•ืขื•ืœื™ื ื‘ื›ื ืจืขื™ื•ื ื•ืช ืžื˜ื•ืจืคื™ื ืื• ื ื•ืขื–ื™ื ื›ืœืฉื”ื,
08:13
and perhaps it's outside the realm of your expertise,
151
493129
3664
ืฉืื•ืœื™ ื—ื•ืจื’ื™ื ืžืชื—ื•ื ื”ืžื•ืžื—ื™ื•ืช ืฉืœื›ื,
08:16
ask yourself this:
152
496817
1238
ืฉืืœื• ืืช ืขืฆืžื›ื:
ืœืžื” ืœื?
08:19
Why not?
153
499278
1237
08:22
Why not just go ahead and tackle the problem
154
502349
2517
ืœืžื” ืœื ืœืฆืืช ื•ืœื”ืชืžื•ื“ื“ ืขื ื”ื‘ืขื™ื™ื”
08:24
as best as you can, in your own way?
155
504890
2801
ื‘ืžื™ื˜ื‘ ื™ื›ื•ืœืชื›ื, ื‘ื“ืจื›ื›ื?
08:27
You may be pleasantly surprised.
156
507715
2254
ืื•ืœื™ ืชื•ืคืชืขื• ืœื˜ื•ื‘ื”.
08:31
Thank you.
157
511064
1151
ืชื•ื“ื” ืœื›ื.
08:32
(Applause)
158
512239
3649
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7