Susan Solomon: The promise of research with stem cells

95,660 views ใƒป 2012-09-13

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

00:00
Translator: Joseph Geni Reviewer: Morton Bast
0
0
7000
ืžืชืจื’ื: Orr Schlesinger ืžื‘ืงืจ: Mark Freehoff
00:16
So, embryonic stem cells
1
16381
2989
ืชืื™ ื’ื–ืข ืขื•ื‘ืจื™ื™ื
00:19
are really incredible cells.
2
19370
3300
ื”ื ืชืื™ื ืžื“ื”ื™ืžื™ื.
00:22
They are our body's own repair kits,
3
22670
2788
ื”ื ืขืจื›ื•ืช ื”ืชื™ืงื•ืŸ ืฉืœ ื”ื’ื•ืฃ ืฉืœื ื•,
00:25
and they're pluripotent, which means they can morph into
4
25458
2964
ื•ื”ื ืคืœื•ืจื™ืคื•ื˜ื ื˜ื™ื, ืžื” ืฉืื•ืžืจ ืฉื”ื ื™ื›ื•ืœื™ื ืœื”ืคื•ืš
00:28
all of the cells in our bodies.
5
28422
2432
ืœื›ืœ ืชื ื‘ื’ื•ืคื™ื ื•.
00:30
Soon, we actually will be able to use stem cells
6
30854
2688
ื‘ืงืจื•ื‘, ื ื•ื›ืœ ืืคื™ืœื• ืœื”ืฉืชืžืฉ ื‘ืชืื™ ื’ื–ืข
00:33
to replace cells that are damaged or diseased.
7
33542
2985
ืขืœ ืžื ืช ืœื”ื—ืœื™ืฃ ืชืื™ื ืคื’ื•ืขื™ื ืื• ื—ื•ืœื™ื.
00:36
But that's not what I want to talk to you about,
8
36527
2431
ืื‘ืœ ื–ื” ืœื ื”ื ื•ืฉื ืฉืื ื™ ืจื•ืฆื” ืœื“ื‘ืจ ืขืœื™ื•,
00:38
because right now there are some really
9
38958
2678
ื›ื™ื•ื•ืŸ ืฉืขื›ืฉื™ื• ื™ืฉ ื›ืžื”
00:41
extraordinary things that we are doing with stem cells
10
41636
3946
ื“ื‘ืจื™ื ืžื“ื”ื™ืžื™ื ื‘ืืžืช ืฉืื ื—ื ื• ืขื•ืฉื™ื ืขื ืชืื™ ื’ื–ืข
00:45
that are completely changing
11
45582
1607
ืฉืžืฉื ื™ื ืœื—ืœื•ื˜ื™ืŸ
00:47
the way we look and model disease,
12
47189
2899
ืืช ื”ื“ืจืš ื‘ื” ืื ื• ืžืกืชื›ืœื™ื ืขืœ ืžื—ืœื•ืช ื•ืžื“ื’ื™ืžื™ื ืื•ืชื”,
00:50
our ability to understand why we get sick,
13
50088
2519
ื”ื™ื›ื•ืœืช ืฉืœื ื• ืœื”ื‘ื™ืŸ ืžื“ื•ืข ืื ื—ื ื• ื ืขืฉื™ื ื—ื•ืœื™ื,
00:52
and even develop drugs.
14
52607
2431
ื•ืืคื™ืœื• ืžืคืชื—ื™ื ืชืจื•ืคื•ืช.
00:55
I truly believe that stem cell research is going to allow
15
55038
4313
ืื ื™ ื‘ืืžืช ืžืืžื™ื ื” ืฉืžื—ืงืจ ื‘ืชืื™ ื’ื–ืข ื”ื•ืœืš ืœืืคืฉืจ
00:59
our children to look at Alzheimer's and diabetes
16
59351
4505
ืœื™ืœื“ื™ื ื• ืœื”ืกืชื›ืœ ืขืœ ืืœืฆื”ื™ื™ืžืจ, ืกื›ืจืช
01:03
and other major diseases the way we view polio today,
17
63856
4391
ื•ืžื—ืœื•ืช ื ื•ืกืคื•ืช ื‘ื“ืจืš ืฉื‘ื” ืื ื• ืžืกืชื›ืœื™ื ืขืœ ืžื—ืœืช ื”ืคื•ืœื™ื• ื›ื™ื•ื,
01:08
which is as a preventable disease.
18
68247
3201
ืฉื”ื™ื ืžื—ืœื” ืฉื ื™ืชื ืช ืœืžื ื™ืขื”.
01:11
So here we have this incredible field, which has
19
71448
3223
ืื– ื™ืฉ ืœืคื ื™ื ื• ืืช ื”ืชื—ื•ื ื”ืžื“ื”ื™ื, ืฉื™ืฉ ื‘ื•
01:14
enormous hope for humanity,
20
74671
4387
ืชืงื•ื•ื” ื’ื“ื•ืœื” ืœืื ื•ืฉื•ืช,
01:19
but much like IVF over 35 years ago,
21
79058
3520
ืื‘ืœ ืžืžืฉ ื›ืžื• ื”ืคืจื™ื™ืช ืžื‘ื—ื ื” ืœืคื ื™ ื™ื•ืชืจ ืž35 ืฉื ื”,
01:22
until the birth of a healthy baby, Louise,
22
82578
2334
ืขื“ ื”ืœื™ื“ื” ืฉืœ ืชื™ื ื•ืงืช ื‘ืจื™ืื”, ืœื•ืื™ื–,
01:24
this field has been under siege politically and financially.
23
84912
5069
ื”ืชื—ื•ื ื”ื–ื” ื”ื™ื” ืชื—ืช ืžืฆื•ืจ ืคื•ืœื™ื˜ื™ ื•ื›ืœื›ืœื™.
01:29
Critical research is being challenged instead of supported,
24
89981
4272
ืžื—ืงืจ ืงืจื™ื˜ื™ ืžืขื•ื›ื‘ ื‘ืžืงื•ื ืœืงื‘ืœ ืชืžื™ื›ื”,
01:34
and we saw that it was really essential to have
25
94253
4360
ื•ืจืื™ื ื• ืฉื–ื” ื—ื™ื•ื ื™ ืฉื™ื”ื™ื”
01:38
private safe haven laboratories where this work
26
98613
3531
ืžืคืœื˜ ืžื•ื’ืŸ ืœืžืขื‘ื“ื•ืช ื”ืœืœื• ื”ื™ื›ืŸ ืฉื”ืขื‘ื•ื“ื”
01:42
could be advanced without interference.
27
102144
2830
ื‘ื ื•ืฉื ืชื•ื›ืœ ืœื”ืžืฉื™ืš ืœืœื ื”ืคืจืขื”.
01:44
And so, in 2005,
28
104974
2531
ื‘ 2005,
01:47
we started the New York Stem Cell Foundation Laboratory
29
107505
2612
ื”ืงืžื ื• ืืช ื”ืงืจืŸ ืœืžืขื‘ื“ื” ืฉืœ ืชืื™ ื’ื–ืข ื‘ื ื™ื• ื™ื•ืจืง
01:50
so that we would have a small organization that could
30
110117
3589
ื›ื“ื™ ืฉื™ื”ื™ื” ืœื ื• ืืจื’ื•ืŸ ืงื˜ืŸ ื›ื“ื™ ืฉื ื•ื›ืœ
01:53
do this work and support it.
31
113706
3312
ืœืขืฉื•ืช ืืช ื”ืขื‘ื•ื“ื” ื”ื–ืืช ื•ืœืชืžื•ืš ื‘ื”.
01:57
What we saw very quickly is the world of both medical
32
117018
3385
ืžื” ืฉืจืื™ื ื• ืžืื•ื“ ืžื”ืจ ื–ื” ืฉืขื•ืœื ื”ืžื—ืงืจ ื”ืจืคื•ืื™
02:00
research, but also developing drugs and treatments,
33
120403
3376
ื•ื’ื ืคื™ืชื•ื— ืฉืœ ืชืจื•ืคื•ืช ื•ื˜ื™ืคื•ืœื™ื,
02:03
is dominated by, as you would expect, large organizations,
34
123779
3713
ื ืฉืœื˜, ื›ืฆืคื•ื™, ื‘ื™ื“ื™ ืืจื’ื•ื ื™ื ื’ื“ื•ืœื™ื,
02:07
but in a new field, sometimes large organizations
35
127492
3119
ืื‘ืœ ื‘ืชื—ื•ื ื—ื“ืฉ, ืœืคืขืžื™ื ืืจื’ื•ื ื™ื ื’ื“ื•ืœื™ื
02:10
really have trouble getting out of their own way,
36
130611
2168
ื ืชืงืœื™ื ื‘ื‘ืขื™ื•ืช ื›ืืฉืจ ื”ื™ื ื‘ืื™ื ืœื’ืฉืช ืืœื™ื•,
02:12
and sometimes they can't ask the right questions,
37
132779
2436
ืœืคืขืžื™ื ื”ื ืื™ื ื ืžืกื•ื’ืœื™ื ืœืฉืื•ืœ ืืช ื”ืฉืืœื•ืช ื”ื ื›ื•ื ื•ืช,
02:15
and there is an enormous gap that's just gotten larger
38
135215
3356
ื•ื™ืฉื ื• ืคืขืจ ืขืฆื•ื ืฉื”ื•ืœืš ื•ื’ื“ืœ
02:18
between academic research on the one hand
39
138571
3211
ื‘ื™ืŸ ื”ืžื—ืงืจ ื”ืืงื“ืžื™ ืžืฆื“ ืื—ื“
02:21
and pharmaceutical companies and biotechs
40
141782
2701
ื•ื—ื‘ืจื•ืช ื”ืคืจืžืฆื‘ื˜ื™ื•ืช ื•ื”ื‘ื™ื•ื˜ืง
02:24
that are responsible for delivering all of our drugs
41
144483
3266
ืฉืื—ืจืื™ื•ืช ืœื”ืขื‘ืจืช ื”ืชืจื•ืคื•ืช
02:27
and many of our treatments, and so we knew that
42
147749
2390
ื•ื”ื˜ื™ืคื•ืœื™ื ืฉืœื ื•, ื›ืš ืฉื™ื“ืขื ื•
02:30
to really accelerate cures and therapies, we were going
43
150139
3946
ืฉื›ื“ื™ ื‘ืืžืช ืœื”ืื™ืฅ ืืช ื”ื˜ื™ืคื•ืœื™ื ื”ืœืœื•, ืื ื—ื ื• ืฆืจื™ื›ื™ื
02:34
to have to address this with two things:
44
154085
2807
ืœื”ืชื™ื™ื—ืก ืœืฉื ื™ ื“ื‘ืจื™ื:
02:36
new technologies and also a new research model.
45
156892
3222
ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ื—ื“ืฉื•ืช ื•ื’ื ืžื•ื“ืœ ืžื—ืงืจื™ ื—ื“ืฉ.
02:40
Because if you don't close that gap, you really are
46
160114
3759
ื‘ื’ืœืœ ืฉืื ืœื ื ืกื’ื•ืจ ืืช ื”ืคืขืจ ื”ื–ื”, ืื ื—ื ื• ื ืฉืืจ
02:43
exactly where we are today.
47
163873
1607
ื‘ื“ื™ื•ืง ื”ื™ื›ืŸ ืฉืื ื—ื ื• ื ืžืฆืื™ื ื”ื™ื•ื.
02:45
And that's what I want to focus on.
48
165480
1667
ื•ื–ื” ืžื” ืฉืื ื™ ืจื•ืฆื” ืœื”ืชืžืงื“ ื‘ื•.
02:47
We've spent the last couple of years pondering this,
49
167147
3550
ื”ืขื‘ืจื ื• ืืช ื”ืฉื ื™ื ื”ืื—ืจื•ื ื•ืช ื‘ื”ืจื”ื•ืจื™ื ื‘ื ื•ืฉื ื”ื–ื”,
02:50
making a list of the different things that we had to do,
50
170697
2391
ืชื•ืš ื”ื›ื ืช ืจืฉื™ืžื” ืฉืœ ื“ื‘ืจื™ื ืฉืื ื—ื ื• ืฆืจื™ื›ื™ื ืœืขืฉื•ืช,
02:53
and so we developed a new technology,
51
173088
2631
ืื– ืคื™ืชื—ื ื• ื˜ื›ื ื•ืœื•ื’ื™ื” ื—ื“ืฉื”,
02:55
It's software and hardware,
52
175719
1251
ืฉื”ื™ื ื—ื•ืžืจื” ื•ืชื›ื ื”,
02:56
that actually can generate thousands and thousands of
53
176970
3503
ืฉื™ื›ื•ืœื” ืœืžืขืฉื” ืœื™ืฆื•ืจ ืืœืคื™ื ืขืœ ื’ื‘ื™ ืืœืคื™ื ืฉืœ
03:00
genetically diverse stem cell lines to create
54
180473
3170
ืงื•ื•ื™ื ืฉืœ ืชืื™ ื’ื–ืข ืฉื•ื ื™ื ืขืœ ืžื ืช ืœื™ืฆื•ืจ
03:03
a global array, essentially avatars of ourselves.
55
183643
3787
ืžืขืจืš ืขื•ืœืžื™, ืฉืœ ืœืžืขืฉื” ืื•ื•ื˜ืจื™ื ืฉืœ ืขืฆืžื™ื ื•.
03:07
And we did this because we think that it's actually going
56
187430
3434
ื•ืขืฉื™ื ื• ื–ืืช ื‘ื’ืœืœ ืฉืื ื• ื—ื•ืฉื‘ื™ื ืฉื–ื” ืžืชืงื“ื
03:10
to allow us to realize the potential, the promise,
57
190864
3415
ืœื›ื•ื•ืŸ ืฉื‘ื• ื™ืืคืฉืจื• ืœื ื• ืœื”ื’ืฉื™ื ืืช ื”ืคื•ื˜ื ืฆื™ืืœ, ื”ื”ื‘ื˜ื—ื”,
03:14
of all of the sequencing of the human genome,
58
194279
3080
ืฉื˜ืžื•ื ื” ื‘ืคืจื•ื™ื™ืงื˜ ืจื™ืฆื•ืฃ ื”ื’ื ื•ื ื”ืื ื•ืฉื™,
03:17
but it's going to allow us, in doing that,
59
197359
2504
ืื‘ืœ ื‘ื›ืš ืฉื ืขืฉื” ื–ืืช, ื–ื” ื™ืืคืฉืจ ืœื ื•
03:19
to actually do clinical trials in a dish with human cells,
60
199863
5008
ืœืขืฉื•ืช ื ื™ืกื•ื™ื™ื ืงืœื™ื ื™ื™ื ื‘ืฆืœื—ืช ืขื ืชืื™ื ืื ื•ืฉื™ื™ื,
03:24
not animal cells, to generate drugs and treatments
61
204871
4159
ืœื ืชืื™ื ืœื ืื ื•ืฉื™ื™ื, ืขืœ ืžื ืช ืœืคืชื— ืชืจื•ืคื•ืช ื•ื˜ื™ืคื•ืœื™ื
03:29
that are much more effective, much safer,
62
209030
3249
ืฉื”ื ื”ืจื‘ื” ื™ื•ืชืจ ืืคืงื˜ื™ื‘ื™ื™ื, ื‘ื˜ื•ื—ื™ื,
03:32
much faster, and at a much lower cost.
63
212279
3256
ืžื”ื™ืจื™ื ื•ื–ื•ืœื™ื ื‘ื”ืจื‘ื”.
03:35
So let me put that in perspective for you
64
215535
2384
ืื ื™ ืจื•ืฆื” ืœืฉื™ื ืืช ื–ื” ื‘ืคืจืกืคืงื˜ื™ื‘ื” ื‘ืฉื‘ื™ืœื›ื
03:37
and give you some context.
65
217919
1416
ืขืœ ืžื ืช ืœืฉื™ื ืืช ื–ื” ื‘ื”ืงืฉืจ.
03:39
This is an extremely new field.
66
219335
4832
ื–ื”ื• ืชื—ื•ื ื—ื“ืฉ ืžืื•ื“.
03:44
In 1998, human embryonic stem cells
67
224167
2832
ื‘-1998, ืชืื™ ื’ื–ืข ืขื•ื‘ืจื™ื™ื ืื ื•ืฉื™ื™ื
03:46
were first identified, and just nine years later,
68
226999
3512
ื–ื•ื”ื• ืœืจืืฉื•ื ื”, ื•ืจืง ืชืฉืข ืฉื ื™ื ืœืื—ืจ ืžื›ืŸ,
03:50
a group of scientists in Japan were able to take skin cells
69
230511
4305
ืงื‘ื•ืฆื” ืฉืœ ืžื“ืขื ื™ื ื‘ื™ืคืŸ ื™ื›ืœื• ืœืงื—ืช ืชืื™ ืขื•ืจ
03:54
and reprogram them with very powerful viruses
70
234816
3195
ื•ืœืชื›ื ืช ืื•ืชื ืžื—ื“ืฉ ื‘ืขื–ืจืช ื•ื•ื™ืจื•ืกื™ื ืขืฆืžืชื™ื™ื
03:58
to create a kind of pluripotent stem cell
71
238011
4242
ืขืœ ืžื ืช ืœื™ืฆื•ืจ ืกื•ื’ ืฉืœ ืชืื™ ื’ื–ืข ืคืœื•ืจื™ืคื•ื˜ื ื˜ื™ื
04:02
called an induced pluripotent stem cell,
72
242253
2090
ืฉื ืงืจืื™ื ืชืื™ ื’ื–ืข ืคืœื•ืจื™ืคื•ื˜ื ื˜ื™ื ืžื•ืฉืจื™ื,
04:04
or what we refer to as an IPS cell.
73
244343
3008
ืื• ืื™ืš ืฉืื ื• ืžืชื™ื™ื—ืกื™ื ืืœื™ื”ื ื‘ืงื™ืฆื•ืจ, ืชืื™ IPS.
04:07
This was really an extraordinary advance, because
74
247351
3198
ื–ืืช ื”ื™ื™ืชื” ื‘ืืžืช ื”ืชืงื“ืžื•ืช ืžื“ื”ื™ืžื”, ื›ื™ื•ื•ืŸ
04:10
although these cells are not human embryonic stem cells,
75
250549
2544
ืฉืœืžืจื•ืช ืฉืืœื” ืœื ืชืื™ ื’ื–ืข ืขื•ื‘ืจื™ื™ื ืื ื•ืฉื™ื™ื,
04:13
which still remain the gold standard,
76
253093
1794
ืฉืขื“ื™ื™ืŸ ื ืฉืืจื• ื”ืกื˜ื ื“ืจื˜ ื”ื’ื‘ื•ื”,
04:14
they are terrific to use for modeling disease
77
254887
3470
ื”ื ืžืฆื•ื™ื™ื ื™ื ืœืฉื™ืžื•ืฉ ื›ืžื•ื“ืœ ืœืžื—ืœื•ืช ืฉื•ื ื•ืช
04:18
and potentially for drug discovery.
78
258357
2730
ื•ื‘ืขืœื™ ืคื•ื˜ื ืฆื™ืืœ ืœื’ื™ืœื•ื™ ืชืจื•ืคื•ืช ื—ื“ืฉื•ืช.
04:21
So a few months later, in 2008, one of our scientists
79
261087
3040
ื›ืžื” ื—ื•ื“ืฉื™ื ืžืื•ื—ืจ ื™ื•ืชืจ, ื‘ 2008, ืื—ื“ ื”ื—ื•ืงืจื™ื ืฉืœื ื•
04:24
built on that research. He took skin biopsies,
80
264127
3200
ื”ืกืชืžืš ืขืœ ื”ืžื—ืงืจ ื”ื–ื”. ื”ื•ื ืœืงื— ืชืื™ ืขื•ืจ,
04:27
this time from people who had a disease,
81
267327
2028
ืžืื ืฉื™ื ืฉื”ื™ื• ื—ื•ืœื™ื ื‘-ALS (ื ื™ื•ื•ืŸ ืฉืจื™ืจื™ื),
04:29
ALS, or as you call it in the U.K., motor neuron disease.
82
269355
2914
ืื• ืื™ืš ืฉืงื•ืจืื™ื ืœื” ื‘ื‘ืจื™ื˜ื ื™ื”, ืžื—ืœืช ื”ืขืฆื‘ื™ื ื”ืžื•ื˜ื•ืจื™ื™ื.
04:32
He turned them into the IPS cells
83
272269
1698
ื”ื•ื ื”ืคืš ืืช ื”ืชืื™ื ืœืชืื™ IPS
04:33
that I've just told you about, and then he turned those
84
273967
2686
ืฉื‘ื“ื™ื•ืง ืกื™ืคืจืชื™ ืœื›ื ืขืœื™ื”ื, ื•ืื– ื”ื•ื ื”ืคืš ืื•ืชื
04:36
IPS cells into the motor neurons that actually
85
276653
2704
ืœืชืื™ ืขืฆื‘ ืžื•ื˜ื•ืจื™ื™ื
04:39
were dying in the disease.
86
279357
1461
ืฉื”ืฆื™ื’ื• ืชืกืžื™ื ื™ื ืฉืœ ืชืื™ื ืฉืžืชื™ื ืžื ื™ื•ื•ืŸ ืฉืจื™ืจื™ื.
04:40
So basically what he did was to take a healthy cell
87
280818
3019
ื‘ืขืงืจื•ืŸ, ืžื” ืฉืขืฉื™ื ื• ื–ื” ืœืงื—ืช ืชื ื‘ืจื™ื
04:43
and turn it into a sick cell,
88
283837
1714
ื•ื”ืคื›ื ื• ืื•ืชื• ืœืชื ื—ื•ืœื”,
04:45
and he recapitulated the disease over and over again
89
285551
3558
ื•ื”ื•ื ืฉื™ื—ื–ืจ ืืช ื”ืžื—ืœื” ืฉื•ื‘ ื•ืฉื•ื‘
04:49
in the dish, and this was extraordinary,
90
289109
3360
ื‘ืฆืœื—ืช, ื–ื” ื”ื™ื” ืžื“ื”ื™ื,
04:52
because it was the first time that we had a model
91
292469
2248
ื›ื™ื•ื•ืŸ ืฉื–ื• ื”ื™ืชื” ื”ืคืขื ื”ืจืืฉื•ื ื” ืฉื‘ื” ื”ื™ื” ืœื ื• ืžื•ื“ืœ
04:54
of a disease from a living patient in living human cells.
92
294717
4188
ืœืžื—ืœื” ืžื—ื•ืœื” ื—ื™ ื‘ืชืื™ื ืื ื•ืฉื™ื™ื ื—ื™ื™ื.
04:58
And as he watched the disease unfold, he was able
93
298905
3120
ื›ืืฉืจ ื”ื•ื ืฆืคื” ื‘ืžื—ืœื” ืžืชืงื“ืžืช, ื”ื•ื ื™ื›ืœ
05:02
to discover that actually the motor neurons were dying
94
302025
3011
ืœืจืื•ืช ืฉืœืžืขืฉื” ื”ืขืฆื‘ื™ื ื”ืžื•ื˜ื•ืจื™ื ืžืชื•
05:05
in the disease in a different way than the field
95
305036
2127
ื‘ื“ืจืš ืฉื•ื ื” ืžืžื”
05:07
had previously thought. There was another kind of cell
96
307163
2494
ืฉื—ืฉื‘ื• ืขื“ ืื–. ื”ื™ื” ืขื•ื“ ืกื•ื’ ืฉืœ ืชื
05:09
that actually was sending out a toxin
97
309657
2201
ืฉืœืžืขืฉื” ื”ืคืจื™ืฉ ืจืขืœืŸ
05:11
and contributing to the death of these motor neurons,
98
311858
2511
ืฉืชืจื ืœืžื•ืช ืชืื™ ื”ืขืฆื‘ ื”ืœืœื•,
05:14
and you simply couldn't see it
99
314369
1358
ื•ืคืฉื•ื˜ ืœื ื™ื›ืœื• ืœืจืื•ืช ื–ืืช
05:15
until you had the human model.
100
315727
1790
ืขื“ ืฉื”ื™ื” ื‘ื™ื“ื ืžื•ื“ืœ ืื ื•ืฉื™.
05:17
So you could really say that
101
317517
2667
ืžืžืฉ ืืคืฉืจ ืœื”ื’ื™ื“
05:20
researchers trying to understand the cause of disease
102
320184
3906
ืฉื—ื•ืงืจื™ื ื”ืžื ืกื™ื ืœื”ื‘ื™ืŸ ืืช ื”ื’ื•ืจื ืœืžื—ืœื”
05:24
without being able to have human stem cell models
103
324090
4152
ืžื‘ืœื™ ืœื”ื™ื•ืช ื™ื›ื•ืœื™ื ืœืขื‘ื•ื“ ืขืœ ืžื•ื“ืœ ืฉืœ ืชืื™ ื’ื–ืข ืื ื•ืฉื™ื™ื
05:28
were much like investigators trying to figure out
104
328242
2760
ื”ื ื›ืžื• ื‘ืœืฉื™ื ืฉืžื ืกื™ื ืœื”ื‘ื™ืŸ
05:31
what had gone terribly wrong in a plane crash
105
331002
3241
ืžื” ื”ื’ื•ืจื ืœื”ืชืจืกืงื•ืช ืžื˜ื•ืก ื ื•ืจืื™ืช
05:34
without having a black box, or a flight recorder.
106
334243
3997
ืžื‘ืœื™ ื™ื›ื•ืœืช ืœื”ืฉืชืžืฉ ื‘ืงื•ืคืกื” ื”ืฉื—ื•ืจื”, ืื• ื‘ืžืงืœื™ื˜ ื ืชื•ื ื™ ื”ื˜ื™ืกื”.
05:38
They could hypothesize about what had gone wrong,
107
338240
2602
ื”ื ื™ื›ื•ืœื™ื ืœื”ืขืจื™ืš ืžื” ื”ืฉืชื‘ืฉ,
05:40
but they really had no way of knowing what led
108
340842
3112
ืื‘ืœ ืื™ืŸ ืœื”ื ื“ืจืš ืœืงื‘ื•ืข ื‘ื•ื•ื“ืื•ืช ืžื” ื”ื•ื‘ื™ืœ
05:43
to the terrible events.
109
343954
2172
ืœืจืฆืฃ ื”ืื™ืจื•ืขื™ื ื”ืงื˜ืœื ื™.
05:46
And stem cells really have given us the black box
110
346126
4183
ืชืื™ ื’ื–ืข ื”ื ื›ืžื• ื”ืงื•ืคืกื” ื”ืฉื—ื•ืจื”
05:50
for diseases, and it's an unprecedented window.
111
350309
3968
ืฉืœ ืžื—ืœื•ืช, ื–ื” ืคื•ืชื— ื—ืœื•ืŸ ื—ืกืจ ืชืงื“ื™ื ืฉืœ ืืคืฉืจื•ื™ื•ืช.
05:54
It really is extraordinary, because you can recapitulate
112
354277
3245
ื–ื” ื‘ืืžืช ืžื“ื”ื™ื, ื›ื™ื•ื•ืŸ ืฉืืคืฉืจ ืœืฉื—ื–ืจ
05:57
many, many diseases in a dish, you can see
113
357522
3247
ื”ืจื‘ื” ื”ืจื‘ื” ืžื—ืœื•ืช ื‘ืฆืœื—ืช ืื—ืช, ืืคืฉืจ ืœืจืื•ืช
06:00
what begins to go wrong in the cellular conversation
114
360769
3536
ืžื” ืžืชื—ื™ืœ ืœื”ืฉืชื‘ืฉ ื‘ื“ื• ืฉื™ื— ื”ื‘ื™ืŸ-ืชืื™
06:04
well before you would ever see
115
364305
2424
ื”ืจื‘ื” ืœืคื ื™ ืฉืืคืฉืจ ืœืจืื•ืช
06:06
symptoms appear in a patient.
116
366729
2536
ืกื™ืžืคื˜ื•ืžื™ื ื‘ื’ื•ืคื• ืฉืœ ื—ื•ืœื”.
06:09
And this opens up the ability,
117
369265
2523
ื–ื” ืคื•ืชื— ื‘ืคื ื™ื ื• ืืช ื”ืืคืฉืจื•ืช,
06:11
which hopefully will become something that
118
371788
2814
ืฉื‘ืชืงื•ื•ื” ืชื”ืคื•ืš ืœืžืฉื”ื•
06:14
is routine in the near term,
119
374602
2647
ืฉื”ื•ื ืฉื™ื’ืจืชื™ ื‘ื–ืžืŸ ื”ืงืจื•ื‘,
06:17
of using human cells to test for drugs.
120
377249
4146
ืฉืœ ืฉื™ืžื•ืฉ ื‘ืชืื™ื ืื ื•ืฉื™ื™ื ืขืœ ืžื ืช ืœื‘ื—ื•ืŸ ืชืจื•ืคื•ืช.
06:21
Right now, the way we test for drugs is pretty problematic.
121
381395
5464
ื›ื™ื•ื, ื”ื“ืจืš ืฉื‘ื” ืื ื• ื‘ื•ื“ืงื™ื ืชืจื•ืคื•ืช ื”ื™ ื“ื™ื™ ื‘ืขื™ื™ืชื™ืช.
06:26
To bring a successful drug to market, it takes, on average,
122
386859
3318
ืขืœ ืžื ืช ืœื”ื’ื™ืข ืขื ืชืจื•ืคื” ื—ื“ืฉื” ืœืžืฆื‘ ืฉืืคืฉืจ ืœื”ื•ืฆื™ื ืื•ืชื” ืœืฉื•ืง, ื–ื” ืœื•ืงื— ื‘ืžืžื•ืฆืข,
06:30
13 years โ€” that's one drug โ€”
123
390177
2186
13 ืฉื ื™ื -- ืœืชืจื•ืคื” ืื—ืช --
06:32
with a sunk cost of 4 billion dollars,
124
392363
3388
ืขื 4 ืžื™ืœื™ืืจื“ ื“ื•ืœืจ ืฉื”ื•ืฉืงืขื• ื‘ื“ืจืš,
06:35
and only one percent of the drugs that start down that road
125
395751
4867
ื›ืืฉืจ ืจืง ืื—ื•ื– ืื—ื“ ืžื”ืชืจื•ืคื•ืช ืฉื”ื—ืœื• ืืช ื”ืชื”ืœื™ืš
06:40
are actually going to get there.
126
400618
2248
ื™ื’ื™ืขื• ื’ื ืœืžืฆื‘ ืฉื‘ื• ื”ืŸ ื™ื•ืฆืื•ืช ืœืฉื•ืง.
06:42
You can't imagine other businesses
127
402866
2125
ื‘ืœืชื™ ืืคืฉืจื™ ืœื“ืžื™ื™ืŸ ืขืกืง ืื—ืจ
06:44
that you would think of going into
128
404991
1449
ืฉืชืกื›ื™ื ืœื”ื™ื›ื ืก ืืœื™ื•
06:46
that have these kind of numbers.
129
406440
1755
ื›ืืฉืจ ืขื•ืžื“ื™ื ื‘ืคื ื™ืš ื”ืžืกืคืจื™ื ื”ืœืœื•.
06:48
It's a terrible business model.
130
408195
1802
ื–ื” ืžื•ื“ืœ ืขืกืงื™ ื ื•ืจืื™.
06:49
But it is really a worse social model because of
131
409997
3989
ืื‘ืœ ื–ื” ื‘ืืžืช ืžื•ื“ืœ ื—ื‘ืจืชื™ ื’ืจื•ืข ื‘ื’ืœืœ
06:53
what's involved and the cost to all of us.
132
413986
3328
ืžื” ืฉื™ื”ื™ื” ื”ืžื—ื™ืจ ืฉืœ ื–ื” ืœื’ื‘ื™ื ื•.
06:57
So the way we develop drugs now
133
417314
3752
ืื– ื”ื“ืจืš ืฉื‘ื” ืื ื• ืžืคืชื—ื™ื ืชืจื•ืคื•ืช ื›ื™ื•ื
07:01
is by testing promising compounds on --
134
421066
3200
ื”ื™ื ื ื™ืกื•ื™ ืฉืœ ืชืจื›ื•ื‘ื•ืช ืžื‘ื˜ื™ื—ื•ืช ืขืœ --
07:04
We didn't have disease modeling with human cells,
135
424266
1880
ืœื ื”ื™ื” ืœื ื• ืžื•ื“ืœ ืœืžื—ืœื•ืช ืขื ืชืื™ื ืื ื•ืฉื™ื™ื,
07:06
so we'd been testing them on cells of mice
136
426146
3464
ืื– ืื ื—ื ื• ืžื‘ืฆืขื™ื ืืช ื”ื ื™ืกื•ื™ื™ื ืขืœ ืชืื™ื ืžืขื›ื‘ืจื™ื
07:09
or other creatures or cells that we engineer,
137
429610
3667
ืื• ื™ืฆื•ืจื™ื ืื—ืจื™ื ืื• ืชืื™ื ืื—ืจื™ื ืฉืื ื• ืžื”ื ื“ืกื™ื,
07:13
but they don't have the characteristics of the diseases
138
433277
3061
ืื‘ืœ ืื™ืŸ ืœื”ื ืืช ื”ืžืืคื™ื™ื ื™ื ืฉืœ ื”ืžื—ืœื•ืช
07:16
that we're actually trying to cure.
139
436338
2336
ืฉืื ื• ืจื•ืฆื™ื ืœืžืขืฉื” ืœืจืคื.
07:18
You know, we're not mice, and you can't go into
140
438674
3046
ืืชื ืžื‘ื™ื ื™ื, ืื ื—ื ื• ืœื ืขื›ื‘ืจื™ื, ื•ืื ื—ื ื• ืœื ื™ื›ื•ืœื™ื
07:21
a living person with an illness
141
441720
2418
ืœืœื›ืช ืœืื“ื ื›ืœืฉื”ื• ืขื ื”ืžื—ืœื”
07:24
and just pull out a few brain cells or cardiac cells
142
444138
2928
ื•ืคืฉื•ื˜ ืœืฉืœื•ืฃ ื›ืžื” ืชืื™ ืžื•ื— ืื• ืชืื™ ืœื‘
07:27
and then start fooling around in a lab to test
143
447066
2289
ืขืœ ืžื ืช ืœืฉื—ืง ืื™ืชื ื‘ืžืขื‘ื“ื” ื•ืœื ืกื•ืช ืขืœื™ื”ื
07:29
for, you know, a promising drug.
144
449355
3561
ืืช ื”ืชืจื•ืคื” ื”ืžื‘ื˜ื™ื—ื” ื”ื—ื“ืฉื” ืฉืœื ื•.
07:32
But what you can do with human stem cells, now,
145
452916
3585
ืื‘ืœ ืžื” ืฉืืคืฉืจ ืœืขืฉื•ืช ื”ื™ื•ื ืขื ืชืื™ ื’ื–ืข ืื ื•ืฉื™ื™ื,
07:36
is actually create avatars, and you can create the cells,
146
456501
4337
ื”ื•ื ืœืžืขืฉื” ืœื™ืฆื•ืจ ืื•ื•ื˜ืจื™ื, ื ื™ืชืŸ ืœื™ืฆื•ืจ ืืช ื”ืชืื™ื,
07:40
whether it's the live motor neurons
147
460838
1967
ื‘ื™ืŸ ืื ื”ื ืชืื™ ืขืฆื‘ ืžื•ื˜ื•ืจื™ื™ื
07:42
or the beating cardiac cells or liver cells
148
462805
3010
ืื• ืชืื™ ืฉืจื™ืจ ืœื‘ ืคื•ืขืžื™ื ืื• ืชืื™ ื›ื‘ื“
07:45
or other kinds of cells, and you can test for drugs,
149
465815
4109
ืื• ืชืื™ื ืื—ืจื™ื, ื•ืืชื” ื™ื›ื•ืœ ืœื ืกื•ืช ืืช ื”ืชืจื•ืคื”,
07:49
promising compounds, on the actual cells
150
469924
3125
ืืช ื”ืชืจื›ื•ื‘ืช ื”ืžื‘ื˜ื™ื—ื”, ืขืœ ื”ืชืื™ื ื”ืืžื™ืชื™ื™ื
07:53
that you're trying to affect, and this is now,
151
473049
3631
ืฉืขืœื™ื”ื ืืชื” ืžื ืกื” ืœื”ืฉืคื™ืข, ื–ื” ืงื•ืจื” ืขื›ืฉื™ื•,
07:56
and it's absolutely extraordinary,
152
476680
2814
ื•ื–ื” ืžื“ื”ื™ื ื‘ื™ื•ืชืจ,
07:59
and you're going to know at the beginning,
153
479494
3156
ื•ืืชื ื™ื›ื•ืœื™ื ืœื“ืขืช ื‘ื”ืชื—ืœื”,
08:02
the very early stages of doing your assay development
154
482650
3744
ืžืžืฉ ื‘ืฉืœื‘ื™ื ื”ืจืืฉื•ื ื™ื ืฉืœ ืคื™ืชื•ื— ื”ื ื™ืกื•ื™
08:06
and your testing, you're not going to have to wait 13 years
155
486394
3389
ื•ื”ื‘ื“ื™ืงื•ืช, ื•ืœื ืชืฆื˜ืจืš ืœื—ื›ื•ืช 13 ืฉื ื™ื
08:09
until you've brought a drug to market, only to find out
156
489783
3319
ืขื“ ืœื”ื•ืฆืืช ื”ืชืจื•ืคื” ืœืฉื•ืง, ืจืง ื‘ืฉื‘ื™ืœ ืœื’ืœื•ืช
08:13
that actually it doesn't work, or even worse, harms people.
157
493102
5056
ืฉื”ื™ื ืœื ืขื•ื‘ื“ืช, ืื• ื™ื•ืชืจ ื’ืจื•ืข, ืคื•ื’ืขืช ื‘ืื ืฉื™ื.
08:18
But it isn't really enough just to look at
158
498158
4340
ืื‘ืœ ื–ื” ืœื ืžืกืคื™ืง ืœื”ืกืชื›ืœ ืจืง
08:22
the cells from a few people or a small group of people,
159
502498
3782
ืขืœ ืžืกืคืจ ืžืฆื•ืžืฆื ืฉืœ ืชืื™ื ืžืžืกืคืจ ืงื˜ืŸ ืฉืœ ื ื‘ื“ืงื™ื,
08:26
because we have to step back.
160
506280
1644
ื›ื™ื•ื•ืŸ ืฉืื ื• ืฆืจื™ื›ื™ื ืœื—ื–ื•ืจ ืœืื—ื•ืจ.
08:27
We've got to look at the big picture.
161
507924
1851
ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœื”ืกืชื›ืœ ืขืœ ื”ืชืžื•ื ื” ื”ื›ื•ืœืœืช.
08:29
Look around this room. We are all different,
162
509775
3136
ื”ืกืชื›ืœื• ื‘ืื•ืœื ืžืกื‘ื™ื‘ื›ื. ื›ื•ืœื ื• ืฉื•ื ื™ื,
08:32
and a disease that I might have,
163
512911
2740
ื•ืžื—ืœื•ืช ืฉื™ื›ื•ืœ ืœื”ื™ื•ืช ืฉื™ืฉ ืœื™,
08:35
if I had Alzheimer's disease or Parkinson's disease,
164
515651
2877
ืื ื–ื” ืืœืฆื”ื™ื™ืžืจ ืื• ืคืจืงื™ื ืกื•ืŸ,
08:38
it probably would affect me differently than if
165
518528
3766
ื›ื ืจืื” ื™ืฉืคื™ืขื• ืขืœื™ ื‘ืฆื•ืจื” ืฉื•ื ื” ืžืืฉืจ
08:42
one of you had that disease,
166
522294
1641
ื”ื™ื• ืžืฉืคื™ืขื•ืช ืขืœ ืื—ื“ ืžื›ื ืœื• ื—ืœื”,
08:43
and if we both had Parkinson's disease,
167
523935
4345
ื•ืื ืœืฉื ื™ื ื• ื™ืฉ ืคืจืงื™ื ืกื•ืŸ,
08:48
and we took the same medication,
168
528280
2268
ื•ืื ื—ื ื• ื ื™ืงื— ืืช ืื•ืชื” ื”ืชืจื•ืคื”,
08:50
but we had different genetic makeup,
169
530548
2747
ืื‘ืœ ื™ืฉ ืœื ื• ืจืงืข ื’ื ื˜ื™ ืฉื•ื ื”,
08:53
we probably would have a different result,
170
533295
2285
ืกื‘ื™ืจ ืœื”ื ื™ื— ืฉื”ืชื•ืฆืื•ืช ื™ื”ื™ื• ืฉื•ื ื•ืช,
08:55
and it could well be that a drug that worked wonderfully
171
535580
3731
ื•ืืคืฉืจื™ ื‘ื”ื—ืœื˜ ืฉืชืจื•ืคื” ืฉืชืขื‘ื•ื“ ืžืฆื•ื™ื™ืŸ
08:59
for me was actually ineffective for you,
172
539311
3579
ื‘ืฉื‘ื™ืœื™ ืชื”ื™ื” ื—ืกืจืช ืขืจืš ื‘ืฉื‘ื™ืœืš.
09:02
and similarly, it could be that a drug that is harmful for you
173
542890
4692
ื•ื‘ืื•ืคืŸ ื“ื•ืžื”, ื™ื›ื•ืœ ืœื”ื™ื•ืช ืฉื”ืชืจื•ืคื” ื™ื›ื•ืœื” ืœืคื’ื•ืข ื‘ืš,
09:07
is safe for me, and, you know, this seems totally obvious,
174
547582
4302
ื•ื‘ื˜ื•ื—ื” ืœืฉื™ืžื•ืฉ ืืฆืœื™. ื–ื” ื ืจืื” ืžื•ื‘ืŸ ืžืืœื™ื•,
09:11
but unfortunately it is not the way
175
551884
2728
ืื‘ืœ ืœืจื•ืข ื”ืžื–ืœ ื–ื• ืœื ื”ื“ืจืš
09:14
that the pharmaceutical industry has been developing drugs
176
554612
3186
ืฉื‘ื” ื—ื‘ืจื•ืช ื”ืชืจื•ืคื•ืช ืคื™ืชื—ื• ืชืจื•ืคื•ืช ืขื“ ื›ื”
09:17
because, until now, it hasn't had the tools.
177
557798
3986
ื‘ื’ืœืœ ืฉืขื“ ืขื›ืฉื™ื• ืœื ื”ื™ื• ืœื”ื ืืช ื”ื›ืœื™ื.
09:21
And so we need to move away
178
561784
2292
ืื ื›ืŸ, ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœื ื˜ื•ืฉ ืืช ื”ืจืขื™ื•ืŸ
09:24
from this one-size-fits-all model.
179
564076
2954
ืฉืœ ืžื•ื“ืœ ืื—ื“ ืฉืžืชืื™ื ืœื”ื›ืœ.
09:27
The way we've been developing drugs is essentially
180
567030
3177
ื”ื“ืจืš ืฉื‘ื” ืคื™ืชื—ื• ืชืจื•ืคื•ืช ืขื“ ื›ื” ืžืฉื•ืœื”
09:30
like going into a shoe store,
181
570207
1379
ืœื›ื ื™ืกื” ืœื—ื ื•ืช ื ืขืœื™ื™ื,
09:31
no one asks you what size you are, or
182
571586
2283
ื›ืฉืืฃ ืื—ื“ ืœื ืฉื•ืืœ ืื•ืชืš ืžื” ื”ืžื™ื“ื” ืฉืœืš, ืื•
09:33
if you're going dancing or hiking.
183
573869
2210
ืื ืืชื” ืฆืจื™ืš ื ืขืœื™ื™ื ืœืจื™ืงื•ื“ ืื• ื”ืœื™ื›ื”.
09:36
They just say, "Well, you have feet, here are your shoes."
184
576079
2808
ืคืฉื•ื˜ ืื•ืžืจื™ื ืœืš: "ืื•ืงื™ื™, ื™ืฉ ืœืš ืจื’ืœื™ื™ื, ื”ื ื” ื”ื ืขืœื™ื™ื ืฉืœืš."
09:38
It doesn't work with shoes, and our bodies are
185
578887
3600
ื–ื” ืœื ืขื•ื‘ื“ ื›ืš ื‘ื ืขืœื™ื™ื, ื•ื’ื•ืคื™ื ื• ื”ื•ื
09:42
many times more complicated than just our feet.
186
582487
3472
ืžื•ืจื›ื‘ ื”ืจื‘ื” ื™ื•ืชืจ ืžืืฉืจ ืจืง ื”ืจื’ืœื™ื™ื ืฉืœื ื•.
09:45
So we really have to change this.
187
585959
2541
ืื– ื›ืืŸ ื—ื™ื™ื‘ ืœื‘ื•ื ื”ืฉื™ื ื•ื™.
09:48
There was a very sad example of this in the last decade.
188
588500
5184
ื”ื™ืชื” ื“ื•ื’ืžื ืžืื•ื“ ืขืฆื•ื‘ื” ืœื›ืš ื‘ืขืฉื•ืจ ื”ืื—ืจื•ืŸ.
09:53
There's a wonderful drug, and a class of drugs actually,
189
593684
2648
ื™ืฉื ื” ืชืจื•ืคื” ืžื“ื”ื™ืžื”, ืงื‘ื•ืฆืช ืชืจื•ืคื•ืช ืœืžืขืŸ ื”ืืžืช,
09:56
but the particular drug was Vioxx, and
190
596332
2680
ืื‘ืœ ื”ืชืจื•ืคื” ื”ืžืกื•ื™ื™ืžืช ื”ื™ื™ืชื” ื•ื™ื•ืงืก (Vioxx),
09:59
for people who were suffering from severe arthritis pain,
191
599012
4376
ื•ื‘ืฉื‘ื™ืœ ืื ืฉื™ื ืฉื—ื•ื• ื›ืื‘ื™ื ื—ื–ืงื™ื ื›ืชื•ืฆืื” ืžื“ืœืงืช ืคืจืงื™ื,
10:03
the drug was an absolute lifesaver,
192
603388
3392
ื”ืชืจื•ืคื” ื”ื™ืชื” ืžืžืฉ ืžืฆื™ืœืช ื—ื™ื™ื,
10:06
but unfortunately, for another subset of those people,
193
606780
5080
ืื‘ืœ ืœืจื•ืข ื”ืžื–ืœ, ืœืงื‘ื•ืฆื” ืื—ืจืช ืฉืœ ืื ืฉื™ื,
10:11
they suffered pretty severe heart side effects,
194
611860
4769
ื”ื™ื• ืชื•ืคืขื•ืช ืœื•ื•ืื™ ืœื‘ื‘ื™ื•ืช ืงืฉื•ืช,
10:16
and for a subset of those people, the side effects were
195
616629
2728
ื•ืืฆืœ ื—ืœืง ืžื”ืื ืฉื™ื ื”ืœืœื•, ืชื•ืคืขื•ืช ื”ืœื•ื•ืื™
10:19
so severe, the cardiac side effects, that they were fatal.
196
619357
3897
ื”ื™ื• ื›ืœ ื›ืš ืงืฉื•ืช, ืฉื”ืŸ ื”ื™ื• ืืคื™ืœื• ืงื˜ืœื ื™ื•ืช.
10:23
But imagine a different scenario,
197
623254
4042
ื“ืžื™ื™ื ื• ืชืกืจื™ื˜ ืฉื•ื ื”,
10:27
where we could have had an array, a genetically diverse array,
198
627296
4302
ืฉื‘ื• ื™ืฉ ืœื ื• ืžืขืจืš ืฉื•ื ื•ืช ื’ื ื˜ื™ืช,
10:31
of cardiac cells, and we could have actually tested
199
631598
3626
ืฉืœ ืชืื™ ืœื‘ ืฉื•ื ื™ื, ืฉืื ื—ื ื• ื™ื›ื•ืœื ื• ืœื‘ืฆืข ืืช ื”ื‘ื“ื™ืงื•ืช
10:35
that drug, Vioxx, in petri dishes, and figured out,
200
635224
5081
ืฉืœ ื•ื™ื•ืงืก ืขืœื™ื”ื, ื‘ืฆืœื—ืช ืคื˜ืจื™, ื•ืœื’ืœื•ืช,
10:40
well, okay, people with this genetic type are going to have
201
640305
3744
ืฉืื ืฉื™ื ืขื ืžืืคื™ื™ื ื™ื ื’ื ื˜ื™ื ืžืกื•ื™ื™ืžื™ื ื™ืกื‘ืœื•
10:44
cardiac side effects, people with these genetic subgroups
202
644049
5000
ืžืชื•ืคืขื•ืช ืœื•ื•ืื™ ืœื‘ื‘ื™ื•ืช ื›ืืœื”, ื•ืื ืฉื™ื ืขื ืžืืคื™ื™ื ื™ื ื’ื ื˜ื™ื™ื ืื—ืจื™ื
10:49
or genetic shoes sizes, about 25,000 of them,
203
649049
5144
ืื• "ืžื™ื“ืช ื ืขืœื™ื™ื" ื’ื ื˜ื™ืช ืื—ืจืช, ื‘ืขืจืš 25,000 ื›ืืœื”,
10:54
are not going to have any problems.
204
654193
2760
ืœื ื™ืกื‘ืœื• ืžื‘ืขื™ื•ืช ื›ืœืœ.
10:56
The people for whom it was a lifesaver
205
656953
2615
ื”ืื ืฉื™ื ืฉื‘ืฉื‘ื™ืœื ื”ืชืจื•ืคื” ื”ื™ืชื” ืžืฆื™ืœืช ื—ื™ื™ื
10:59
could have still taken their medicine.
206
659568
1677
ืขื“ื™ื™ืŸ ื™ื›ืœื• ืœื”ืžืฉื™ืš ืœืงื‘ืœ ืืช ื”ืชืจื•ืคื”.
11:01
The people for whom it was a disaster, or fatal,
207
661245
4386
ื”ืื ืฉื™ื ืฉื‘ืฉื‘ื™ืœื ื”ืชืจื•ืคื” ื”ื™ื ื‘ืขืœืช ืชื•ืคืขื•ืช ืฉืœื™ืœื™ื•ืช ืื• ืงื˜ืœื ื™ื•ืช,
11:05
would never have been given it, and
208
665631
2091
ืœืขื•ืœื ืœื ื”ื™ื• ืžืงื‘ืœื™ื ืืช ื”ืชืจื•ืคื”,
11:07
you can imagine a very different outcome for the company,
209
667722
2583
ื›ืš ืฉืืชื ื™ื›ื•ืœื™ื ืœื“ืžื™ื™ืŸ ืืช ื”ืชื•ืฆืื” ื”ืฉื•ื ื” ื‘ืชื›ืœื™ืช ืขื‘ื•ืจ ื”ื—ื‘ืจื”,
11:10
who had to withdraw the drug.
210
670305
2768
ืฉื”ื™ืชื” ืฆืจื™ื›ื” ืœื”ืคืกื™ืง ืืช ื™ื™ืฆื•ืจ ื”ืชืจื•ืคื”.
11:13
So that is terrific,
211
673073
2816
ืื– ื–ื” ืžืฆื•ื™ื™ืŸ,
11:15
and we thought, all right,
212
675889
1834
ื•ื—ืฉื‘ื ื•, ื˜ื•ื‘, ื‘ืกื“ืจ,
11:17
as we're trying to solve this problem,
213
677723
2759
ื”ื™ื•ืช ืฉืื ื• ืžื ืกื™ื ืœืคืชื•ืจ ืืช ื”ื‘ืขื™ื” ื”ื–ื•,
11:20
clearly we have to think about genetics,
214
680482
2197
ืื ื—ื ื• ืœืœื ืกืคืง ืฆืจื™ื›ื™ื ืœื—ืฉื•ื‘ ืขืœ ื’ื ื˜ื™ืงื”,
11:22
we have to think about human testing,
215
682679
2834
ืื ื• ืฆืจื™ื›ื™ื ืœื—ืฉื•ื‘ ืขืœ ื‘ื“ื™ืงืช ืื ืฉื™ื,
11:25
but there's a fundamental problem,
216
685513
1579
ืื‘ืœ ื™ืฉ ื‘ืขื™ื” ื‘ืกื™ืกื™ืช,
11:27
because right now, stem cell lines,
217
687092
2699
ื›ื™ื•ื•ืŸ ืฉื ื›ื•ืŸ ืœืขื›ืฉื™ื•, ืงื•ื•ื™ื ืฉืœ ืชืื™ ื’ื–ืข,
11:29
as extraordinary as they are,
218
689791
1710
ืžื“ื”ื™ืžื™ื ื›ื›ืœ ืฉื™ื”ื™ื•,
11:31
and lines are just groups of cells,
219
691501
1744
ืงื•ื•ื™ื ื”ื ื‘ืกืš ื”ื›ืœ ืงื‘ื•ืฆื•ืช ืฉืœ ืชืื™ื,
11:33
they are made by hand, one at a time,
220
693245
4332
ืžื›ื™ื ื™ื ืื•ืชื ื‘ื™ื“, ื›ืœ ืื—ื“ ื‘ืชื•ืจื•,
11:37
and it takes a couple of months.
221
697577
2224
ื•ื–ื” ืœื•ืงื— ืžืกืคืจ ื—ื•ื“ืฉื™ื.
11:39
This is not scalable, and also when you do things by hand,
222
699801
4366
ื–ื” ืœื ื ื™ืชืŸ ืœื‘ื™ืฆื•ืข ื‘ืงื ื” ืžื™ื“ื” ื’ื“ื•ืœ ื™ื•ืชืจ, ื‘ื ื•ืกืฃ, ื›ืืฉืจ ืขื•ืฉื ื“ื‘ืจื™ื ื‘ืฆื•ืจื” ื™ื“ื ื™ืช,
11:44
even in the best laboratories,
223
704167
1543
ืืคื™ืœื• ื‘ืžืขื‘ื“ื•ืช ื”ื˜ื•ื‘ื•ืช ื‘ื™ื•ืชืจ,
11:45
you have variations in techniques,
224
705710
3161
ื™ืฉ ื”ื‘ื“ืœื™ื ื‘ื˜ื›ื ื™ืงื•ืช,
11:48
and you need to know, if you're making a drug,
225
708871
3181
ื•ืืชื” ืฆืจื™ืš ืœื“ืขืช, ืื ืืชื” ืžื›ื™ืŸ ืชืจื•ืคื”,
11:52
that the Aspirin you're going to take out of the bottle
226
712052
1898
ืฉื”ืืกืคื™ืจื™ืŸ ืฉืืชื” ื”ื•ืœืš ืœื”ื•ืฆื™ื ืžื”ื‘ืงื‘ื•ืง
11:53
on Monday is the same as the Aspirin
227
713950
2440
ื‘ื™ื•ื ืฉื ื™, ื–ื”ื” ืœืืกืคื™ืจื™ืŸ
11:56
that's going to come out of the bottle on Wednesday.
228
716390
2081
ืฉื”ื•ืœืš ืœืฆืืช ืžื”ื‘ืงื‘ื•ืง ื‘ื™ื•ื ืจื‘ื™ืขื™.
11:58
So we looked at this, and we thought, okay,
229
718471
3791
ืื– ื”ืกืชื›ืœื ื• ืขืœ ื–ื”, ื•ื—ืฉื‘ื ื•, ืื•ืงื™ื™,
12:02
artisanal is wonderful in, you know, your clothing
230
722262
3152
ืขื‘ื•ื“ืช ื™ื“ ื”ื™ื ื“ื‘ืจ ืžืฆื•ื™ื™ืŸ, ืืชื ื™ื•ื“ืขื™ื, ื‘ื‘ื’ื“ื™ื ืฉืœื›ื,
12:05
and your bread and crafts, but
231
725414
2944
ื‘ืœื—ื ื•ื‘ื™ืฆื™ืจื•ืช ืืžื ื•ืช, ืื‘ืœ
12:08
artisanal really isn't going to work in stem cells,
232
728358
2983
ืขื‘ื•ื“ืช ื™ื“ ืœื ืžืžืฉ ื”ื•ืœื›ืช ืœืขื‘ื•ื“ ื‘ื”ืงืฉืจ ืฉืœ ืชืื™ ื’ื–ืข,
12:11
so we have to deal with this.
233
731341
2390
ื•ืขืœื™ื ื• ืœื”ืชืžื•ื“ื“ ืขื ื”ืขื•ื‘ื“ื” ื”ื–ื•.
12:13
But even with that, there still was another big hurdle,
234
733731
3920
ื•ืขื ื–ืืช, ืขื“ื™ื™ืŸ ื™ืฉื ื” ืžืฉื•ื›ื” ื’ื“ื•ืœื” ื ื•ืกืคืช,
12:17
and that actually brings us back to
235
737651
3564
ื•ื–ื” ืžื‘ื™ื ืื•ืชื ื• ื—ื–ืจื”
12:21
the mapping of the human genome, because
236
741215
2384
ืœืžื™ืคื•ื™ ื”ื’ื ื•ื ื”ืื ื•ืฉื™, ื‘ื’ืœืœ
12:23
we're all different.
237
743599
2711
ืฉื›ื•ืœื ื• ืฉื•ื ื™ื ืื—ื“ ืžืจืขื™ื”ื•.
12:26
We know from the sequencing of the human genome
238
746310
2832
ืื ื• ื™ื•ื“ืขื™ื ืžืจื™ืฆื•ืฃ ื”ื’ื ื•ื ื”ืื ื•ืฉื™
12:29
that it's shown us all of the A's, C's, G's and T's
239
749142
2557
ืฉื”ืจืื” ืœื ื• ืืช ื›ืœ ื”A,C,G ื• T
12:31
that make up our genetic code,
240
751699
2468
ืฉืžืจื›ื™ื‘ื™ื ืืช ื”ืงื•ื“ ื”ื’ื ื˜ื™ ืฉืœื ื•,
12:34
but that code, by itself, our DNA,
241
754167
4269
ืื‘ืœ ื”ืงื•ื“ ื”ื–ื”, ื‘ืคื ื™ ืขืฆืžื•, ื” DNA ืฉืœื ื•,
12:38
is like looking at the ones and zeroes of the computer code
242
758436
4599
ื–ื” ื›ืžื• ืœื”ืกืชื›ืœ ืขืœ ื”-1 ื•ื”-0 ื‘ืงื•ื“ ืฉืœ ืžื—ืฉื‘
12:43
without having a computer that can read it.
243
763035
2825
ืœืœื ืืคืฉืจื•ืช ืœืงื—ืช ืžื—ืฉื‘ ืฉื™ื•ื“ืข ืœืงืจื•ื ืื•ืชื•.
12:45
It's like having an app without having a smartphone.
244
765860
3288
ื–ื” ื›ืžื• ืฉื™ื”ื™ื” ืœืš ืืคืœื™ืงืฆื™ื” ื‘ืœื™ ืฉื™ื”ื™ื” ืœืš ื˜ืœืคื•ืŸ ื—ื›ื.
12:49
We needed to have a way of bringing the biology
245
769148
3884
ืื ื—ื ื• ืฆืจื™ื›ื™ื ืฉืชื”ื™ื” ืœื ื• ื”ืืคืฉืจื•ืช ืœื”ื•ืฆื™ื ืืช ื”ื‘ื™ื•ืœื•ื’ื™ื”
12:53
to that incredible data,
246
773032
2209
ืžืชื•ืš ื”ืžื™ื“ืข ื”ืจื‘ ื”ื–ื”,
12:55
and the way to do that was to find
247
775241
3115
ื•ื”ื“ืจืš ืœืขืฉื•ืช ื–ืืช ื”ื™ื ืœืžืฆื•ื
12:58
a stand-in, a biological stand-in,
248
778356
2687
ืคืœื˜ืคื•ืจืžื”, ืคืœื˜ืคื•ืจืžื” ื‘ื™ื•ืœื•ื’ื™ืช,
13:01
that could contain all of the genetic information,
249
781043
4025
ืฉื™ื›ื•ืœื” ืœื”ื›ื™ืœ ืืช ื›ืœ ื”ืžื™ื“ืข ื”ื’ื ื˜ื™ ื”ื–ื”,
13:05
but have it be arrayed in such a way
250
785068
2528
ื›ืš ืฉื™ื”ื™ื” ืžืกื•ื“ืจ ื‘ืžื™ืŸ ืžืขืจืš
13:07
as it could be read together
251
787596
2864
ืฉืื•ืชื• ื ื•ื›ืœ ืœืงืจื•ื
13:10
and actually create this incredible avatar.
252
790460
3256
ื•ื‘ื›ืš ืœื™ืฆื•ืจ ืืช ืื•ืชื• ื”ื”ื’ืฉืžื” ื”ื–ืืช.
13:13
We need to have stem cells from all the genetic sub-types
253
793716
3704
ืื ื—ื ื• ืฆืจื™ื›ื™ื ืฉื™ื”ื™ื• ืœื ื• ืชืื™ ื’ื–ื” ืžื›ืœ ืชืชื™ ื”ืกื•ื’ื™ื ื”ื’ื ื˜ื™ื™ื
13:17
that represent who we are.
254
797420
2952
ืฉืžื™ื™ืฆื’ื™ื ืืช ืžื” ืฉืื ื—ื ื•.
13:20
So this is what we've built.
255
800372
2760
ืื– ื–ื” ืžื” ืฉื‘ื ื™ื ื•.
13:23
It's an automated robotic technology.
256
803132
3320
ื–ื• ื˜ื›ื ื•ืœื•ื’ื™ื” ืจื•ื‘ื•ื˜ื™ืช ืื•ื˜ื•ืžื˜ื™ืช.
13:26
It has the capacity to produce thousands and thousands
257
806452
2608
ื™ืฉ ืœื” ืืช ื”ื™ื›ื•ืœืช ืœื™ื™ืฆืจ ืืœืคื™
13:29
of stem cell lines. It's genetically arrayed.
258
809060
4239
ืงื•ื•ื™ื ืฉืœ ืชืื™ ื’ื–ืข. ื”ื ืžืกื•ื“ืจื™ื ื‘ืžืขืจืš ื’ื ื˜ื™.
13:33
It has massively parallel processing capability,
259
813299
3749
ื™ืฉ ืœื• ื™ื›ื•ืœืช ืขื™ื‘ื•ื“ ืฉืœ ืžืกืคืจ ืจื‘ ืฉืœ ืžื˜ืœื•ืช ื‘ื• ื–ืžื ื™ืช,
13:37
and it's going to change the way drugs are discovered,
260
817048
3320
ื•ื”ื•ื ื”ื•ืœืš ืœืฉื ื•ืช ืืช ื”ื“ืจืš ืฉื‘ื” ืžื’ืœื™ื ืชืจื•ืคื•ืช ื—ื“ืฉื•ืช,
13:40
we hope, and I think eventually what's going to happen
261
820368
3835
ืื ื• ืžืงื•ื•ื™ื, ื•ืื ื™ ื—ื•ืฉื‘ืช ืฉืžื” ืฉื™ืงืจื” ื‘ืกื•ืฃ
13:44
is that we're going to want to re-screen drugs,
262
824203
2199
ื–ื” ืฉื ืจืฆื” ืœืกืจื•ืง ืžื—ื“ืฉ ืชืจื•ืคื•ืช,
13:46
on arrays like this, that already exist,
263
826402
2491
ืขืœ ืžืขืจื›ื™ื ื›ืืœื”, ืฉื›ื‘ืจ ืงื™ื™ืžื•ืช,
13:48
all of the drugs that currently exist,
264
828893
1871
ื›ืœ ื”ืชืจื•ืคื•ืช ืฉื›ื‘ืจ ืงื™ื™ืžื•ืช,
13:50
and in the future, you're going to be taking drugs
265
830764
2911
ื•ื‘ืขืชื™ื“, ืืชื ื”ื•ืœื›ื™ื ืœื”ืฉืชืžืฉ ื‘ืชืจื•ืคื•ืช
13:53
and treatments that have been tested for side effects
266
833675
2872
ื•ื‘ื˜ื™ืคื•ืœื™ื ืฉื ื‘ื“ืงื• ืœื”ืžืฆืื•ืช ืชื•ืคืขื•ืช ืœื•ื•ืื™
13:56
on all of the relevant cells,
267
836547
2303
ืขืœ ื›ืœ ื”ืชืื™ื ื”ืจืœื•ื•ื ื˜ื™ื,
13:58
on brain cells and heart cells and liver cells.
268
838850
3153
ืขืœ ืชืื™ ืžื—, ืชืื™ ืœื‘ ื•ืชืื™ ื›ื‘ื“.
14:02
It really has brought us to the threshold
269
842003
3329
ื–ื” ื‘ืืžืช ื”ื‘ื™ื ืื•ืชื ื• ืœืกืฃ
14:05
of personalized medicine.
270
845332
2214
ืฉืœ ืจืคื•ืื” ืื™ืฉื™ืช.
14:07
It's here now, and in our family,
271
847546
4441
ื–ื” ื›ืืŸ ืขื›ืฉื™ื•, ื•ื‘ืžืฉืคื—ื” ืฉืœื ื•,
14:11
my son has type 1 diabetes,
272
851987
2938
ืœื‘ืŸ ืฉืœื™ ื™ืฉ ืกื›ืจืช ื ืขื•ืจื™ื,
14:14
which is still an incurable disease,
273
854925
2648
ืฉื”ื™ื ืขื“ื™ื™ืŸ ืžื—ืœื” ื—ืฉื•ื›ืช ืžืจืคื,
14:17
and I lost my parents to heart disease and cancer,
274
857573
3442
ื•ืื ื™ ืื™ื‘ื“ืชื™ ืืช ื”ื•ืจื™ื™ ืœืžื—ืœื•ืช ืœื‘ ื•ืกืจื˜ืŸ,
14:21
but I think that my story probably sounds familiar to you,
275
861015
3733
ืื‘ืœ ืื ื™ ื—ื•ืฉื‘ืช ืฉื”ืกื™ืคื•ืจ ืฉืœื™ ื ืฉืžืข ืžื•ื›ืจ ืœื›ื,
14:24
because probably a version of it is your story.
276
864748
4230
ื›ื™ื•ื•ืŸ ืฉื’ื™ืจืกื” ื˜ื™ืคื” ืฉื•ื ื” ืฉืœื• ื”ื™ื ื”ืกื™ืคื•ืจ ืฉืœื›ื.
14:28
At some point in our lives, all of us,
277
868978
3944
ื‘ื ืงื•ื“ื” ื›ืœืฉื”ื™ ื‘ื—ื™ื™ื ื•, ืฉืœ ื›ื•ืœื ื•,
14:32
or people we care about, become patients,
278
872922
2736
ืื• ื‘ื—ื™ื™ื”ื ืฉืœ ืื ืฉื™ื ืฉืงืจื•ื‘ื™ื ืืœื™ื ื•, ืื ื• ื”ื•ืคื›ื™ื ืœืคืฆื™ื™ื ื˜ื™ื,
14:35
and that's why I think that stem cell research
279
875658
2609
ื•ืœื›ืŸ ืื ื™ ื—ื•ืฉื‘ืช ืฉืžื—ืงืจ ื‘ืชืื™ ื’ื–ืข
14:38
is incredibly important for all of us.
280
878267
3383
ื—ืฉื•ื‘ ืžืื•ื“ ืœื›ื•ืœื ื•.
14:41
Thank you. (Applause)
281
881650
3668
ืชื•ื“ื” ืจื‘ื”. (ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
14:45
(Applause)
282
885318
7108
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7