Joel Selanikio: The surprising seeds of a big-data revolution in healthcare

61,989 views ใƒป 2013-07-02

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Shlomo Adam ืžื‘ืงืจ: David Forrai
ื™ืฉ ื‘ื“ื™ื—ื” ื™ืฉื ื” ืขืœ ืฉื•ื˜ืจ ืฉืžืกื™ื™ืจ ื‘ืžืงื•ืฃ ืฉืœื•
00:13
There's an old joke about a cop
0
13063
1515
00:14
who's walking his beat in the middle of the night,
1
14602
2357
ื‘ืืžืฆืข ื”ืœื™ืœื”,
00:16
and he comes across a guy under a street lamp
2
16983
2103
ื•ื ืชืงืœ ื‘ื‘ื—ื•ืจ ืื—ื“ ืžืชื—ืช ืœืคื ืก ืจื—ื•ื‘,
ืฉืžืกืชื›ืœ ืขืœ ื”ืงืจืงืข ื•ืขื•ื‘ืจ ืžืฆื“ ืœืฆื“,
00:19
who's looking at the ground and moving from side to side,
3
19110
2691
00:21
and the cop asks him what he's doing.
4
21825
1777
ื•ื”ืฉื•ื˜ืจ ืฉื•ืืœ ืื•ืชื• ืžื” ื”ื•ื ืขื•ืฉื”.
00:23
The guys says he's looking for his keys.
5
23626
1934
ื”ื‘ื—ื•ืจ ืื•ืžืจ ืฉื”ื•ื ืžื—ืคืฉ ืืช ื”ืžืคืชื—ื•ืช ืฉืœื•.
00:25
So the cop takes his time
6
25584
1439
ืื– ื”ืฉื•ื˜ืจ ืžืชืขื›ื‘ ืขืœ ื™ื“ื• ื•ืžื—ืคืฉ ืžืกื‘ื™ื‘
00:27
and looks over and kind of makes a little matrix
7
27047
2270
ื•ื”ื ืžื—ืœืงื™ื ื‘ื™ื ื™ื”ื ืืช ื”ืฉื˜ื— ื•ืžื—ืคืฉื™ื
00:29
and looks for about two, three minutes.
8
29341
2205
ื‘ืžืฉืš 2-3 ื“ืงื•ืช, ื•ื”ืžืคืชื—ื•ืช ืื™ื ื.
00:31
No keys.
9
31570
1151
00:32
The cop says, "Are you sure?
10
32745
2372
ื”ืฉื•ื˜ืจ ืฉื•ืืœ: "ืืชื” ื‘ื˜ื•ื—? ื”ื™ื™, ื—ื‘ืจ,
00:35
Hey buddy, are you sure you lost your keys here?"
11
35141
2309
"ืืชื” ื‘ื˜ื•ื— ืฉืื™ื‘ื“ืช ื›ืืŸ ืืช ื”ืžืคืชื—ื•ืช?"
00:37
And the guy says, "No, actually I lost them
12
37474
2032
ื•ื”ื‘ื—ื•ืจ ืขื•ื ื”, "ืœื, ืœืžืขืฉื” ืื™ื‘ื“ืชื™ ืื•ืชื
"ื‘ืงืฆื” ื”ืฉื ื™ ืฉืœ ื”ืจื—ื•ื‘,
00:39
down at the other end of the street,
13
39530
1726
"ืื‘ืœ ื›ืืŸ ื”ืชืื•ืจื” ื˜ื•ื‘ื” ื™ื•ืชืจ."
00:41
but the light is better here."
14
41280
1445
00:42
(Laughter)
15
42749
2625
00:46
There's a concept that people talk about nowadays called "big data."
16
46167
3243
ื™ืฉ ืจืขื™ื•ืŸ ืžืกื•ื™ื ืฉืื ืฉื™ื ืžื“ื‘ืจื™ื ืขืœื™ื• ื‘ื™ืžื™ื ื•
ื•ื”ื•ื ืงืจื•ื™ "ื‘ื™ื’ ื“ืื˜ื”", ื•ื”ื ืœืžืขืฉื” ืžื“ื‘ืจื™ื
00:49
And what they're talking about is all of the information
17
49434
2643
ืขืœ ื›ืœ ื”ืžื™ื“ืข ืฉืื ื• ืžืคื™ืงื™ื
00:52
that we're generating through our interaction
18
52101
2151
ืžื”ืื™ื ื˜ืจืืงืฆื™ื•ืช ื‘ื™ื ื™ื ื• ื•ืขื ื”ืื™ื ื˜ืจื ื˜,
00:54
with and over the Internet,
19
54276
1303
00:55
everything from Facebook and Twitter
20
55603
1760
ื”ื—ืœ ืž"ืคื™ื™ืกื‘ื•ืง" ื•"ื˜ื•ื•ื™ื˜ืจ",
ื•ื›ืœื” ื‘ื”ื•ืจื“ื•ืช ืžื•ืกื™ืงื”, ืกืจื˜ื™ื, ืžื“ื™ื” ื–ื•ืจืžืช, ื›ืœ ื”ื“ื‘ืจื™ื ื”ืืœื”,
00:57
to music downloads, movies, streaming, all this kind of stuff,
21
57387
3633
01:01
the live streaming of TED.
22
61044
1462
ื”ืฉื™ื“ื•ืจ ื”ื—ื™ ืฉืœ TED.
01:02
And the folks who work with big data, for them,
23
62919
2684
ื•ื”ื—ื‘ืจ'ื” ืฉืžื“ื‘ืจื™ื ืขืœ ื”ืžื™ื“ืข ื”ื’ื“ื•ืœ, ืžื‘ื—ื™ื ืชื,
01:05
they talk about that their biggest problem
24
65627
2004
ื”ื ืื•ืžืจื™ื ืฉื”ื‘ืขื™ื” ื”ื›ื™ ื’ื“ื•ืœื” ืฉืœื”ื
01:07
is we have so much information.
25
67655
1747
ื”ื™ื ืฉื™ืฉ ืœื ื• ื™ื•ืชืจ ืžื“ื™ ืžื™ื“ืข,
01:09
The biggest problem is: how do we organize all that information?
26
69426
3377
ื”ื‘ืขื™ื” ื”ื’ื“ื•ืœื” ื‘ื™ื•ืชืจ ื”ื™ื ืื™ืš ืœืืจื’ืŸ ืืช ื›ืœ ื”ืžื™ื“ืข ื”ื–ื”.
ืžืขื‘ื•ื“ืชื™ ื‘ืชื—ื•ื ื”ื‘ืจื™ืื•ืช ื”ื’ืœื•ื‘ืœื™ืช, ื”ืืžื™ื ื• ืœื™,
01:13
I can tell you that, working in global health,
27
73272
2160
01:15
that is not our biggest problem.
28
75456
2284
ืฉื–ื• ืื™ื ื ื” ื”ื‘ืขื™ื” ื”ื›ื™ ื’ื“ื•ืœื” ืฉืœื ื•.
01:18
Because for us, even though the light is better on the Internet,
29
78232
3184
ื›ื™ ืžื‘ื—ื™ื ืชื ื•, ืœืžืจื•ืช ืฉื”ืชืื•ืจื”
ื‘ืื™ื ื˜ืจื ื˜ ื˜ื•ื‘ื” ื™ื•ืชืจ,
01:22
the data that would help us solve the problems we're trying to solve
30
82989
3366
ื”ืจื™ ืฉื”ื ืชื•ื ื™ื ืฉื™ืขื–ืจื• ืœื ื• ืœืคืชื•ืจ ืืช ื”ื‘ืขื™ื•ืช
ืฉืื ื• ืžื ืกื™ื ืœืคืชื•ืจ, ื‘ืขืฆื ืœื ืงื™ื™ืžื™ื ื‘ืื™ื ื˜ืจื ื˜.
01:26
is not actually present on the Internet.
31
86379
2149
01:28
So we don't know, for example,
32
88552
1445
ืœืžืฉืœ, ืื™ื ื ื• ื™ื•ื“ืขื™ื ื›ืžื” ืื ืฉื™ื
01:30
how many people right now are being affected by disasters
33
90021
3291
ื ืคื’ืขื™ื ื›ืจื’ืข ืžืืกื•ื ื•ืช
ืื• ืžืกื›ืกื•ื›ื™ื.
01:33
or by conflict situations.
34
93336
1969
01:35
We don't know for, really, basically, any of the clinics
35
95329
3719
ืื™ื ื ื• ื™ื•ื“ืขื™ื ื‘ืคื•ืขืœ ื‘ืื™ืœื• ืžื”ืžืจืคืื•ืช
01:39
in the developing world,
36
99072
1150
ื‘ืขื•ืœื ื”ืžืชืคืชื—, ื‘ืื™ืœื• ืžื”ืŸ ื™ืฉ ืชืจื•ืคื•ืช
01:40
which ones have medicines and which ones don't.
37
100246
2455
ื•ื‘ืื™ืœื• ืื™ืŸ.
01:42
We have no idea of what the supply chain is for those clinics.
38
102725
3374
ืื™ืŸ ืœื ื• ืžื•ืฉื’ ืžื”ื™ ืฉืจืฉืจืช ื”ืืกืคืงื” ืฉืžื’ื™ืขื” ืœืื•ืชืŸ ืžืจืคืื•ืช.
ืื™ื ื ื• ื™ื•ื“ืขื™ื -- ื•ื–ื” ื‘ืืžืช ืžื“ื”ื™ื ื‘ืขื™ื ื™--
01:46
We don't know -- and this is really amazing to me -- we don't know
39
106123
3698
ืื™ื ื ื• ื™ื•ื“ืขื™ื ื›ืžื” ื™ืœื“ื™ื ื ื•ืœื“ื•,
01:49
how many children were born -- or how many children there are --
40
109845
3770
ืื• ื›ืžื” ื™ืœื“ื™ื ื™ืฉ ื‘ื‘ื•ืœื™ื‘ื™ื”
01:53
in Bolivia or Botswana or Bhutan.
41
113639
3408
ืื• ื‘ื‘ื•ืฆื•ืื ื” ืื• ื‘ื‘ื”ื•ื˜ืŸ.
ืื™ื ื ื• ื™ื•ื“ืขื™ื ื›ืžื” ื™ืœื“ื™ื ืžืชื• ื‘ืฉื‘ื•ืข ืฉืขื‘ืจ
01:58
We don't know how many kids died last week
42
118047
2041
ื‘ื›ืœ ืื—ืช ืžื”ืืจืฆื•ืช ื”ืืœื”.
02:00
in any of those countries.
43
120112
1246
02:01
We don't know the needs of the elderly, the mentally ill.
44
121382
3047
ืื™ื ื ื• ื™ื•ื“ืขื™ื ืžื” ื”ืฆืจื›ื™ื ืฉืœ ื”ื–ืงื ื™ื, ืฉืœ ื—ื•ืœื™ ื”ื ืคืฉ.
02:04
For all of these different critically important problems
45
124453
3215
ื‘ื›ืœ ืื—ืช ืžื”ื‘ืขื™ื•ืช ื”ืงืจื™ื˜ื™ื•ืช ื”ืœืœื•
02:07
or critically important areas that we want to solve problems in,
46
127692
3300
ืื• ื”ืชื—ื•ืžื™ื ื”ืงืจื™ื˜ื™ื™ื ื”ืœืœื• ืฉื‘ื”ื ืื ื• ืจื•ืฆื™ื ืœืคืชื•ืจ ื‘ืขื™ื•ืช,
ืื ื• ื‘ืขืฆื ืœื ื™ื•ื“ืขื™ื ื›ืœื•ื.
02:11
we basically know nothing at all.
47
131016
2266
02:15
And part of the reason why we don't know anything at all
48
135834
2652
ื•ื—ืœืง ืžื”ืกื™ื‘ื” ืžื“ื•ืข ืื™ื ื ื• ื™ื•ื“ืขื™ื ื›ืœื•ื
02:18
is that the information technology systems that we use in global health
49
138510
4179
ื”ื™ื ืฉืžืขืจื›ื•ืช ื˜ื›ื ื•ืœื•ื’ื™ื™ืช ื”ืžื™ื“ืข
ื‘ื”ืŸ ืื ื• ืžืฉืชืžืฉื™ื ื‘ื‘ืจื™ืื•ืช ื”ืขื•ืœืžื™ืช ื›ื“ื™ ืœื”ืฉื™ื’ ืืช ื”ื ืชื•ื ื™ื
02:22
to find the data to solve these problems is what you see here.
50
142713
4413
ืขืœ ืžื ืช ืœืคืชื•ืจ ื‘ืขื™ื•ืช ืืœื”, ื”ืŸ ืžื” ืฉืืชื ืจื•ืื™ื ื›ืืŸ.
02:27
This is about a 5,000-year-old technology.
51
147150
2234
ื–ืืช ื˜ื›ื ื•ืœื•ื’ื™ื” ื‘ืช 5,000 ืฉื ื”.
02:29
Some of you may have used it before.
52
149408
1732
ื—ืœืงื›ื ื•ื“ืื™ ื”ืฉืชืžืฉ ื‘ื” ืคืขื.
ื”ื™ื ื›ื‘ืจ ื“ื™ ืžื™ื•ืฉื ืช, ืืš ืื ื• ืขื“ื™ื™ืŸ ืžืฉืชืžืฉื™ื ื‘ื”
02:31
It's kind of on its way out now,
53
151164
1539
02:32
but we still use it for 99 percent of our stuff.
54
152727
2439
ืขื‘ื•ืจ 99% ืžื”ื“ื‘ืจื™ื ืฉืœื ื•.
ื–ื”ื• ื˜ื•ืคืก ื ื™ื™ืจ, ื•ืžื” ืฉืืชื ืจื•ืื™ื ื›ืืŸ
02:35
This is a paper form.
55
155190
2490
02:38
And what you're looking at is a paper form
56
158010
2033
ื”ื•ื ื˜ื•ืคืก ื ื™ื™ืจ ื‘ื™ื“ื™ื” ืฉืœ ืื—ื•ืช ืžืžืฉืจื“ ื”ื‘ืจื™ืื•ืช
02:40
in the hand of a Ministry of Health nurse in Indonesia,
57
160067
3179
ื‘ืื™ื ื“ื•ื ื–ื™ื”, ืฉืžืกืชื•ื‘ื‘ืช ื‘ืื–ื•ืจ ื”ื›ืคืจื™ ืฉื,
02:43
who is tramping out across the countryside
58
163270
2240
02:45
in Indonesia on, I'm sure, a very hot and humid day,
59
165534
3651
ื•ืื ื™ ื‘ื˜ื•ื— ืฉื–ื”ื• ื™ื•ื ื—ื ื•ืœื— ื‘ื™ื•ืชืจ,
02:49
and she is going to be knocking on thousands of doors
60
169209
2682
ื•ื”ื™ื ืขืชื™ื“ื” ืœื”ืชื“ืคืง ืขืœ ืืœืคื™ ื“ืœืชื•ืช
02:51
over a period of weeks or months,
61
171915
2079
ื‘ืžืฉืš ืฉื‘ื•ืขื•ืช ืื• ื—ื•ื“ืฉื™ื,
ืœื“ืคื•ืง ืขืœ ื“ืœืชื•ืช ื•ืœื•ืžืจ, "ืกืœื™ื—ื”,
02:54
knocking on the doors and saying,
62
174018
1597
02:55
"Excuse me, we'd like to ask you some questions.
63
175639
2878
"ืื ื• ืจื•ืฆื™ื ืœืฉืื•ืœ ืืชื›ื ื›ืžื” ืฉืืœื•ืช.
02:58
Do you have any children? Were your children vaccinated?"
64
178541
3205
"ื™ืฉ ืœื›ื ื™ืœื“ื™ื? ื”ืื ื™ืœื“ื™ื›ื ืงื™ื‘ืœื• ื—ื™ืกื•ื ื™ื?"
03:02
Because the only way we can actually find out
65
182223
2135
ื›ื™ ื”ื“ืจืš ื”ื™ื—ื™ื“ื” ืฉื‘ื” ืื ื• ืœืžืขืฉื” ื™ื›ื•ืœื™ื ืœื“ืขืช
ื›ืžื” ื™ืœื“ื™ื ื—ื•ืกื ื• ื‘ืื–ื•ืจื™ ื”ื›ืคืจ ืฉืœ ืื™ื ื“ื•ื ื–ื™ื”,
03:04
how many children were vaccinated in the country of Indonesia,
66
184382
2935
ื›ืžื” ืื—ื•ื–ื™ื ื—ื•ืกื ื•, ืœืžืขืฉื” ืื™ื ื ื” ื‘ืืžืฆืขื•ืช
03:07
what percentage were vaccinated,
67
187341
1557
03:08
is actually not on the Internet, but by going out and knocking on doors,
68
188922
4128
ื”ืื™ื ื˜ืจื ื˜, ืืœื ื‘ืžืขื‘ืจ ืžื“ืœืช ืœื“ืœืช,
ื•ืœืขืชื™ื - ืขืฉืจื•ืช ืืœืคื™ ื“ืœืชื•ืช.
03:13
sometimes tens of thousands of doors.
69
193074
2214
03:15
Sometimes it takes months to even years to do something like this.
70
195312
3998
ืœืคืขืžื™ื ื ื“ืจืฉื™ื ื—ื•ื“ืฉื™ื ื•ืืคื™ืœื• ืฉื ื™ื
ื›ื“ื™ ืœืขืฉื•ืช ืžืฉื”ื• ื›ื–ื”.
03:19
You know, a census of Indonesia
71
199334
2117
ื›ื“ื™ ืœื”ืฉืœื™ื ืžืคืงื“ ืื•ื›ืœื•ืกื™ืŸ ื‘ืื™ื ื“ื•ื ื–ื™ื”
03:21
would probably take two years to accomplish.
72
201475
2094
ื™ื™ื“ืจืฉื• ื•ื“ืื™ ืฉื ืชื™ื™ื.
03:23
And the problem, of course, with all of this
73
203593
2072
ื•ื”ื‘ืขื™ื” ื‘ื›ืœ ื–ื”, ื”ื™ื ื›ืžื•ื‘ืŸ,
03:25
is that, with all those paper forms --
74
205689
1897
ืขื ื›ืœ ื˜ืคืกื™ ื”ื ื™ื™ืจ ื”ืืœื”-- ื•ืชืืžื™ื ื• ืœื™
03:27
and I'm telling you, we have paper forms for every possible thing:
75
207610
3119
ืฉื™ืฉ ืœื ื• ื˜ืคืกื™ ื ื™ื™ืจ ืœื›ืœ ื“ื‘ืจ ืฉืืคืฉืจ ืœื”ืขืœื•ืช ืขืœ ื”ื“ืขืช.
ื™ืฉ ืœื ื• ื˜ืคืกื™ ื ื™ื™ืจ ืฉืœ ืกืงืจ ื—ื™ืกื•ื ื™ื.
03:30
We have paper forms for vaccination surveys.
76
210753
2064
03:32
We have paper forms to track people who come into clinics.
77
212841
3161
ื™ืฉ ืœื ื• ื˜ืคืกื™ ื ื™ื™ืจ ืœืžืขืงื‘ ืื—ืจ ืื ืฉื™ื ืฉืžื’ื™ืขื™ื ืœืžืจืคืื•ืช.
03:36
We have paper forms to track drug supplies, blood supplies --
78
216026
4042
ื™ืฉ ืœื ื• ื˜ืคืกื™ ื ื™ื™ืจ ืœืžืขืงื‘ ืื—ืจ ืืกืคืงืช ืชืจื•ืคื•ืช,
ืืกืคืงืช ื“ื, ื›ืœ ืžื™ื ื™ ื˜ืคืกื™ ื ื™ื™ืจ
03:40
all these different paper forms for many different topics,
79
220092
3234
ืœื›ืœ ืžื™ื ื™ ืฉื™ืžื•ืฉื™ื,
03:43
they all have a single, common endpoint,
80
223350
2316
ื•ืœื›ื•ืœื ื™ืฉ ื™ืขื“ ืžืฉื•ืชืฃ,
03:45
and the common endpoint looks something like this.
81
225690
2619
ื•ื”ื™ื“ืข ื”ืžืฉื•ืชืฃ ื ืจืื” ื›ื›ื”.
03:48
And what we're looking at here is a truckful of data.
82
228333
3333
ืื ื• ืจื•ืื™ื ื›ืืŸ ืžื˜ืขื ื™ืช ืžืœืื” ืžื™ื“ืข.
ื›ืœ ื–ื” ื”ื•ื ืžื™ื“ืข ืžืกืงืจ ื—ื™ืกื•ื ื™ื ืื—ื“ ื•ื™ื—ื™ื“
03:53
This is the data from a single vaccination coverage survey
83
233261
3865
03:57
in a single district in the country of Zambia
84
237150
2191
ื‘ืžื—ื•ื– ืื—ื“ ื•ื™ื—ื™ื“ ื‘ืžื“ื™ื ืช ื–ืžื‘ื™ื”
03:59
from a few years ago, that I participated in.
85
239365
2290
ืžืœืคื ื™ ื›ืžื” ืฉื ื™ื, ืฉื‘ื• ื”ืฉืชืชืคืชื™.
04:01
The only thing anyone was trying to find out
86
241679
2347
ื”ื“ื‘ืจ ื”ื™ื—ื™ื“ ืฉื ื™ืกื• ืœืžืฆื•ื ื›ืืŸ
04:04
is what percentage of Zambian children are vaccinated,
87
244050
3253
ื”ื™ื ืื™ื–ื” ืื—ื•ื– ืžื™ืœื“ื™ ื–ืžื‘ื™ื” ืžื—ื•ืกื ื™ื,
04:07
and this is the data, collected on paper over weeks,
88
247327
3254
ื•ืืœื” ื”ื ืชื•ื ื™ื ืฉื ืืกืคื• ืข"ื’ ื ื™ื™ืจ ื‘ืžืฉืš ืฉื‘ื•ืขื•ืช
04:10
from a single district,
89
250605
1183
ืžืžื—ื•ื– ืื—ื“ ื•ื™ื—ื™ื“, ืฉื”ื•ื ืฉื˜ื— ื‘ื’ื•ื“ืœ ืฉืœ ืžื—ื•ื–
04:11
which is something like a county in the United States.
90
251812
2675
ื‘ืืจืฆื•ืช ื”ื‘ืจื™ืช.
04:14
You can imagine that, for the entire country of Zambia,
91
254511
2675
ืืชื ื•ื“ืื™ ืžืชืืจื™ื ืœืขืฆืžื›ื, ืฉืขื‘ื•ืจ ื›ืœ ืžื“ื™ื ืช ื–ืžื‘ื™ื”,
ื”ืžืขื ื” ืขืœ ืฉืืœื” ื™ื—ื™ื“ื” ื–ื•
04:17
answering just that single question ...
92
257210
2293
04:20
looks something like this.
93
260615
1330
ื ืจืื” ืžืฉื”ื• ื›ื–ื”.
ืžื˜ืขื ื™ืช ื•ืขื•ื“ ืžื˜ืขื ื™ืช ื•ืขื•ื“ ืžื˜ืขื ื™ืช
04:23
Truck after truck after truck,
94
263072
2040
ืžืœืื•ืช ื‘ืขืจื™ืžื•ืช ืขืœ ื’ื‘ื™ ืขืจื™ืžื•ืช ืฉืœ ื ืชื•ื ื™ื.
04:25
filled with stack after stack after stack of data.
95
265136
2913
04:28
And what makes it even worse is that's just the beginning.
96
268430
3212
ื•ืžื” ืฉืžื—ืžื™ืจ ืขื•ื“ ื™ื•ืชืจ ืืช ื”ืžืฆื‘
ื”ื•ื ืฉื–ื• ืจืง ื”ื”ืชื—ืœื”,
04:31
Because once you've collected all that data,
97
271666
2094
ื›ื™ ืžืจื’ืข ืฉื ืืกืคื• ื›ืœ ื”ื ืชื•ื ื™ื ื”ืืœื”,
04:33
of course, someone -- some unfortunate person --
98
273784
2540
ื‘ืจื•ืจ ืฉืžื™ืฉื”ื• ืฆืจื™ืš--
ืฉืื™ื–ื” ืžืกื›ืŸ ื™ื™ืืœืฅ ืœื”ืงืœื™ื“ ื”ื›ืœ ืœืชื•ืš ืžื—ืฉื‘.
04:36
is going to have to type that into a computer.
99
276348
2215
04:38
When I was a graduate student,
100
278587
1452
ื›ืฉืœืžื“ืชื™ ืœืชื•ืืจ ืฉื ื™, ื”ื–ื“ืžืŸ ืœื™ ื‘ืคื•ืขืœ
04:40
I actually was that unfortunate person sometimes.
101
280063
2459
ืœื”ื™ื•ืช ืœืคืขืžื™ื ื”ืžืกื›ืŸ ื”ื–ื”.
04:42
I can tell you, I often wasn't really paying attention.
102
282546
3015
ื”ืืžื™ื ื• ืœื™. ืœืขืชื™ื ืงืจื•ื‘ื•ืช ืœื ืžืžืฉ ืฉืžืชื™ ืœื‘.
04:45
I probably made a lot of mistakes when I did it
103
285585
2267
ื•ื“ืื™ ืขืฉื™ืชื™ ื”ืžื•ืŸ ืฉื’ื™ืื•ืช ื›ืฉืขื‘ื“ืชื™ ื‘ื–ื”
04:47
that no one ever discovered, so data quality goes down.
104
287876
2620
ืฉื’ื™ืื•ืช ืฉืื™ืฉ ืœื ื’ื™ืœื”. ื›ื›ื” ื ืคื’ืขืช ืื™ื›ื•ืช ื”ื ืชื•ื ื™ื.
04:50
But eventually that data, hopefully, gets typed into a computer,
105
290520
3020
ืืš ื”ืชืงื•ื•ื” ื”ื™ื ืฉืœื‘ืกื•ืฃ ื”ื ืชื•ื ื™ื ืžื•ืงืœื“ื™ื ืœืžื—ืฉื‘,
04:53
and someone can begin to analyze it,
106
293564
1731
ื•ืžื™ืฉื”ื• ื™ื›ื•ืœ ืœื”ืชื—ื™ืœ ืœื ืชื— ืื•ืชื,
04:55
and once they have an analysis and a report,
107
295319
2872
ื•ืžืจื’ืข ืฉื™ืฉ ืœื”ื ื ื™ืชื•ื— ื•ื“ื•"ื—,
ื”ืชืงื•ื•ื” ื”ื™ื ืฉืืคืฉืจ ืœืงื—ืช ืืช ื”ืชื•ืฆืื•ืช ืฉืœ ืื•ืกืฃ ื”ื ืชื•ื ื™ื ื”ื–ื”,
04:58
hopefully, then you can take the results of that data collection
108
298215
3024
05:01
and use it to vaccinate children better.
109
301263
1967
ื•ืœื ืฆืœ ืื•ืชืŸ ื›ื“ื™ ืœื—ืกืŸ ื™ืœื“ื™ื ื˜ื•ื‘ ื™ื•ืชืจ.
05:03
Because if there's anything worse in the field of global public health --
110
303254
5541
ื›ื™ ืื ื™ืฉ ืžืฉื”ื• ื—ืžื•ืจ ื™ื•ืชืจ
ื‘ืชื—ื•ื ื”ืขื•ืœืžื™ ืฉืœ ื‘ืจื™ืื•ืช ื”ืฆื™ื‘ื•ืจ,
05:08
I don't know what's worse than allowing children on this planet
111
308819
2982
ืื™ื ื™ื™ ื™ื•ื“ืข ืžื” ื’ืจื•ืข ื™ื•ืชืจ ืžืืฉืจ ืœื”ื ื™ื— ืœื™ืœื“ื™ื ื‘ืขื•ืœื ื”ื–ื”
05:11
to die of vaccine-preventable diseases --
112
311825
2116
ืœืžื•ืช ืžืžื—ืœื•ืช ืฉื ื™ืชืŸ ืœืžื ื•ืข ื‘ืขื–ืจืช ื—ื™ืกื•ื ื™ื,
05:14
diseases for which the vaccine costs a dollar.
113
314679
2698
ืžื—ืœื•ืช ืฉื”ื—ื™ืกื•ืŸ ืขื‘ื•ืจืŸ ืขื•ืœื” ื“ื•ืœืจ ืื—ื“.
05:17
And millions of children die of these diseases every year.
114
317835
3352
ื•ืžื™ืœื™ื•ื ื™ ื™ืœื“ื™ื ืžืชื™ื ืžื”ืžื—ืœื•ืช ื”ืืœื” ื‘ื›ืœ ืฉื ื” ื•ืฉื ื”.
ื•ื”ืขื•ื‘ื“ื” ื”ื™ื ืฉ"ืžื™ืœื™ื•ื ื™ื" ื–ื• ื”ืขืจื›ื” ื’ืกื”
05:21
And the fact is, millions is a gross estimate,
115
321211
2974
05:24
because we don't really know how many kids die each year of this.
116
324209
3214
ื›ื™ ืื™ื ื ื• ื™ื•ื“ืขื™ื ื‘ืืžืช ื›ืžื” ื™ืœื“ื™ื ืžืชื™ื ื›ืš ื‘ื›ืœ ืฉื ื”.
05:27
What makes it even more frustrating is that the data-entry part,
117
327730
3499
ืžื” ืฉื”ื•ืคืš ื–ืืช ืœืขื•ื“ ื™ื•ืชืจ ืžืชืกื›ืœ
ื”ื•ื ืฉืฉืœื‘ ื”ื›ื ืกืช ื”ื ืชื•ื ื™ื, ื”ืฉืœื‘ ืฉื ื”ื’ืชื™ ืœืขืฉื•ืช ื‘ื–ืžืŸ ืœื™ืžื•ื“ื™,
05:31
the part that I used to do as a grad student,
118
331253
2190
ืขืœื•ืœ ืœืขืชื™ื ืœืืจื•ืš 6 ื—ื•ื“ืฉื™ื.
05:33
can take sometimes six months.
119
333467
1458
05:34
Sometimes it can take two years to type that information into a computer,
120
334949
3452
ืœืคืขืžื™ื ื™ื™ื“ืจืฉื• ืฉื ืชื™ื™ื ื›ื“ื™ ืœื”ืงืœื™ื“ ืืช ื”ืžื™ื“ืข ื”ื–ื”
ืœืชื•ืš ืžื—ืฉื‘, ื•ืœืคืขืžื™ื, ืœื ืœืขืชื™ื ืจื—ื•ืงื•ืช, ื‘ืขืฆื,
05:38
And sometimes, actually not infrequently,
121
338425
2110
05:40
it actually never happens.
122
340559
1828
ื–ื” ื‘ื›ืœืœ ืœื ื™ืงืจื”.
05:42
Now try and wrap your head around that for a second.
123
342411
2476
ื ืกื• ืจื’ืข ืœืงืœื•ื˜ ืืช ื”ืขื•ื‘ื“ื” ื”ื–ื•.
05:44
You just had teams of hundreds of people.
124
344911
2175
ื”ื™ื• ืœื›ื ืฆื•ื•ืชื™ื ืฉืœ ืžืื•ืช ืื ืฉื™ื.
05:47
They went out into the field to answer a particular question.
125
347110
2903
ื”ื ื™ืฆืื• ืœืฉื˜ื— ื›ื“ื™ ืœืขื ื•ืช ืขืœ ืฉืืœื” ืžืกื•ื™ืžืช.
ืกื‘ื™ืจ ืœื”ื ื™ื— ืฉื”ื•ืฆืืชื ืžืื•ืช ืืœืคื™ ื“ื•ืœืจื™ื
05:50
You probably spent hundreds of thousands of dollars
126
350037
2396
ืขืœ ื“ืœืง, ืฆื™ืœื•ื ืžืกืžื›ื™ื ื•ื”ื•ืฆืื•ืช ืฉื•ื˜ืคื•ืช,
05:52
on fuel and photocopying and per diem.
127
352457
3036
ื•ืื–, ืžืฉื•ื-ืžื”, ื”ืžื•ืžื ื˜ื•ื ืื•ื‘ื“
05:56
And then for some reason, momentum is lost
128
356072
2044
05:58
or there's no money left,
129
358140
1393
ืื• ืฉื ื’ืžืจ ื”ื›ืกืฃ,
05:59
and all of that comes to nothing,
130
359557
2337
ื•ื›ืœ ื–ื” ื”ื™ื” ืœืฉื•ื•ื
06:01
because no one actually types it into the computer at all.
131
361918
2723
ื›ื™ ืื™ืฉ ืœื ื˜ืจื— ื‘ื›ืœืœ ืœื”ืงืœื™ื“ ืืช ื–ื” ืœืžื—ืฉื‘.
06:04
The process just stops.
132
364665
1176
ื”ืชื”ืœื™ืš ืคืฉื•ื˜ ื ืขืฆืจ. ื–ื” ืงื•ืจื” ื›ืœ ื”ื–ืžืŸ.
06:05
Happens all the time.
133
365865
1924
06:07
This is what we base our decisions on in global health:
134
367813
3115
ืขืœ ื–ื” ืื ื• ืžื‘ืกืกื™ื ืืช ื”ื—ืœื˜ื•ืชื™ื ื• ื‘ื‘ืจื™ืื•ืช ื”ืขื•ืœืžื™ืช:
06:10
little data, old data, no data.
135
370952
3417
ืžื™ืขื•ื˜ ื ืชื•ื ื™ื, ื ืชื•ื ื™ื ื™ืฉื ื™ื, ื”ืขื“ืจ ื ืชื•ื ื™ื.
06:15
So back in 1995,
136
375924
1453
ืื– ื›ื‘ืจ ื‘-1995 ื”ืชื—ืœืชื™ ืœื—ืฉื•ื‘ ืขืœ ื“ืจื›ื™ื
06:17
I began to think about ways in which we could improve this process.
137
377401
3240
ืฉื‘ื”ืŸ ื ื•ื›ืœ ืœืฉืคืจ ืืช ื”ืชื”ืœื™ืš ื”ื–ื”.
06:20
Now 1995 -- obviously, that was quite a long time ago.
138
380665
2668
ื•ื‘ืจื•ืจ ืฉ-1995 ื”ื™ืชื” ืœืคื ื™ ื–ืžืŸ ืจื‘.
06:23
It kind of frightens me to think of how long ago that was.
139
383357
2978
ืงืฆืช ืžืคื—ื™ื“ ืื•ืชื™ ืœื—ืฉื•ื‘ ื›ืžื” ื–ืžืŸ ืขื‘ืจ ืžืื–.
ื”ืกืจื˜ ื”ื›ื™ ืžืฆืœื™ื— ื‘ืื•ืชื” ืฉื ื”
06:26
The top movie of the year was "Die Hard with a Vengeance."
140
386359
2738
ื”ื™ื” "ืžืช ืœื—ื™ื•ืช 3".
ื›ืคื™ ืฉืืชื ืจื•ืื™ื, ืœื‘ืจื•ืก ื•ื•ื™ืœื™ืก ื”ื™ื” ืื– ื”ืจื‘ื” ื™ื•ืชืจ ืฉื™ืขืจ.
06:29
As you can see, Bruce Willis had a lot more hair back then.
141
389121
2817
06:31
I was working in the Centers for Disease Control
142
391962
2665
ืื ื™ ืขื‘ื“ืชื™ ื‘ืžืจื›ื–ื™ ื‘ืงืจืช ื”ืžื—ืœื•ืช,
06:34
and I had a lot more hair back then as well.
143
394651
2179
ื•ื’ื ืœื™ ื”ื™ื” ืื– ื”ืจื‘ื” ื™ื•ืชืจ ืฉื™ืขืจ.
06:37
But to me, the most significant thing that I saw in 1995
144
397505
2944
ืืš ืžื‘ื—ื™ื ืชื™, ื”ื“ื‘ืจ ื”ื›ื™ ืžืฉืžืขื•ืชื™ ืฉืจืื™ืชื™ ื‘-1995
06:40
was this.
145
400473
1218
ื”ื™ื” ื–ื”.
ืงืฉื” ืœื ื• ืœื“ืžื™ื™ืŸ ืืช ื–ื”, ืื‘ืœ ื‘-1995
06:42
Hard for us to imagine, but in 1995,
146
402151
2393
06:44
this was the ultimate elite mobile device.
147
404568
3115
ื–ื” ื”ื™ื” ื”ืฉื™ื ื‘ืžื›ืฉื™ืจื™ื ื”ื ื™ื™ื“ื™ื.
06:48
It wasn't an iPhone. It wasn't a Galaxy phone.
148
408286
2556
ื ื›ื•ืŸ? ืœื ื”"ืื™ื™ืคื•ืŸ", ืœื ื”"ื’ืœืงืกื™",
06:50
It was a PalmPilot.
149
410866
1364
ืืœื ื”"ืคืืœื ืคื™ื™ืœื•ื˜".
06:52
And when I saw the PalmPilot for the first time, I thought,
150
412254
3528
ื•ื›ืฉืจืื™ืชื™ ืœืจืืฉื•ื ื” ืืช ื”"ืคืืœื ืคื™ื™ืœื•ื˜", ื—ืฉื‘ืชื™,
06:55
"Why can't we put the forms on these PalmPilots?
151
415806
2397
ืžื“ื•ืข ืฉืœื ื ืฉื™ื ืืช ื”ื˜ืคืกื™ื ื‘"ืคืืœื ืคื™ื™ืœื•ื˜" ื”ืืœื”
06:58
And go out into the field just carrying one PalmPilot,
152
418758
2620
ื•ื ืฆื ืœืฉื˜ื— ืจืง ืขื "ืคืืœื ืคื™ื™ืœื•ื˜" ืื—ื“,
ืฉื™ืฉ ืœื• ืงื™ื‘ื•ืœืช ืฉืœ ืขืฉืจื•ืช ืืœืคื™
07:01
which can hold the capacity of tens of thousands of paper forms?
153
421402
3765
ื˜ืคืกื™ ื ื™ื™ืจ? ืœืžื” ืฉืœื ื ื ืกื” ืืช ื–ื”?
07:05
Why don't we try to do that?
154
425191
1427
07:06
Because if we can do that,
155
426642
1263
ื›ื™ ืื ื ื•ื›ืœ ืœืขืฉื•ืช ื–ืืช, ืื ื ื•ื›ืœ ืคืฉื•ื˜
07:07
if we can actually just collect the data electronically, digitally,
156
427929
3809
ืœืืกื•ืฃ ืืช ื”ื ืชื•ื ื™ื ื‘ืฆื•ืจื” ืืœืงื˜ืจื•ื ื™ืช, ื“ื™ื’ื™ื˜ืœื™ืช,
07:11
from the very beginning,
157
431762
1657
ืžืžืฉ ืžื”ื”ืชื—ืœื”,
07:13
we can just put a shortcut right through that whole process
158
433443
3276
ื™ื”ื™ื” ืœื ื• ืงื™ืฆื•ืจ ื“ืจืš ื‘ื›ืœ ื”ืชื”ืœื™ืš ื”ื–ื”
07:16
of typing, of having somebody type that stuff into the computer.
159
436743
4992
ืฉืœ ื”ื”ืงืœื“ื”,
ื•ื ื“ืœื’ ืขืœ ื”ืฉืœื‘ ืฉื‘ื• ืžื™ืฉื”ื• ืžืงืœื™ื“ ืืช ื–ื” ืœืžื—ืฉื‘.
07:21
We can skip straight to the analysis
160
441759
1840
ื ื•ื›ืœ ืœืขื‘ื•ืจ ื™ืฉืจ ืœืฉืœื‘ ื ื™ืชื•ื— ื”ื ืชื•ื ื™ื
07:23
and then straight to the use of the data to actually save lives."
161
443623
3139
ื•ืžืฉื ื™ืฉืจ ืœืฉื™ืžื•ืฉ ื‘ื ืชื•ื ื™ื ื›ื“ื™ ืœื”ืฆื™ืœ ื—ื™ื™ื ื‘ืคื•ืขืœ.
07:26
So that's what I began to do.
162
446786
2587
ื•ื–ื” ืœืžืขืฉื” ืžื” ืฉื”ืชื—ืœืชื™ ืœืขืฉื•ืช.
07:29
Working at CDC, I began to travel to different programs around the world
163
449397
4349
ื‘ืขื‘ื•ื“ืชื™ ื‘ืžืจื›ื–ื™ ื‘ืงืจืช ื”ืžื—ืœื•ืช, ื”ืชื—ืœืชื™ ืœื ืกื•ืข ืœืชื›ื ื™ื•ืช ืฉื•ื ื•ืช
ื‘ืจื—ื‘ื™ ื”ืขื•ืœื, ื•ืœื”ื›ืฉื™ืจ ืื•ืชื ื‘ืฉื™ืžื•ืฉ ื‘"ืคืืœื ืคื™ื™ืœื•ื˜"
07:33
and to train them in using PalmPilots to do data collection,
164
453770
4142
ืœืฆื•ืจืš ืื™ืกื•ืฃ ื ืชื•ื ื™ื, ื‘ืžืงื•ื ื‘ื ื™ื™ืจ.
07:37
instead of using paper.
165
457936
1378
07:39
And it actually worked great.
166
459338
1888
ื•ื–ื” ืขื‘ื“ ื ื”ื“ืจ.
07:41
It worked exactly as well as anybody would have predicted.
167
461250
3052
ื–ื” ืขื‘ื“ ื‘ื“ื™ื•ืง ื›ืคื™ ืฉืืคืฉืจ ื”ื™ื” ืœื—ื–ื•ืช.
ืžืžืฉ ืœื ืœื”ืืžื™ืŸ: ืื™ืกื•ืฃ ื ืชื•ื ื™ื ื“ื™ื’ื™ื˜ืœื™
07:44
What do you know?
168
464326
1157
07:45
Digital data collection is actually more efficient than collecting on paper.
169
465507
3612
ื”ื•ื ื™ืขื™ืœ ื‘ื”ืจื‘ื” ืžืืฉืจ ืื™ืกื•ืคื ืขืœ ื’ื‘ื™ ื ื™ื™ืจ.
ื›ืฉืขืกืงืชื™ ื‘ื–ื”, ื”ืฉื•ืชืคื” ื”ืขืกืงื™ืช ืฉืœื™, ืจื•ื–,
07:49
While I was doing it, my business partner,
170
469143
2032
ืฉื ืžืฆืืช ื›ืืŸ ืขื ื‘ืขืœื”, ืžืชื™ื•,
07:51
Rose, who's here with her husband, Matthew, here in the audience,
171
471199
3079
ืจื•ื– ื™ืฆืื” ืœืฉื˜ื— ื•ืขืฉืชื” ืื•ืชื• ื“ื‘ืจ ืขื‘ื•ืจ ื”ืฆืœื‘ ื”ืื“ื•ื ื”ืืžืจื™ืงืื™.
07:54
Rose was out doing similar stuff for the American Red Cross.
172
474302
2873
ื”ื‘ืขื™ื” ื”ื™ืชื”, ืื—ืจื™ ื›ืžื” ืฉื ื™ื ื›ืืœื”,
07:57
The problem was, after a few years of doing that,
173
477199
2386
ื”ื‘ื ืชื™ ืฉืขืฉื™ืชื™-- ื‘ื™ืงืจืชื™, ืื•ืœื™,
07:59
I realized -- I had been to maybe six or seven programs --
174
479609
3897
ื‘ืฉืฉ ืื• ืฉื‘ืข ืชื›ื ื™ื•ืช, ื•ื—ืฉื‘ืชื™ ืœื™,
08:03
and I thought, you know, if I keep this up at this pace,
175
483530
3261
ืื ืืžืฉื™ืš ื‘ืงืฆื‘ ื”ื–ื”,
08:06
over my whole career,
176
486815
1151
ื‘ืžืฉืš ื›ืœ ื”ืงืจื™ื™ืจื” ืฉืœื™, ืืฆืœื™ื— ืœื”ื’ื™ืข
08:07
maybe I'm going to go to maybe 20 or 30 programs.
177
487990
2679
ืื•ืœื™ ืœ-20 ืื• 30 ืชื›ื ื™ื•ืช.
08:10
But the problem is, 20 or 30 programs,
178
490693
3143
ืื‘ืœ ื”ื‘ืขื™ื” ื”ื™ื ืฉ-20 ืื• 30 ืชื›ื ื™ื•ืช,
08:13
like, training 20 or 30 programs to use this technology,
179
493860
2950
ืœื”ื›ืฉื™ืจ ืื ืฉื™ื ื‘-20 ืื• 30 ืชื›ื ื™ื•ืช ื‘ืฉื™ืžื•ืฉ ื‘ื˜ื›ื ื•ืœื•ื’ื™ื” ื”ื–ื•,
08:16
that is a tiny drop in the bucket.
180
496834
2166
ื–ื” ื˜ื™ืคื” ื‘ื™ื.
ื”ื‘ื™ืงื•ืฉ ืœื–ื”, ื”ืฆื•ืจืš ื‘ื ืชื•ื ื™ื ื›ื“ื™ ืœื”ืคืขื™ืœ ืชื›ื ื™ื•ืช ื˜ื•ื‘ื•ืช ื™ื•ืชืจ,
08:19
The demand for this, the need for data to run better programs
181
499024
3940
08:22
just within health -- not to mention all of the other fields
182
502988
2858
ืจืง ื‘ืชื—ื•ื ื”ื‘ืจื™ืื•ืช, ื‘ืœื™ ืœื”ืชื™ื™ื—ืก ืœื›ืœ ื™ืชืจ ื”ืชื—ื•ืžื™ื
08:25
in developing countries -- is enormous.
183
505870
1996
ื‘ืืจืฆื•ืช ื”ืžืชืคืชื—ื•ืช, ื”ื•ื ื›ื‘ื™ืจ.
08:27
There are millions and millions and millions of programs,
184
507890
3986
ื™ืฉ ืžื™ืœื™ื•ื ื™ื ืจื‘ื™ื ืฉืœ ืชื›ื ื™ื•ืช,
08:31
millions of clinics that need to track drugs,
185
511900
2568
ืžื™ืœื™ื•ื ื™ ืžืจืคืื•ืช ืฉืฆืจื™ื›ื•ืช ืœื ื”ืœ ืžืขืงื‘ ืื—ืจื™ ืชืจื•ืคื•ืช,
08:34
millions of vaccine programs.
186
514492
1404
ืžื™ืœื™ื•ื ื™ ืชื›ื ื™ื•ืช ื—ื™ืกื•ืŸ.
08:35
There are schools that need to track attendance.
187
515920
2261
ื™ืฉ ื‘ืชื™-ืกืคืจ ืฉืฆืจื™ื›ื™ื ืœืขืงื•ื‘ ืื—ืจ ื”ื ื•ื›ื—ื•ืช.
ื™ืฉ ื›ืœ ืžื™ื ื™ ื“ื‘ืจื™ื
08:38
There are all these different things for us to get the data that we need to do.
188
518205
3906
ืฉืขืœื™ื ื• ืœื”ืฉื™ื’ ืขื‘ื•ืจื ื ืชื•ื ื™ื.
ื•ืื ื™ ื”ื‘ื ืชื™ ืฉืื ืืžืฉื™ืš ืœืคืขื•ืœ ื‘ืื•ืชื” ื”ื“ืจืš,
08:42
And I realized if I kept up the way that I was doing,
189
522135
4619
08:46
I was basically hardly going to make any impact
190
526778
3220
ืœื ืืฆืœื™ื— ืœืฉื ื•ืช ื›ืžืขื˜ ื›ืœื•ื
ืขื“ ืกื•ืฃ ื”ืงืจื™ื™ืจื” ืฉืœื™.
08:50
by the end of my career.
191
530022
1353
08:51
And so I began to rack my brain,
192
531756
1868
ืื– ื”ืชื—ืœืชื™ ืœืฉื‘ื•ืจ ืืช ื”ืจืืฉ
08:53
trying to think about, what was the process that I was doing?
193
533648
2944
ื‘ื ืกื™ื•ืŸ ืœื—ืฉื•ื‘
ืขืœ ื”ืชื”ืœื™ืš ืฉืœ ืžื” ืฉืื ื™ ืขื•ืฉื”,
08:56
How was I training folks,
194
536616
1282
ืื™ืš ืื ื™ ืžื›ืฉื™ืจ ืื ืฉื™ื, ื•ืžื”ื ืฆื•ื•ืืจื™ ื”ื‘ืงื‘ื•ืง
08:57
and what were the bottlenecks and what were the obstacles
195
537922
3174
ื•ืžื”ื ื”ืžื›ืฉื•ืœื™ื ืฉืžืคืจื™ืขื™ื ืœื‘ืฆืข ื–ืืช ืžื”ืจ ื™ื•ืชืจ
09:01
to doing it faster and to doing it more efficiently?
196
541120
2695
ื•ื‘ื™ืขื™ืœื•ืช ืจื‘ื” ื™ื•ืชืจ?
09:03
And, unfortunately, after thinking about this for some time,
197
543839
2836
ื•ืœืฆืขืจื™, ืื—ืจื™ ืฉื—ืฉื‘ืชื™ ืขืœ ื–ื” ื‘ืžืฉืš ื–ืžืŸ-ืžื”,
09:06
I identified the main obstacle.
198
546699
3171
ื”ื‘ื ืชื™-- ื–ื™ื”ื™ืชื™ ืืช ื”ืžื›ืฉื•ืœ ื”ืขื™ืงืจื™.
09:10
And the main obstacle, it turned out --
199
550475
1921
ื•ื”ืžื›ืฉื•ืœ ื”ืขื™ืงืจื™, ื›ืš ื”ืชื‘ืจืจ,
09:12
and this is a sad realization --
200
552420
1588
ื•ื–ื• ืชื•ื‘ื ื” ืขื’ื•ืžื”,
ื”ืžื›ืฉื•ืœ ื”ืขื™ืงืจื™ ื”ื™ื” ืื ื™.
09:14
the main obstacle was me.
201
554032
1713
09:16
So what do I mean by that?
202
556229
1429
ืžื” ื›ื•ื•ื ืชื™ ื‘ื›ืš?
09:18
I had developed a process
203
558538
1716
ืคื™ืชื—ืชื™ ืชื”ืœื™ืš ืฉื‘ืืžืฆืขื•ืชื•
09:20
whereby I was the center of the universe of this technology.
204
560278
4367
ื”ื™ื™ืชื™ ืžืจื›ื– ื”ื™ืงื•ื ืžื‘ื—ื™ื ืช ื”ื˜ื›ื ื•ืœื•ื’ื™ื” ื”ื–ื•.
ืื ืจืฆื™ืชื ืœื”ืฉืชืžืฉ ื‘ื˜ื›ื ื•ืœื•ื’ื™ื” ื”ื–ื• ื”ื™ื™ืชื ืฆืจื™ื›ื™ื ืœื™ืฆื•ืจ ืื™ืชื™ ืงืฉืจ.
09:26
If you wanted to use this technology, you had to get in touch with me.
205
566304
3323
ื›ืœื•ืžืจ, ื”ื™ื” ืขืœื™ื›ื ืœื“ืขืช ืขืœ ืงื™ื•ืžื™,
09:29
That means you had to know I existed.
206
569651
1824
ื•ืื– ืœืžืฆื•ื ืืช ื”ื›ืกืฃ ื›ื“ื™ ืœืฉืœื ืœื™
09:31
Then you had to find the money to pay for me to fly out to your country
207
571499
3413
ื›ื“ื™ ืฉืื˜ื•ืก ืœืืจืฆื›ื
ื•ื›ื“ื™ ืœืฉืœื ืขืœ ื”ืžืœื•ืŸ ืฉืœื™
09:34
and the money to pay for my hotel and my per diem and my daily rate.
208
574936
3595
ื•ืืช ื”ื”ื•ืฆืื•ืช ื•ื”ืฉื›ืจ ื”ื™ื•ืžื™ื™ื ืฉืœื™.
09:38
So you could be talking about 10- or 20- or 30,000 dollars,
209
578555
2999
ืื ื• ืžื“ื‘ืจื™ื ืขืœ 10, 20, 30 ืืœืฃ ื“ื•ืœืจ
09:41
if I actually had the time or it fit my schedule
210
581578
2294
ื•ื–ื” ืื ื”ื™ื” ืœื™ ื–ืžืŸ ืขื‘ื•ืจื›ื ืื• ื”ืฉืชืœื‘ืชื ื‘ืœื•"ื– ืฉืœื™,
09:43
and I wasn't on vacation.
211
583896
1349
ื•ืื ืœื ื™ืฆืืชื™ ืœื—ื•ืคืฉื”.
09:45
The point is that anything,
212
585594
1961
ื”ื ืงื•ื“ื” ื”ื™ื ืฉื›ืœ ื“ื‘ืจ, ื›ืœ ืžืขืจื›ืช ืฉืชืœื•ื™ื”
09:47
any system that depends on a single human being
213
587579
2363
ื‘ืื“ื ืื—ื“ ื•ื™ื—ื™ื“, ืื• ื‘-2, 3, 4 ืื• 5 ื‘ื ื™-ืื“ื,
09:49
or two or three or five human beings --
214
589966
1903
09:51
it just doesn't scale.
215
591893
1653
ืคืฉื•ื˜ ืœื ืชืฆืœื™ื— ืœื”ื™ื•ืช ืžื•ืชืืžืช ืœืžื˜ืจืชื”.
09:53
And this is a problem for which we need to scale this technology,
216
593570
3199
ื•ื–ืืช ื‘ืขื™ื” ืฉืขืœื™ื ื• ืœืกื’ืœ ืœืคื™ื”
ืืช ื”ื˜ื›ื ื•ืœื•ื’ื™ื” ื”ื–ื•, ื•ืœืขืฉื•ืช ื–ืืช ืขื›ืฉื™ื•.
09:56
and we need to scale it now.
217
596793
1570
09:58
And so I began to think of ways in which I could basically
218
598387
2754
ืื– ื”ืชื—ืœืชื™ ืœื—ืฉื•ื‘ ืขืœ ื“ืจื›ื™ื ืฉื‘ื”ื ืื•ื›ืœ, ื‘ืขืฆื,
ืœื”ื•ืฆื™ื ืืช ืขืฆืžื™ ืžื”ืชืžื•ื ื”.
10:01
take myself out of the picture.
219
601165
2588
ื•ืื ื™ ื—ื•ืฉื‘
10:06
And, you know, I was thinking,
220
606071
1644
10:07
"How could I take myself out of the picture?"
221
607739
2104
ืื™ืš ืื•ื›ืœ ืœื”ื•ืฆื™ื ืืช ืขืฆืžื™ ืžื”ืชืžื•ื ื”
10:09
for quite some time.
222
609867
1619
ื›ื‘ืจ ืžื–ื” ื–ืžืŸ-ืžื”.
10:11
I'd been trained that the way you distribute technology
223
611510
3476
ืœืคื™ ื”ื”ื›ืฉืจื” ืฉืœื™, ื”ืื•ืคืŸ ื‘ื•
ืžืคื™ืฆื™ื ื˜ื›ื ื•ืœื•ื’ื™ื” ื‘ืžืกื’ืจืช ืคื™ืชื•ื— ื‘ื™ื ืœืื•ืžื™
10:15
within international development
224
615010
1556
10:16
is always consultant-based.
225
616590
1562
ืžืชื‘ืกืก ืชืžื™ื“ ืขืœ ื™ื™ืขื•ืฅ.
10:18
It's always guys that look pretty much like me,
226
618176
3001
ืชืžื™ื“ ืžื“ื•ื‘ืจ ื‘ื—ื‘ืจ'ื” ื“ื™ ื“ื•ืžื™ื ืœื™
10:21
flying from countries that look pretty much like this
227
621201
2548
ืฉืžื’ื™ืขื™ื ื‘ืžื˜ื•ืกื™ื ืžืืจืฆื•ืช ื“ื™ ื“ื•ืžื•ืช ืœื–ื•
10:23
to other countries with people with darker skin.
228
623773
2339
ืœืืจืฆื•ืช ืื—ืจื•ืช ืขื ืื ืฉื™ื ื‘ืขืœื™ ืขื•ืจ ื›ื”ื” ื™ื•ืชืจ.
10:26
And you go out there, and you spend money on airfare
229
626769
2462
ื”ื ื ื•ืกืขื™ื ืœืฉื, ืžื•ืฆื™ืื™ื ื›ืกืคื™ื ืขืœ ื›ืจื˜ื™ืกื™ ื˜ื™ืกื”,
10:29
and you spend time and you spend per diem
230
629255
3236
ืžืฉืงื™ืขื™ื ื–ืžืŸ, ืžืฉืœืžื™ื ืขืœ ื”ื•ืฆืื•ืช ืฉื•ื˜ืคื•ืช,
10:32
and you spend for a hotel and all that stuff.
231
632515
2349
ืžื•ืฆื™ืื™ื ื›ืกืฃ ืขืœ ืžืœื•ืŸ ื•ืขืœ ื›ืœ ื™ืชืจ ื”ื“ื‘ืจื™ื.
10:34
As far as I knew, that was the only way you could distribute technology,
232
634888
3412
ื•ืœืžื™ื˜ื‘ ื™ื“ื™ืขืชื™ ืื–, ื–ื• ื”ื“ืจืš ื”ื™ื—ื™ื“ื”
ื‘ื” ืžืคื™ืฆื™ื ื˜ื›ื ื•ืœื•ื’ื™ื”, ื•ืœื ื”ืฆืœื—ืชื™ ืœืžืฆื•ื ื“ืจืš ืฉื•ื ื”.
10:38
and I couldn't figure out a way around it.
233
638324
2035
ืื‘ืœ ืื– ืงืจื” ื ืก,
10:40
But the miracle that happened --
234
640383
1754
10:42
I'm going to call it Hotmail for short.
235
642851
1906
ืœืžืขืŸ ื”ืงื™ืฆื•ืจ ืืงืจื ืœื• "ื”ื•ื˜ืžื™ื™ืœ".
10:45
You may not think of Hotmail as being miraculous,
236
645168
2423
ืื•ืœื™ ืืชื ืœื ื—ื•ืฉื‘ื™ื ืฉ"ื”ื•ื˜ืžื™ื™ืœ" ื”ื•ื ื ืก,
10:47
but for me it was miraculous,
237
647615
1437
ืื‘ืœ ืžื‘ื—ื™ื ืชื™ ื”ื•ื ื”ื™ื” ื›ื–ื”, ื›ื™ ืฉืžืชื™ ืœื‘,
10:49
because I noticed, just as I was wrestling with this problem --
238
649076
3612
ื‘ื“ื™ื•ืง ื›ืฉื ืื‘ืงืชื™ ื‘ื‘ืขื™ื” ื”ื–ื•,
10:52
I was working in sub-Saharan Africa, mostly, at the time --
239
652712
3506
ืขื‘ื“ืชื™ ืื– ื‘ืขื™ืงืจ ื‘ืืคืจื™ืงื” ืฉืœ ืชืช-ื”ืกื”ืจื”.
10:56
I noticed that every sub-Saharan African health worker
240
656242
2565
ืฉืžืชื™ ืœื‘ ืฉื›ืœ ืขื•ื‘ื“ ื‘ืจื™ืื•ืช ื‘ืืคืจื™ืงื” ืฉืœ ืชืช-ื”ืกื”ืจื”
10:58
that I was working with had a Hotmail account.
241
658831
2944
ืฉืื™ืชื• ืขื‘ื“ืชื™, ื”ื—ื–ื™ืง ื‘ื—ืฉื‘ื•ืŸ "ื”ื•ื˜ืžื™ื™ืœ".
ื•ืคืชืื•ื ื—ืฉื‘ืชื™,
11:03
And it struck me, "Wait a minute --
242
663389
2928
ืจืง ืจื’ืข. ื”ืจื™ ื‘ืจื•ืจ ืœื™ ืฉื”ื—ื‘ืจ'ื” ืž"ื”ื•ื˜ืžื™ื™ืœ"
11:06
I know the Hotmail people surely didn't fly to the Ministry of Health in Kenya
243
666341
4238
ืœื ื˜ืกื• ืืœ ืžืฉืจื“ ื”ื‘ืจื™ืื•ืช ืฉืœ ืงื ื™ื”
11:10
to train people in how to use Hotmail.
244
670603
2076
ื›ื“ื™ ืœื”ื›ืฉื™ืจ ืื ืฉื™ื ื‘ืฉื™ืžื•ืฉ ื‘"ื”ื•ื˜ืžื™ื™ืœ".
11:13
So these guys are distributing technology, getting software capacity out there,
245
673382
4248
ืื– ื”ื—ื‘ืจ'ื” ื”ืืœื” ืžืคื™ืฆื™ื ื˜ื›ื ื•ืœื•ื’ื™ื”.
ื”ื ืžืคื™ืฆื™ื ื™ื›ื•ืœืช ืฉื™ืžื•ืฉ ื‘ืชื•ื›ื ื•ืช
11:17
but they're not actually flying around the world.
246
677654
2328
ื‘ืœื™ ืœื˜ื•ืก ืกื‘ื™ื‘ ื”ืขื•ืœื.
ื”ื™ื™ืชื™ ืฆืจื™ืš ืœื—ืฉื•ื‘ ืขืœ ื–ื” ืขื•ื“ ืงืฆืช.
11:20
I need to think about this more."
247
680006
1572
11:21
While I was thinking about it,
248
681602
1450
ื‘ื–ืžืŸ ืฉื—ืฉื‘ืชื™ ืขืœ ื–ื”, ืื ืฉื™ื ื”ืชื—ื™ืœื• ืœื”ืฉืชืžืฉ
11:23
people started using even more things like this, just as we were.
249
683076
3159
ื‘ืขื•ื“ ื™ื•ืชืจ ื“ื‘ืจื™ื ื›ืืœื”, ืžืžืฉ ื›ืžื•ื ื•.
11:26
They started using LinkedIn and Flickr and Gmail and Google Maps --
250
686259
3231
ื”ื ื”ืชื—ื™ืœื• ืœื”ืฉืชืžืฉ ื‘"ืœื™ื ืงื“-ืื™ืŸ" ื•ื‘"ืคืœื™ืงืจ"
ื•ื‘"ื’'ื™ืžื™ื™ืœ" ื•ื‘ืžืคื•ืช "ื’ื•ื’ืœ", ื›ืœ ื”ื“ื‘ืจื™ื ื”ืืœื”.
11:29
all these things.
251
689514
1157
11:30
Of course, all of these things are cloud based
252
690695
2691
ื›ืžื•ื‘ืŸ, ื›ืœ ื”ื“ื‘ืจื™ื ื”ืืœื” ื”ื ืžื‘ื•ืกืกื™-ืขื ืŸ
11:33
and don't require any training.
253
693410
2149
ื•ื”ื ืœื ื“ื•ืจืฉื™ื ืฉื•ื ื”ื›ืฉืจื”
11:35
They don't require any programmers.
254
695583
1676
ื•ืฉื•ื ืžืชื›ื ืชื™ื
11:37
They don't require consultants.
255
697283
1503
ื•ืœื ื™ื•ืขืฆื™ื, ื›ื™
11:38
Because the business model for all these businesses
256
698810
2485
ื”ืžื•ื“ืœ ื”ืขืกืงื™ ืฉืœ ื”ืขืกืงื™ื ื”ืืœื”
11:41
requires that something be so simple we can use it ourselves,
257
701319
2937
ืžื—ื™ื™ื‘ ืฉื”ื“ื‘ืจื™ื ื™ื”ื™ื• ืคืฉื•ื˜ื™ื ืขื“ ื›ื“ื™ ื›ืš ืฉื ื•ื›ืœ ืœื”ืฉืชืžืฉ ื‘ื• ื‘ืขืฆืžื ื•
11:44
with little or no training.
258
704280
1294
ืขื ืžืขื˜ ื”ื›ืฉืจื” ืื• ื‘ื›ืœืœ ื‘ืœืขื“ื™ื”.
11:45
You just have to hear about it and go to the website.
259
705598
2595
ืฆืจื™ืš ืจืง ืœืฉืžื•ืข ืขืœ ื–ื” ื•ืื– ื”ื•ืœื›ื™ื ืืœ ื”ืืชืจ.
ืื– ื—ืฉื‘ืชื™ ืœืขืฆืžื™, ืžื” ืื ื ื‘ื ื” ืชื•ื›ื ื”
11:48
And so I thought, what would happen if we built software
260
708217
4196
11:52
to do what I'd been consulting in?
261
712437
2064
ืฉืชืขืฉื” ืืช ืžื” ืฉืื ื™ ืžื™ื™ืขืฅ ื‘ื•?
11:54
Instead of training people how to put forms onto mobile devices,
262
714525
4072
ืžื” ืื ื‘ืžืงื•ื ืœื”ื›ืฉื™ืจ ืื ืฉื™ื
ืœื”ื›ื ื™ืก ื˜ืคืกื™ื ืœืžื›ืฉื™ืจื™ื ื ื™ื™ื“ื™ื,
11:58
let's create software that lets them do it themselves with no training
263
718621
3301
ื ื™ืฆื•ืจ ืชื•ื›ื ื” ืฉืชืืคืฉืจ ืœื”ื ืœืขืฉื•ืช ื–ืืช ื‘ืขืฆืžื
ืœืœื ื”ื›ืฉืจื” ืื• ื‘ืœื™ ื”ืžืขื•ืจื‘ื•ืช ืฉืœื™?
12:01
and without me being involved.
264
721946
1436
ื•ื–ื” ื‘ื“ื™ื•ืง ืžื” ืฉืขืฉื™ื ื•.
12:03
And that's exactly what we did.
265
723406
1484
12:04
So we created software called Magpi, which has an online form creator.
266
724914
5221
ื™ืฆืจื ื• ืชื•ื›ื ื” ื‘ืฉื "ืžืื’ืคื™",
ืฉื”ื™ื” ืœื” ืžื—ื•ืœืœ ื˜ืคืกื™ื ืžืงื•ื•ืŸ.
12:10
No one has to speak to me,
267
730159
1252
ืœืื™ืฉ ืœื ื”ื™ื” ืฆื•ืจืš ืœื“ื‘ืจ ืื™ืชื™.
12:11
you just have to hear about it and go to the website.
268
731435
2801
ืื ืฉื™ื ืคืฉื•ื˜ ืฉืžืขื• ืขืœ ื–ื” ื•ื ื›ื ืกื• ืœืืชืจ.
12:14
You can create forms, and once you've created the forms,
269
734260
2658
ืืคืฉืจ ืœื™ืฆื•ืจ ื˜ืคืกื™ื, ื•ืžืจื’ืข ืฉื™ื•ืฆืจื™ื ืืช ื”ื˜ืคืกื™ื,
12:16
you push them to a variety of common mobile phones.
270
736942
2461
ื“ื•ื—ืคื™ื ืื•ืชื ืœื˜ืœืคื•ื ื™ื ื ื™ื™ื“ื™ื ื ืคื•ืฆื™ื ืžื›ืœ ื”ืกื•ื’ื™ื.
12:19
Obviously, nowadays, we've moved past PalmPilots to mobile phones.
271
739427
3517
ื”ื™ื•ื, ื›ืžื•ื‘ืŸ, ื›ื‘ืจ ืขื‘ืจื ื• ืืช ืฉืœื‘ ื”"ืคืืœื ืคื™ื™ืœื•ื˜"
ื•ื”ื’ืขื ื• ืœื˜ืœืคื•ื ื™ื ื ื™ื™ื“ื™ื.
12:22
And it doesn't have to be a smartphone, it can be a basic phone,
272
742968
3229
ื•ื–ื” ืœื ื—ื™ื™ื‘ ืœื”ื™ื•ืช ื˜ืœืคื•ืŸ ื—ื›ื.
ื–ื” ื™ื›ื•ืœ ืœื”ื™ื•ืช ื˜ืœืคื•ืŸ ืคืฉื•ื˜, ื›ืžื• ื–ื” ืžื™ืžื™ืŸ,
12:26
like the phone on the right, the basic Symbian phone
273
746221
2490
ื˜ืœืคื•ืŸ ืžื‘ื•ืกืก "ืกื™ืžื‘ื™ืืŸ", ืžื”ืกื•ื’ ื”ื‘ืกื™ืกื™
12:28
that's very common in developing countries.
274
748735
2062
ืฉื ืคื•ืฅ ืžืื“ ื‘ืืจืฆื•ืช ืžืชืคืชื—ื•ืช.
12:30
And the great part about this is it's just like Hotmail.
275
750821
3689
ื•ืžื” ืฉื’ื“ื•ืœ ื‘ื–ื”, ืฉื–ื” ื‘ื“ื™ื•ืง ื›ืžื• "ื”ื•ื˜ืžื™ื™ืœ".
12:34
It's cloud based,
276
754534
1151
ื–ื” ืžื‘ื•ืกืก ืขื ืŸ, ื•ื–ื” ืœื ื“ื•ืจืฉ ืฉื•ื ื”ื›ืฉืจื”,
12:35
and it doesn't require any training, programming, consultants.
277
755709
3253
ืชื›ื ื•ืช, ื™ื•ืขืฆื™ื.
12:38
But there are some additional benefits as well.
278
758986
2203
ื•ื‘ื ื•ืกืฃ, ื™ืฉ ืขื•ื“ ื›ืžื” ื™ืชืจื•ื ื•ืช.
ื•ืื ื• ื™ื“ืขื ื•, ื›ืฉื‘ื ื™ื ื• ืืช ื”ืžืขืจื›ืช,
12:41
Now we knew when we built this system,
279
761213
1873
ืฉื›ืœ ื”ื˜ืขื ื‘ื”, ื‘ื“ื™ื•ืง ื›ืžื• ืขื ื”"ืคืืœื ืคื™ื™ืœื•ื˜",
12:43
the whole point of it, just like with the PalmPilots,
280
763110
2555
12:45
was that you'd be able to collect the data
281
765689
2799
ืฉืชืฆื˜ืจื›ื•, ืฉืชื•ื›ืœื•
ืœืืกื•ืฃ ืืช ื”ื ืชื•ื ื™ื, ืœื”ืขืœื•ืชื ืžื™ื“ ื•ืœืงื‘ืœ ืืช ืžืขืจืš ื”ื ืชื•ื ื™ื ืฉืœื›ื.
12:48
and immediately upload the data and get your data set.
282
768512
2598
ืืš ืžื” ืฉื’ื™ืœื™ื ื•, ื›ืžื•ื‘ืŸ, ื”ื™ื•ืช ืฉื–ื” ืžืžื™ืœื ืžืžื•ื—ืฉื‘,
12:51
But what we found, of course, since it's already on a computer,
283
771134
2985
ืฉืื ื• ื™ื›ื•ืœื™ื ืœื”ืขื‘ื™ืจ ืžืคื•ืช, ื ื™ืชื•ื—ื™ื ื•ื’ืจืคื™ื ืžื™ื™ื“ื™ื™ื.
12:54
we can deliver instant maps and analysis and graphing.
284
774143
2611
12:56
We can take a process that took two years
285
776778
2071
ืื ื• ื™ื›ื•ืœื™ื ืœืงื—ืช ืชื”ืœื™ืš ืฉืืจืš ืฉื ืชื™ื™ื
12:58
and compress that down to the space of five minutes.
286
778873
3008
ื•ืœื“ื—ื•ืก ืื•ืชื• ืœืคืจืง-ื–ืžืŸ ืฉืœ ื—ืžืฉ ื“ืงื•ืช.
ืฉื™ืคื•ืจ ืœื-ื™ื™ืืžืŸ ื‘ื™ืขื™ืœื•ืช.
13:02
Unbelievable improvements in efficiency.
287
782222
2155
13:04
Cloud based, no training, no consultants, no me.
288
784740
3708
ืžื™ื—ืฉื•ื‘ ืขื ืŸ, ื‘ืœื™ ื”ื›ืฉืจื”, ื‘ืœื™ ื™ื•ืขืฆื™ื, ื•ื’ื ื‘ืœืขื“ื™.
13:09
And I told you that in the first few years
289
789520
2271
ื•ืกื™ืคืจืชื™ ืœื›ื ืงื•ื“ื ืฉื‘ืฉื ื™ื ื”ืจืืฉื•ื ื•ืช
13:11
of trying to do this the old-fashioned way,
290
791815
2069
ื›ืฉื ื™ืกื™ืชื™ ืœืขืฉื•ืช ืืช ื–ื” ื‘ืฉื™ื˜ื” ื”ืžื™ื•ืฉื ืช,
13:13
going out to each country,
291
793908
1279
ืœืฆืืช ืœื›ืœ ืืจืฅ ื•ืืจืฅ,
ื”ืฆืœื—ื ื• ืœื”ื’ื™ืข... ืœื ื™ื•ื“ืข,
13:15
we probably trained about 1,000 people.
292
795211
4221
ื”ื›ืฉืจื ื• ืื•ืœื™ 1,000 ืื™ืฉ.
13:19
What happened after we did this?
293
799871
1682
ืžื” ืงืจื” ืื—ืจื™ ืฉืขืฉื™ื ื• ืืช ื–ื”?
13:21
In the second three years,
294
801577
1461
ื‘-3 ื”ืฉื ื™ื ื”ื‘ืื•ืช, ื”ื™ื• ืœื ื• 14,000 ืื™ืฉ
13:23
we had 14,000 people find the website,
295
803062
2150
ืฉืžืฆืื• ืืช ื”ืืชืจ, ื ืจืฉืžื•, ื•ื”ื—ืœื• ืœื”ืฉืชืžืฉ ื‘ื• ืœืื™ืกื•ืฃ ื ืชื•ื ื™ื,
13:25
sign up and start using it to collect data:
296
805236
2113
13:27
data for disaster response,
297
807373
1910
ื ืชื•ื ื™ื ืœืžืขื ื” ื‘ืžืฆื‘ื™ ืืกื•ืŸ,
ืžื’ื“ืœื™ ื—ื–ื™ืจื™ื ืงื ื“ื™ื™ื ืฉื ื™ื”ืœื• ืžืขืงื‘ ืื—ืจื™ ืžื—ืœื•ืช ื•ืขื“ืจื™ื ืฉืœ ื—ื–ื™ืจื™ื,
13:29
Canadian pig farmers tracking pig disease and pig herds,
298
809307
4434
13:33
people tracking drug supplies.
299
813765
1881
ืื ืฉื™ื ืฉื ื™ื”ืœื• ืžืขืงื‘ ืื—ืจื™ ืžืฉืœื•ื—ื™ ืชืจื•ืคื•ืช.
13:36
One of my favorite examples, the IRC, International Rescue Committee,
300
816241
3344
ืื—ืช ื”ื“ื•ื’ืžืื•ืช ื”ืื”ื•ื‘ื•ืช ืขืœื™
ื”ื™ื ื•ืขื“ืช ื”ื”ืฆืœื” ื”ื‘ื™ื ืœืื•ืžื™ืช,
13:39
they have a program where semi-literate midwives,
301
819609
3213
ื™ืฉ ืœื”ื ืชื›ื ื™ืช ืฉื‘ื” ืžื™ื™ืœื“ื•ืช ืžืฉื›ื™ืœื•ืช ืœืžื—ืฆื”
13:42
using $10 mobile phones,
302
822846
2403
ืฉืžืฉืชืžืฉื•ืช ื‘ื˜ืœืคื•ื ื™ื ื ื™ื™ื“ื™ื ืฉืขื•ืœื™ื 10 ื“ื•ืœืจ
13:45
send a text message using our software, once a week,
303
825273
3301
ืฉื•ืœื—ื•ืช ืžืกืจื•ืŸ, ื‘ืขื–ืจืช ื”ืชื•ื›ื ื” ืฉืœื ื•,
ืื—ืช ืœืฉื‘ื•ืข, ืขื ืžืกืคืจ ื”ืœื™ื“ื•ืช
13:48
with the number of births and the number of deaths,
304
828598
2476
ื•ืžืกืคืจ ื”ืžื™ืชื•ืช, ื•ื–ื” ื ื•ืชืŸ ืœื•ื•ืขื“ืช ื”ื”ืฆืœื”
13:51
which gives IRC something that no one in global health has ever had:
305
831098
3572
ืžืฉื”ื• ืฉืœื ื”ื™ื” ืžืขื•ืœื ืœืื™ืฉ ื‘ืชื—ื•ื ื”ื‘ืจื™ืื•ืช ื”ืขื•ืœืžื™ืช:
13:54
a near-real-time system of counting babies,
306
834694
3522
ืžืขืจื›ืช ืฉืœ ื›ืžืขื˜ ื–ืžืŸ-ืืžืช ืœืกืคื™ืจืช ืชื™ื ื•ืงื•ืช,
13:58
of knowing how many kids are born,
307
838240
1634
ืฉื™ื•ื“ืขืช ื›ืžื” ืชื™ื ื•ืงื•ืช ื ื•ืœื“ื™ื,
13:59
of knowing how many children there are in Sierra Leone,
308
839898
2642
ืฉื™ื•ื“ืขืช ื›ืžื” ื™ืœื“ื™ื ื™ืฉ
ื‘ืกื™ื™ืจื” ืœืื•ื ื”, ืฉื”ื™ื ื”ืืจืฅ ืฉื‘ื” ื–ื” ืคื•ืขืœ,
14:02
which is the country where this is happening,
309
842564
2223
14:04
and knowing how many children die.
310
844811
1753
ื•ื™ื•ื“ืขืช ื›ืžื” ืชื™ื ื•ืงื•ืช ืžืชื™ื.
14:07
Physicians for Human Rights --
311
847394
1573
"ืจื•ืคืื™ื ืœืžืขืŸ ื–ื›ื•ื™ื•ืช ื”ืื“ื"--
14:08
this is moving a little bit outside the health field --
312
848991
2592
ื›ืืŸ ืื ื™ ื—ื•ืจื’ ืžืขื˜ ืžืชื—ื•ื ื”ื‘ืจื™ืื•ืช--
14:11
they're basically training people to do rape exams in Congo,
313
851607
4783
ื”ื ืื•ืกืคื™ื ื ืชื•ื ื™ื... ืขืงืจื•ื ื™ืช, ื”ื ืžื›ืฉื™ืจื™ื ืื ืฉื™ื
ืœื‘ืฆืข ื‘ื“ื™ืงื•ืช ืื•ื ืก ื‘ืงื•ื ื’ื•, ื”ื™ื›ืŸ ืฉืžื“ื•ื‘ืจ ื‘ืžื’ื™ืคื”,
14:16
where this is an epidemic,
314
856414
1449
14:17
a horrible epidemic,
315
857887
1793
ืžื’ื™ืคื” ื ื•ืจืื”,
14:19
and they're using our software to document the evidence they find,
316
859704
3176
ื•ื”ื ืžืฉืชืžืฉื™ื ื‘ืชื•ื›ื ื” ืฉืœื ื• ื›ื“ื™ ืœืชืขื“
ืืช ื”ืขื“ื•ื™ื•ืช ืฉื”ื ืžื•ืฆืื™ื, ื›ื•ืœืœ ืฆื™ืœื•ืžื™ื,
14:22
including photographically,
317
862904
1974
14:24
so that they can bring the perpetrators to justice.
318
864902
2903
ื›ื“ื™ ืฉื™ื•ื›ืœื• ืœื”ืขืžื™ื“ ืืช ื”ืคื•ืฉืขื™ื ืœืžืฉืคื˜.
14:28
Camfed, another charity based out of the UK --
319
868956
3593
"ืงืžืคื“", ืืจื’ื•ืŸ ืฆื“ืงื” ื ื•ืกืฃ ืฉื‘ืกื™ืกื• ื‘ื‘ืจื™ื˜ื ื™ื”,
14:32
Camfed pays girls' families to keep them in school.
320
872573
2713
"ืงืžืคื“" ืžืฉืœืžืช ืœืžืฉืคื—ื•ืช ืฉืœ ื ืขืจื•ืช ื›ื“ื™ ืฉื™ืžืฉื™ื›ื• ืœืœืžื•ื“.
14:36
They understand this is the most significant intervention they can make.
321
876165
3475
ื”ื ืžื‘ื™ื ื™ื ืฉื–ื• ื”ื”ืชืขืจื‘ื•ืช ื”ืžืฉืžืขื•ืชื™ืช ื‘ื™ื•ืชืจ
ืฉื”ื ื™ื›ื•ืœื™ื ืœืกืคืง. ื”ื ื ื”ื’ื• ืœืขืงื•ื‘ ืื—ืจ ื”ื”ืชืคืœื’ื•ืช,
14:39
They used to track the disbursements, the attendance, the grades, on paper.
322
879664
3840
ื”ื ื•ื›ื—ื•ืช, ื”ืฆื™ื•ื ื™ื, ืขืœ ื’ื‘ื™ ื ื™ื™ืจ.
14:43
The turnaround time between a teacher writing down grades or attendance
323
883528
3347
ื”ื–ืžืŸ ืฉืขื‘ืจ ืžืื– ืฉื”ืžื•ืจื”
ื›ืชื‘ ืืช ื”ืฆื™ื•ื ื™ื ืื• ืจืฉื ืืช ื”ื ื•ื›ื—ื•ืช
14:46
and getting that into a report was about two to three years.
324
886899
2835
ื•ืขื“ ืฉื–ื” ื”ื’ื™ืข ืœื“ื•"ื— ื”ื™ื” ื›ืฉื ืชื™ื™ื-ืฉืœื•ืฉ.
14:49
Now it's real time.
325
889758
1151
ื”ื™ื•ื ื–ื” ื‘ื–ืžืŸ ืืžืช, ืžืคื ื™ ืฉื–ื• ืžืขืจื›ืช
14:50
And because this is such a low-cost system and based in the cloud,
326
890933
3183
ื›ืœ ื›ืš ื–ื•ืœื” ื•ืžื‘ื•ืกืกืช-ืขื ืŸ, ื•ื”ื™ื ืขื•ืœื”,
14:54
it costs, for the entire five countries that Camfed runs this in,
327
894140
3989
ืœื›ืœ ื—ืžืฉ ื”ืืจืฆื•ืช ืฉ"ืงืžืคื“" ืžืคืขื™ืœื” ืื•ืชื” ื‘ื”ืŸ
ืขื ืขืฉืจื•ืช ืืœืคื™ ื‘ื ื•ืช,
14:58
with tens of thousands of girls,
328
898153
1865
ื”ืžื—ื™ืจ ื›ื•ืœื• ื”ื•ื 10,000 ื“ื•ืœืจ ื‘ืฉื ื”.
15:00
the whole cost combined is 10,000 dollars a year.
329
900042
2708
15:03
That's less than I used to get
330
903154
1961
ื–ื” ืคื—ื•ืช ืžืžื” ืฉื”ื™ื™ืชื™ ืžืงื‘ืœ
ืจืง ื‘ืฉื‘ื™ืœ ืœื ืกื•ืข ืœืฉื‘ื•ืขื™ื™ื ื›ื“ื™ ืœืกืคืง ื™ื™ืขื•ืฅ.
15:05
just traveling out for two weeks to do a consultation.
331
905139
2896
15:10
So I told you before that when we were doing it the old-fashioned way,
332
910139
3469
ื›ื‘ืจ ืืžืจืชื™ ืœื›ื ืงื•ื“ื,
ืฉื›ืฉืขืฉื™ื ื• ืืช ื–ื” ื‘ืฉื™ื˜ื” ื”ืžื™ื•ืฉื ืช, ื”ื‘ื ืชื™,
15:13
I realized all of our work was really adding up to just a drop in the bucket --
333
913632
3795
ืฉื›ืœ ื”ืขื‘ื•ื“ื” ืฉืœื ื• ื”ื™ื ื‘ืกื•ืคื• ืฉืœ ื“ื‘ืจ ื˜ื™ืคื” ื‘ื™ื--
15:17
10, 20, 30 different programs.
334
917451
1722
10, 20, 30 ืชื›ื ื™ื•ืช ืฉื•ื ื•ืช.
ืขื‘ืจื ื• ืืžื ื ื›ื‘ืจืช ื“ืจืš, ืื‘ืœ ืื ื™ ืžื›ื™ืจ ื‘ื›ืš
15:20
We've made a lot of progress,
335
920036
1413
15:21
but I recognize that right now,
336
921473
1556
ืฉื’ื ืขื›ืฉื™ื•, ืขื ื›ืœ ื”ืขื‘ื•ื“ื” ืฉืขืฉื™ื ื•,
15:23
even the work that we've done with 14,000 people using this
337
923053
3364
ื•ืขื 14,000 ื”ืื ืฉื™ื ืฉืžืฉืชืžืฉื™ื ื‘ื–ื”,
15:26
is still a drop in the bucket.
338
926441
1463
ื–ื• ืขื“ื™ื™ืŸ ื˜ื™ืคื” ื‘ื™ื. ืื‘ืœ ืžืฉื”ื• ื”ืฉืชื ื”.
15:27
But something's changed, and I think it should be obvious.
339
927928
2730
ื•ืื ื™ ื—ื•ืฉื‘ ืฉื–ื” ื‘ืจื•ืจ.
15:30
What's changed now is,
340
930682
2155
ืžื” ืฉืฉื•ื ื” ืขื›ืฉื™ื• ื”ื•ื,
15:32
instead of having a program in which we're scaling at such a slow rate
341
932861
3302
ืฉื‘ืžืงื•ื ืชื›ื ื™ืช ืฉื‘ื” ืื ื• ืžืกืชื’ืœื™ื ื‘ืื™ื˜ื™ื•ืช ื›ื–ื•,
15:36
that we can never reach all the people who need us,
342
936187
3311
ืฉืœืขื•ืœื ืœื ื ื•ื›ืœ ืœื”ื’ื™ืข ืœื›ืœ ื”ืื ืฉื™ื ืฉื–ืงื•ืงื™ื ืœื ื•,
15:39
we've made it unnecessary for people to get reached by us.
343
939522
3582
ื‘ื™ื˜ืœื ื• ืืช ื”ืชืœื•ืช ืฉืœ ื”ืื ืฉื™ื ื‘ื›ืš ืฉื ื’ื™ืข ืืœื™ื”ื.
15:43
We've created a tool that lets programs keep kids in school,
344
943128
5003
ื™ืฆืจื ื• ื›ืœื™ ืฉืžืืคืฉืจ ืœืชื›ื ื™ื•ืช
ืœื“ืื•ื’ ืฉื™ืœื“ื™ื ื™ื™ืฉืืจื• ื‘ื‘ื™ื”"ืก, ืœืขืงื•ื‘ ืื—ืจ ืžืกืคืจ ื”ืชื™ื ื•ืงื•ืช
15:48
track the number of babies that are born and the number of babies that die,
345
948155
3939
ืฉื ื•ืœื“ื™ื, ื•ืžืกืคืจ ื”ืชื™ื ื•ืงื•ืช ืฉืžืชื™ื,
15:52
catch criminals and successfully prosecute them --
346
952118
3777
ืœืœื›ื•ื“ ืคื•ืฉืขื™ื ื•ืœื”ืจืฉื™ืข ืื•ืชื ื‘ื”ืฆืœื—ื”,
15:55
to do all these different things to learn more about what's going on,
347
955919
4422
ืœืขืฉื•ืช ืืช ื›ืœ ื”ื“ื‘ืจื™ื ืฉืžืืคืฉืจื™ื ืœืœืžื•ื“ ื™ื•ืชืจ
ืขืœ ืžื” ืฉืงื•ืจื”, ืœื”ื‘ื™ืŸ ื™ื•ืชืจ, ืœืจืื•ืช ื™ื•ืชืจ,
16:00
to understand more,
348
960365
1301
16:01
to see more ...
349
961690
1316
16:03
and to save lives and improve lives.
350
963911
1905
ื•ืœื”ืฆื™ืœ ื—ื™ื™ื ื•ืœืฉืคืจ ื—ื™ื™ื.
16:07
Thank you.
351
967920
1152
ืชื•ื“ื” ืœื›ื.
16:09
(Applause)
352
969096
4269
[ืžื—ื™ืื•ืช ื›ืคื™ื™ื]
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7