Susan Solomon: The promise of research with stem cells

95,334 views ใƒป 2012-09-13

TED


์•„๋ž˜ ์˜๋ฌธ์ž๋ง‰์„ ๋”๋ธ”ํด๋ฆญํ•˜์‹œ๋ฉด ์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค.

00:00
Translator: Joseph Geni Reviewer: Morton Bast
0
0
7000
๋ฒˆ์—ญ: K Bang ๊ฒ€ํ† : Minjung (MJ) Cha
00:16
So, embryonic stem cells
1
16381
2989
ํƒœ์•„์˜ ์ค„๊ธฐ ์„ธํฌ๋Š”
00:19
are really incredible cells.
2
19370
3300
์ •๋ง ๋†€๋ผ์šด ์„ธํฌ์ž…๋‹ˆ๋‹ค.
00:22
They are our body's own repair kits,
3
22670
2788
์ด ์„ธํฌ๋“ค์€ ์šฐ๋ฆฌ ๋ชธ์•ˆ์— ์žˆ๋Š” ์ˆ˜์„  ๋„๊ตฌ ๊ฐ™์ฃ .
00:25
and they're pluripotent, which means they can morph into
4
25458
2964
์ด ์„ธํฌ๋Š” ๋‹ค์–‘ํ•œ ์ž ์žฌ ๊ธฐ๋Šฅ์„ ์ง€๋‹ˆ๊ณ  ์žˆ์–ด์„œ
00:28
all of the cells in our bodies.
5
28422
2432
์šฐ๋ฆฌ ๋ชธ์˜ ๋ชจ๋“  ์„ธํฌ ํ˜•ํƒœ๋กœ ๋ณ€์ดํ•ฉ๋‹ˆ๋‹ค.
00:30
Soon, we actually will be able to use stem cells
6
30854
2688
์กฐ๋งŒ๊ฐ„ ์šฐ๋ฆฌ๋Š” ์ค„๊ธฐ ์„ธํฌ๋ฅผ ์ด์šฉํ•˜์—ฌ
00:33
to replace cells that are damaged or diseased.
7
33542
2985
์ƒ์ฒ˜์ž…๊ฑฐ๋‚˜ ๋ณ‘๋“  ์„ธํฌ๋ฅผ ๊ต์ฒดํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
00:36
But that's not what I want to talk to you about,
8
36527
2431
ํ•˜์ง€๋งŒ, ์ด๊ฒƒ์ด ์ œ๊ฐ€ ์˜ค๋Š˜ ๋ง์”€๋“œ๋ฆด ๋‚ด์šฉ์€ ์•„๋‹ˆ์—์š”.
00:38
because right now there are some really
9
38958
2678
์˜ค๋Š˜์€ ์ค„๊ธฐ ์„ธํฌ๋ฅผ ๊ฐ€์ง€๊ณ  ํ•  ์ˆ˜ ์žˆ๋Š”
00:41
extraordinary things that we are doing with stem cells
10
41636
3946
๋งค์šฐ ํŠน๋ณ„ํ•œ ๊ฒƒ์— ๋Œ€ํ•ด ๋ง์”€๋“œ๋ฆฌ๋ ค ํ•ฉ๋‹ˆ๋‹ค.
00:45
that are completely changing
11
45582
1607
๊ทธ๊ฒƒ์€ ์šฐ๋ฆฌ๊ฐ€ ์งˆ๋ณ‘์— ๋Œ€ํ•ด ์ƒ๊ฐํ•˜๋Š” ๋ฐฉ์‹๊ณผ
00:47
the way we look and model disease,
12
47189
2899
๋ชจ๋ธ ์‚ผ๋Š” ํŒจ๋Ÿฌ๋‹ค์ž„์„ ์™„์ „ํžˆ ๋ฐ”๊พธ๊ฒŒ ๋  ๊ฒƒ ์ž…๋‹ˆ๋‹ค.
00:50
our ability to understand why we get sick,
13
50088
2519
์ด์— ๋”ฐ๋ผ ์šฐ๋ฆฌ๊ฐ€ ์™œ ๋ณ‘์— ๊ฑธ๋ฆฌ๋Š”์ง€ ์ดํ•ดํ•˜๊ณ ,
00:52
and even develop drugs.
14
52607
2431
์‹ฌ์ง€์–ด ์•ฝ์„ ๊ฐœ๋ฐœํ•˜๋Š” ๋ฐฉ์‹๋„ ์™„์ „ํžˆ ๋ฐ”๊พธ์–ด ๋†“์„ ๊ฑฐ์—์š”.
00:55
I truly believe that stem cell research is going to allow
15
55038
4313
์ €๋Š” ์ค„๊ธฐ ์„ธํฌ ์—ฐ๊ตฌ ๋•๋ถ„์—
00:59
our children to look at Alzheimer's and diabetes
16
59351
4505
์šฐ๋ฆฌ ์•„์ด๋“ค ์„ธ๋Œ€์—๋Š” ์•Œ์ธ ํ•˜์ด๋จธ๋‚˜ ๋‹น๋‡จ ๊ฐ™์€
01:03
and other major diseases the way we view polio today,
17
63856
4391
์ฃผ์š” ์งˆ๋ณ‘๋„ ์˜ค๋Š˜๋‚  ์šฐ๋ฆฌ๊ฐ€ ์†Œ์•„๋งˆ๋น„๋ฅผ ๋ณด๋“ฏ ์—ฌ๊ธฐ๊ฒŒ ๋ ๊ฑฐ๋ผ ๋ฏฟ์Šต๋‹ˆ๋‹ค.
01:08
which is as a preventable disease.
18
68247
3201
์†Œ์•„๋งˆ๋น„๋Š” ์˜ˆ๋ฐฉ ๊ฐ€๋Šฅํ•œ ๋ณ‘์ด๊ฑฐ๋“ ์š”.
01:11
So here we have this incredible field, which has
19
71448
3223
์ด์ œ ์—ฌ๊ธฐ ์ธ๋ฅ˜์—๊ฒŒ ์—„์ฒญ๋‚œ ํฌ๋ง์„ ๊ฐ€์ ธ๋‹ค ์ค„
01:14
enormous hope for humanity,
20
74671
4387
๋†€๋ผ์šด ๋ถ„์•ผ๋ฅผ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค.
01:19
but much like IVF over 35 years ago,
21
79058
3520
ํ•˜์ง€๋งŒ ์ด๊ฑด ๋งˆ์น˜ 35๋…„์ „, ๋ฃจ์ด์Šค๋ผ๋Š” ์•„๊ธฐ๊ฐ€ ์ฒด์™ธ ์ˆ˜์ •์„ ํ†ตํ•ด ๊ฑด๊ฐ•ํ•˜๊ฒŒ ํƒœ์–ด๋‚˜๊ธฐ๊นŒ์ง€
01:22
until the birth of a healthy baby, Louise,
22
82578
2334
IVF(์ฒด์™ธ์ˆ˜์ •)์— ๊ด€ํ•œ ๋…ผ๋ž€์ด ์ปธ๋˜ ํ˜„์ƒ๊ณผ ๋น„์Šทํ•œ๋ฐ์š”,
01:24
this field has been under siege politically and financially.
23
84912
5069
์ฒด์™ธ ์ˆ˜์ • ๋ฌธ์ œ๋Š” ์ •์น˜์™€ ์žฌ์ •์ ์ธ ๋ฉด์—์„œ ์ง‘์ค‘์ ์ธ ๊ณต๊ฒฉ์„ ๋ฐ›์•˜์—ˆ์ฃ .
01:29
Critical research is being challenged instead of supported,
24
89981
4272
์ค‘์š”ํ•˜๊ณ  ํ˜์‹ ์ ์ธ ์—ฐ๊ตฌ๋Š” ์ง€์›๋ณด๋‹ค๋Š” ๊ณต๊ฒฉ์„ ๋ฐ›๊ณค ํ•ฉ๋‹ˆ๋‹ค.
01:34
and we saw that it was really essential to have
25
94253
4360
์šฐ๋ฆฌ๋Š” ์ด๋Ÿฐ ์—ฐ๊ตฌ๊ฐ€ ๋ฐฉํ•ด๋ฐ›์ง€ ์•Š๊ณ 
01:38
private safe haven laboratories where this work
26
98613
3531
์ง„ํ–‰๋  ์ˆ˜ ์žˆ๋Š” ์•ˆ์ „ํ•œ ์‚ฌ์„ค ์‹คํ—˜์‹ค์ด
01:42
could be advanced without interference.
27
102144
2830
ํ•„์ˆ˜์ ์ด๋ž€๊ฑธ ๋Š๊ผˆ์Šต๋‹ˆ๋‹ค.
01:44
And so, in 2005,
28
104974
2531
๊ทธ๋ž˜์„œ 2005๋…„
01:47
we started the New York Stem Cell Foundation Laboratory
29
107505
2612
์šฐ๋ฆฌ๋Š” ๋น„ํŒ์ด๋‚˜ ์žฌ์ •์ ์ธ ์ œ์•ฝ ์—†์ด
01:50
so that we would have a small organization that could
30
110117
3589
์—ฐ๊ตฌ๋„ ํ•˜๊ณ  ์ง€์›๋„ ํ•  ์ˆ˜ ์žˆ๋Š”
01:53
do this work and support it.
31
113706
3312
๋‰ด์š• ์ค„๊ธฐ ์„ธํฌ ์‹คํ—˜ ์žฌ๋‹จ์ด๋ผ๋Š” ์ž‘์€ ์‹œ์„ค์„ ์„ค๋ฆฝํ–ˆ์Šต๋‹ˆ๋‹ค.
01:57
What we saw very quickly is the world of both medical
32
117018
3385
์šฐ๋ฆฌ๊ฐ€ ์–ผ๋งˆ ์•ˆ๋˜์–ด ๊นจ๋‹ฌ์€ ๊ฒƒ์€ ์˜ํ•™ ์—ฐ๊ตฌ ๋ถ„์•ผ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ
02:00
research, but also developing drugs and treatments,
33
120403
3376
์˜์•ฝ ์น˜๋ฃŒ ๋ฐ ๊ฐœ๋ฐœ ๋ถ„์•ผ๋„, ์—ฌ๋Ÿฌ๋ถ„๋„ ์˜ˆ์ƒํ•˜์‹œ๋“ฏ์ด,
02:03
is dominated by, as you would expect, large organizations,
34
123779
3713
๊ฑฐ๋Œ€ ํšŒ์‚ฌ์— ์˜ํ•ด ์ฃผ๋„๋˜๊ณ  ์žˆ๋‹ค๋Š” ๊ฒƒ์ด์—ˆ์Šต๋‹ˆ๋‹ค.
02:07
but in a new field, sometimes large organizations
35
127492
3119
๊ทธ๋Ÿฌ๋‚˜ ์ƒˆ๋กœ์šด ๋ถ„์•ผ์—์„œ, ๊ฑฐ๋Œ€ํ•œ ์กฐ์ง์€ ๋•Œ๋กœ
02:10
really have trouble getting out of their own way,
36
130611
2168
์Šค์Šค๋กœ ๋ฐœ์ „ํ•˜๋Š”๋ฐ ์–ด๋ ค์›€์„ ๊ฒช๊ธฐ๋„ ํ•˜๊ณ 
02:12
and sometimes they can't ask the right questions,
37
132779
2436
๋•Œ๋กœ๋Š” ์ ์ ˆํ•œ ๋ฌธ์ œ ์ œ๊ธฐ์กฐ์ฐจ ํ•˜์ง€ ๋ชปํ•ฉ๋‹ˆ๋‹ค.
02:15
and there is an enormous gap that's just gotten larger
38
135215
3356
๊ฒŒ๋‹ค๊ฐ€, ํ•™๋ฌธ์ ์ธ ์—ฐ๊ตฌ์™€
02:18
between academic research on the one hand
39
138571
3211
์•ฝํ’ˆ์„ ์ œ๊ณตํ•˜๋Š” ์ œ์•ฝ ํšŒ์‚ฌ, ํ˜น์€
02:21
and pharmaceutical companies and biotechs
40
141782
2701
์น˜๋ฃŒ์ œ๋ฅผ ์ œ๊ณตํ•˜๋Š” ์ƒ์ฒด๊ณตํ•™ ํšŒ์‚ฌ๋“ค ์‚ฌ์ด์—๋Š”
02:24
that are responsible for delivering all of our drugs
41
144483
3266
์ ์  ๋” ์ปค์ ธ๋งŒ ๊ฐ€๋Š” ์—„์ฒญ๋‚œ ๊ฐ„๊ทน์ด ์กด์žฌํ•ฉ๋‹ˆ๋‹ค.
02:27
and many of our treatments, and so we knew that
42
147749
2390
๊ทธ๋ž˜์„œ ์šฐ๋ฆฌ๊ฐ€ ์•Œ๊ฒŒ ๋œ ๊ฒƒ์€
02:30
to really accelerate cures and therapies, we were going
43
150139
3946
์น˜๋ฃŒ์ œ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ๊ฐ€์†ํ™” ํ•˜๊ธฐ ์œ„ํ•ด์„œ
02:34
to have to address this with two things:
44
154085
2807
์ด๋Ÿฐ ๋ฌธ์ œ๋ฅผ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๋‘๊ฐ€์ง€ ์‚ฌํ•ญ๊ณผ ํ•จ๊ป˜ ์ œ๊ธฐํ•ด์•ผ ํ•œ๋‹ค๋Š” ์ ์ด์—ˆ์Šต๋‹ˆ๋‹ค :
02:36
new technologies and also a new research model.
45
156892
3222
์ƒˆ๋กœ์šด ๊ธฐ์ˆ ๊ณผ ์ƒˆ๋กœ์šด ์—ฐ๊ตฌ ๋ชจํ˜•์ด์ฃ .
02:40
Because if you don't close that gap, you really are
46
160114
3759
์™œ๋ƒํ•˜๋ฉด ์ด๋Ÿฐ ๊ฐ„๊ทน์„ ๋งค์šฐ์ง€ ๋ชปํ•˜๋ฉด ์šฐ๋ฆฌ๋Š” ํ˜„ ์ƒํƒœ์—์„œ
02:43
exactly where we are today.
47
163873
1607
ํ•œ ๋ฐœ์ง๋„ ๋น ์ ธ๋‚˜๊ฐˆ ์ˆ˜ ์—†๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
02:45
And that's what I want to focus on.
48
165480
1667
๊ทธ๊ฒƒ์ด ์ œ๊ฐ€ ์ง‘์ค‘ํ•˜๊ณ  ์‹ถ์€ ์ฃผ์ œ์ž…๋‹ˆ๋‹ค.
02:47
We've spent the last couple of years pondering this,
49
167147
3550
์šฐ๋ฆฌ๋Š” ์ด๋Ÿฐ ๊ฒƒ์„ ์ƒ๊ฐํ•ด๋‚ด๋Š”๋ฐ ์ง€๋‚œ ๋ช‡ ๋…„์„ ์Ÿ์•„๋ถ€์—ˆ์Šต๋‹ˆ๋‹ค.
02:50
making a list of the different things that we had to do,
50
170697
2391
์šฐ๋ฆฌ๊ฐ€ ํ•ด์•ผ ํ•  ์—ฌ๋Ÿฌ๊ฐ€์ง€ ์ผ์˜ ๋ชฉ๋ก์„ ๋งŒ๋“ค์—ˆ์Šต๋‹ˆ๋‹ค.
02:53
and so we developed a new technology,
51
173088
2631
์†Œํ”„ํŠธ์›จ์–ด์™€ ํ•˜๋“œ์›จ์–ด๋ฅผ ํฌํ•จํ•œ
02:55
It's software and hardware,
52
175719
1251
์ƒˆ๋กœ์šด ๊ธฐ์ˆ ์„ ๊ฐœ๋ฐœํ•˜์—ฌ
02:56
that actually can generate thousands and thousands of
53
176970
3503
์ˆ˜ ์ฒœ๊ฐœ์˜ ์œ ์ „์ ์œผ๋กœ ๋‹ค์–‘ํ•œ ์ค„๊ธฐ ์„ธํฌ๋ฅ˜๋ฅผ ์ƒ์„ฑ์‹œ์ผœ
03:00
genetically diverse stem cell lines to create
54
180473
3170
์ „์ฒด์  ๋ชจํ˜•์„ ๋งŒ๋“œ๋Š” ๊ฑฐ์ฃ .
03:03
a global array, essentially avatars of ourselves.
55
183643
3787
๊ธฐ๋ณธ์ ์œผ๋กœ ์šฐ๋ฆฌ ์ž์‹ ์˜ ์•„๋ฐ”ํƒ€๋ฅผ ๋งŒ๋“œ๋Š” ๊ฒƒ๊ณผ ๋น„์Šทํ•ฉ๋‹ˆ๋‹ค.
03:07
And we did this because we think that it's actually going
56
187430
3434
์šฐ๋ฆฌ๊ฐ€ ์ด๋Ÿฐ ์ž‘์—…์„ ํ–ˆ๋˜ ์ด์œ ๋Š”
03:10
to allow us to realize the potential, the promise,
57
190864
3415
์ด๋ ‡๊ฒŒ ํ•ด์•ผ ์ธ๊ฐ„ ์—ผ๊ธฐ ์„œ์—ดํ™”์˜ ๊ฒฐ๊ณผ์— ๋Œ€ํ•œ
03:14
of all of the sequencing of the human genome,
58
194279
3080
๋ชจ๋“  ๊ฐ€๋Šฅ์„ฑ๊ณผ ํฌ๋ง์„ ์‹คํ˜„ํ•  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋ผ ๋ฏฟ์—ˆ๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
03:17
but it's going to allow us, in doing that,
59
197359
2504
๊ทธ๊ฑธ ํ•˜๋Š” ๊ณผ์ •์—์„œ, ์šฐ๋ฆฌ๋Š” ์‹ค์ œ๋กœ ์ž„์ƒ์  ์‹คํ—˜์„
03:19
to actually do clinical trials in a dish with human cells,
60
199863
5008
์‚ฌ๋žŒ์˜ ์„ธํฌ๋กœ ์ง์ ‘ ์—ฐ๊ตฌํ•ฉ๋‹ˆ๋‹ค.
03:24
not animal cells, to generate drugs and treatments
61
204871
4159
๋™๋ฌผ์˜ ์„ธํฌ๊ฐ€ ์•„๋‹Œ ์‚ฌ๋žŒ์˜ ์„ธํฌ๋กœ ์—ฐ๊ตฌํ•˜์—ฌ ๋งŒ๋“ค์–ด์ง„ ์•ฝ๊ณผ ์น˜๋ฃŒ๋ฒ•๋“ค์€
03:29
that are much more effective, much safer,
62
209030
3249
๊ทธ ์•ˆ์ „์„ฑ๊ณผ ํšจ๊ณผ ๋ฉด์—์„œ๋„ ์›”๋“ฑํ•˜๊ณ ,
03:32
much faster, and at a much lower cost.
63
212279
3256
๊ฐœ๋ฐœ ์†๋„๋„ ๋” ๋น ๋ฅด๊ณ  ๋น„์šฉ๋„ ํ›จ์”ฌ ๋‚ฎ์Šต๋‹ˆ๋‹ค.
03:35
So let me put that in perspective for you
64
215535
2384
์ œ๊ฐ€ ์ด๋Ÿฐ ๊ฒƒ๋“ค์— ๋Œ€ํ•œ ์ „๋ง๊ณผ
03:37
and give you some context.
65
217919
1416
๋น„์ „์„ ์ œ์‹œํ•ด๋“œ๋ฆฌ๋ ค ํ•ฉ๋‹ˆ๋‹ค.
03:39
This is an extremely new field.
66
219335
4832
์ด๊ฒƒ์€ ๊ทน๋‹จ์ ์œผ๋กœ ์ƒˆ๋กœ์šด ๋ถ„์•ผ์—์š”.
03:44
In 1998, human embryonic stem cells
67
224167
2832
1988๋…„ ์ธ๊ฐ„์˜ ํƒœ์•„ ์ค„๊ธฐ ์„ธํฌ๊ฐ€
03:46
were first identified, and just nine years later,
68
226999
3512
์ฒ˜์Œ์œผ๋กœ ์‹๋ณ„๋˜์—ˆ์–ด์š”. ๊ผญ 9๋…„ ํ›„์—
03:50
a group of scientists in Japan were able to take skin cells
69
230511
4305
์ผ๋ณธ์˜ ํ•œ ์—ฐ๊ตฌ ๊ทธ๋ฃน์ด ํ”ผ๋ถ€ ์„ธํฌ๋ฅผ ๋–ผ์–ด๋‚ธ ๋‹ค์Œ,
03:54
and reprogram them with very powerful viruses
70
234816
3195
๋งค์šฐ ๊ฐ•๋ ฅํ•œ ๋ฐ”์ด๋Ÿฌ์Šค๋ฅผ ์ด์šฉํ•˜์—ฌ ์ฒ˜๋ฆฌํ•˜๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ
03:58
to create a kind of pluripotent stem cell
71
238011
4242
์ผ์ข…์˜ ๋งŒ๋Šฅ ์ค„๊ธฐ ์„ธํฌ๋ฅผ ๋งŒ๋“ค์–ด ๋ƒˆ์Šต๋‹ˆ๋‹ค.
04:02
called an induced pluripotent stem cell,
72
242253
2090
์ด๊ฒƒ์„ ์œ ๋„ ๋‹ค๋Šฅ์„ฑ(ๅคš่ƒฝๆ€ง) ์ค„๊ธฐ ์„ธํฌ๋ผ๊ณ  ๋ถ€๋ฆ…๋‹ˆ๋‹ค.
04:04
or what we refer to as an IPS cell.
73
244343
3008
ํ˜น์€ IPS(Induced Pluripotent Cell) ์„ธํฌ๋ผ๊ณ  ํ•˜์ฃ .
04:07
This was really an extraordinary advance, because
74
247351
3198
์ด๊ฑด ์ •๋ง ๋Œ€๋‹จํ•œ ์ง„๋ณด์˜€๋Š”๋ฐ์š”.
04:10
although these cells are not human embryonic stem cells,
75
250549
2544
๋น„๋ก ์ด ์„ธํฌ๋“ค์ด
04:13
which still remain the gold standard,
76
253093
1794
์—ฌ์ „ํžˆ ์ตœ๊ณ ์˜ ๋ชฉํ‘œ๋กœ ๋‚จ์•„์žˆ๋Š” ์ธ๊ฐ„์˜ ํƒœ์•„ ์ค„๊ธฐ ์„ธํฌ๋Š” ์•„๋‹ˆ์—ˆ์ง€๋งŒ,
04:14
they are terrific to use for modeling disease
77
254887
3470
์ด ์„ธํฌ๋Š” ์งˆ๋ณ‘์˜ ๋ชจ๋ธ์„ ๋งŒ๋“ค๊ณ 
04:18
and potentially for drug discovery.
78
258357
2730
์‹ ์•ฝ์„ ๊ฐœ๋ฐœํ•˜๋Š”๋ฐ ํ›Œ๋ฅญํ•˜๊ฒŒ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด์—ˆ์Šต๋‹ˆ๋‹ค.
04:21
So a few months later, in 2008, one of our scientists
79
261087
3040
๊ทธ๋กœ๋ถ€ํ„ฐ ๋ช‡ ๋‹ฌ ํ›„, 2008๋…„, ์šฐ๋ฆฌ ์—ฐ๊ตฌ์ง„๋“ค ์ค‘ ํ•œ ์‚ฌ๋žŒ์ด
04:24
built on that research. He took skin biopsies,
80
264127
3200
๊ทธ ์—ฐ๊ตฌ๋ฅผ ์‘์šฉํ•˜์—ฌ, ์ด๋ฒˆ์—” ์ •์ƒ ์„ธํฌ ๋Œ€์‹ 
04:27
this time from people who had a disease,
81
267327
2028
๋ณ‘์„ ๊ฐ€์ง„ ์‚ฌ๋žŒ์˜ ํ”ผ๋ถ€ ์ƒ์ฒด ์‹œ๋ฃŒ๋ฅผ ์‚ฌ์šฉํ•ด ์‹คํ—˜ํ–ˆ์Šต๋‹ˆ๋‹ค.
04:29
ALS, or as you call it in the U.K., motor neuron disease.
82
269355
2914
์˜๊ตญ์—์„  ALS๋ผ๊ณ  ๋ถˆ๋ฆฌ๋Š” ๊ทผ์œ„์ถ•์„ฑ ๊ฒฝํ™”์ฆ ํ™˜์ž์˜ ์„ธํฌ๋ฅผ ๋–ผ์–ด๋‚ด์–ด
04:32
He turned them into the IPS cells
83
272269
1698
์ œ๊ฐ€ ๋ฐฉ๊ธˆ ์ „ ๋ง์”€๋“œ๋ฆฐ IPS ์„ธํฌ๋กœ ๋ณ€์ด์‹œ์ผฐ๊ณ ,
04:33
that I've just told you about, and then he turned those
84
273967
2686
์—ฌ๋Ÿฌ๊ฐ€์ง€ ๊ธฐ๋Šฅ์˜ ์„ธํฌ๋กœ ๋ณ€ํ•  ์ˆ˜ ์žˆ๋Š” ๋Šฅ๋ ฅ์„ ๊ฐ€์ง„ ์ด IPS ์„ธํฌ๋ฅผ
04:36
IPS cells into the motor neurons that actually
85
276653
2704
๋‹ค์‹œ ์ด ๋ณ‘(ALS)์œผ๋กœ ์ฃฝ์–ด๊ฐ€๊ณ  ์žˆ๋Š”
04:39
were dying in the disease.
86
279357
1461
์šด๋™ ์‹ ๊ฒฝ ์„ธํฌ๋กœ ๋ฐฐ์–‘ํ•ด๋ƒˆ์Šต๋‹ˆ๋‹ค.
04:40
So basically what he did was to take a healthy cell
87
280818
3019
๊ฐ„๋‹จํžˆ ๋งํ•˜์ž๋ฉด, ์ด ์—ฐ๊ตฌ์›์ด ํ•œ ๊ฒƒ์€
04:43
and turn it into a sick cell,
88
283837
1714
๊ฑด๊ฐ•ํ•œ ํ”ผ๋ถ€ ์„ธํฌ๋ฅผ ๋–ผ์–ด๋‚ด ๋ณ‘๋“  ์„ธํฌ๋กœ ๋งŒ๋“ ๊ฑฐ์ฃ .
04:45
and he recapitulated the disease over and over again
89
285551
3558
๊ทธ๋Š” ์‹คํ—˜ ์šฉ๊ธฐ ์•ˆ์—์„œ ๊ณ„์† ๋ฐ˜๋ณตํ•ด์„œ ์ด ๋ณ‘์˜ ๋ฐœ์ƒ ๋‹จ๊ณ„๋ฅผ
04:49
in the dish, and this was extraordinary,
90
289109
3360
์žฌํ˜„ํ•ด ๋ƒˆ์Šต๋‹ˆ๋‹ค. ๋†€๋ผ์šด ์ผ์ด์ฃ .
04:52
because it was the first time that we had a model
91
292469
2248
์™œ๋ƒํ•˜๋ฉด ๊ทธ๊ฑด ์ƒ์กดํ•ด ์žˆ๋Š” ํ™˜์ž์˜ ์‚ด์•„์žˆ๋Š” ์„ธํฌ๋ฅผ ํ†ตํ•ด
04:54
of a disease from a living patient in living human cells.
92
294717
4188
์งˆ๋ณ‘์˜ ๋ชจํ˜•์„ ์–ป์–ด๋‚ธ ์ฒซ ๋ฒˆ์งธ ๊ฒฝ์šฐ์˜€๊ฑฐ๋“ ์š”.
04:58
And as he watched the disease unfold, he was able
93
298905
3120
๊ทธ ๋ณ‘์ด ์ง„ํ–‰๋˜๋Š” ๊ณผ์ •์„ ๋ณด๋ฉด์„œ
05:02
to discover that actually the motor neurons were dying
94
302025
3011
๊ทธ๋Š” ์šด๋™ ์‹ ๊ฒฝ๋“ค์ด ๊ทธ ๋™์•ˆ ์ƒ๊ฐํ–ˆ๋˜ ๊ฒƒ๋ณด๋‹ค
05:05
in the disease in a different way than the field
95
305036
2127
๋‹ค๋ฅธ ๋ฐฉ์‹์œผ๋กœ ์ฃฝ์–ด๊ฐ€๊ณ  ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ๋ฐœ๊ฒฌํ•ด ๋ƒˆ์Šต๋‹ˆ๋‹ค.
05:07
had previously thought. There was another kind of cell
96
307163
2494
์‚ฌ์‹ค ์ด ๋ณ‘์˜ ์›์ธ์ด ๋˜๋Š” ๋˜ ๋‹ค๋ฅธ ์ข…๋ฅ˜์˜ ์„ธํฌ๊ฐ€ ์žˆ์–ด์„œ
05:09
that actually was sending out a toxin
97
309657
2201
์‹ค์ œ๋กœ๋Š” ์ด ์„ธํฌ๊ฐ€ ๋…์†Œ๋ฅผ ๋‚ด๋ณด๋‚ด๊ณ 
05:11
and contributing to the death of these motor neurons,
98
311858
2511
์ด๋กœ ์ธํ•ด ์šด๋™ ์‹ ๊ฒฝ์ด ์ฃฝ์–ด๊ฐ€๋Š” ๊ฑฐ์˜€์ฃ .
05:14
and you simply couldn't see it
99
314369
1358
์‚ฌ๋žŒ์˜ ์ค„๊ธฐ์„ธํฌ ๋ชจํ˜•์—์„œ ์•Œ๊ฒŒ ๋˜๊ธฐ ์ „๊นŒ์ง€๋Š”
05:15
until you had the human model.
100
315727
1790
๋ณด์ง€ ๋ชปํ–ˆ๋˜ ์ผ์ž…๋‹ˆ๋‹ค.
05:17
So you could really say that
101
317517
2667
๊ทธ๋Ÿฌ๋‹ˆ๊นŒ ์ธ๊ฐ„ ์ค„๊ธฐ ์„ธํฌ์˜ ๋ชจ๋ธ์„ ๋ณด์ง€ ์•Š๊ณ 
05:20
researchers trying to understand the cause of disease
102
320184
3906
์งˆ๋ณ‘์˜ ์›์ธ์„ ์ดํ•ดํ•˜๋ ค๋Š” ์—ฐ๊ตฌ์ง„๋“ค์€
05:24
without being able to have human stem cell models
103
324090
4152
๋งํ•˜์ž๋ฉด ๋น„ํ–‰๊ธฐ์˜ ์ถ”๋ฝ ์‚ฌ๊ฑด์—์„œ
05:28
were much like investigators trying to figure out
104
328242
2760
๊ทธ ๋น„ํ–‰๊ธฐ์˜ ๋ธ”๋ž™ ๋ฐ•์Šค๋‚˜ ๋น„ํ–‰ ๊ธฐ๋ก์„ ๋ณด์ง€๋„ ๋ชปํ•œ ์ฒด
05:31
what had gone terribly wrong in a plane crash
105
331002
3241
๋ฌด์—‡์ด ์ž˜ ๋ชป ๋˜์—ˆ๋Š”์ง€๋ฅผ ์•Œ์•„๋‚ด๋ ค๋Š”
05:34
without having a black box, or a flight recorder.
106
334243
3997
์กฐ์‚ฌ๊ด€๊ณผ ๋น„์Šทํ•˜๋‹ค๊ณ  ๋งํ•  ์ˆ˜ ์žˆ๊ฒ ์ฃ .
05:38
They could hypothesize about what had gone wrong,
107
338240
2602
๋ฌด์—‡์ด ์ž˜ ๋ชป ๋˜์—ˆ๋Š”์ง€ ์ถ”์ธก์€ ํ•  ์ˆ˜ ์žˆ๊ฒ ์ง€๋งŒ
05:40
but they really had no way of knowing what led
108
340842
3112
๋ฌด์‹œ๋ฌด์‹œํ•œ ์ถ”๋ฝ ์‚ฌ๊ณ ๊ฐ€ ์ •ํ™•ํžˆ ์–ด๋–ป๊ฒŒ ์ผ์–ด๋‚˜๊ฒŒ ๋˜์—ˆ๋Š”์ง€๋ฅผ
05:43
to the terrible events.
109
343954
2172
์•Œ ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์€ ์ „ํ˜€์—†๋Š” ๊ฒƒ๊ณผ ์œ ์‚ฌํ•ฉ๋‹ˆ๋‹ค.
05:46
And stem cells really have given us the black box
110
346126
4183
์ค„๊ธฐ ์„ธํฌ๋Š” ์šฐ๋ฆฌ์—๊ฒŒ ์งˆ๋ณ‘์— ๋Œ€ํ•œ ๋ธ”๋ž™ ๋ฐ•์Šค๋ฅผ ์ค€ ๊ฒƒ๊ณผ ๊ฐ™์•„์š”.
05:50
for diseases, and it's an unprecedented window.
111
350309
3968
์ด๊ฑด ์ „๋ก€๊ฐ€ ์—†๋˜ ์ผ์ž…๋‹ˆ๋‹ค.
05:54
It really is extraordinary, because you can recapitulate
112
354277
3245
์ •๋ง ๊ฒฝ์ด๋กญ๊ณ  ๋Œ€๋‹จํ•œ ์ผ์ธ๋ฐ์š”, ์™œ๋ƒํ•˜๋ฉด
05:57
many, many diseases in a dish, you can see
113
357522
3247
์ด์ œ๋Š” ์‹คํ—˜์šฉ ์ ‘์‹œ์—์„œ ์ˆ˜๋งŽ์€ ์งˆ๋ณ‘์˜ ๋ฐœ์ƒ ๋‹จ๊ณ„๋ฅผ ์–ผ๋งˆ๋“ ์ง€ ์žฌํ˜„ํ•ด ๋ณผ ์ˆ˜ ์žˆ๊ฑฐ๋“ ์š”.
06:00
what begins to go wrong in the cellular conversation
114
360769
3536
์ฆ‰, ํ™˜์ž์—๊ฒŒ ์ฆ์ƒ์ด ๋‚˜ํƒ€๋‚˜๊ธฐ๋„ ์ „์—
06:04
well before you would ever see
115
364305
2424
์„ธํฌ๊ฐ„ ํ™œ๋™์—์„œ ๋ฌด์—‡์ด ์ž˜ ๋ชป ๋˜์—ˆ๋Š”์ง€
06:06
symptoms appear in a patient.
116
366729
2536
์‚ฌ์ „์— ํ™•์ธํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋œ๊ฒ๋‹ˆ๋‹ค.
06:09
And this opens up the ability,
117
369265
2523
์ด๊ฒƒ์€ ๊ฐ€๋Šฅ์„ฑ๊ณผ ํฌ๋ง์„ ์„ ์‚ฌํ–ˆ๋Š”๋ฐ์š”,
06:11
which hopefully will become something that
118
371788
2814
์ธ๊ฐ„์˜ ์„ธํฌ๋ฅผ ์‹ ์•ฝ ์‹คํ—˜์— ์‚ฌ์šฉํ•˜๋Š”๊ฒ๋‹ˆ๋‹ค.
06:14
is routine in the near term,
119
374602
2647
์ด ๊ธฐ์ˆ ์ด ์กฐ๋งŒ๊ฐ„
06:17
of using human cells to test for drugs.
120
377249
4146
์ƒ์šฉํ™” ๋˜์–ด ๋„๋ฆฌ ์ผ์ƒ์ ์œผ๋กœ ์“ฐ์˜€์œผ๋ฉด ํ•ฉ๋‹ˆ๋‹ค.
06:21
Right now, the way we test for drugs is pretty problematic.
121
381395
5464
ํ˜„์žฌ ์‹ ์•ฝ์„ ์‹คํ—˜ํ•˜๋Š” ๋ฐฉ๋ฒ•์—๋Š” ๋ฌธ์ œ๊ฐ€ ๋งŽ์ด ์žˆ์–ด์š”.
06:26
To bring a successful drug to market, it takes, on average,
122
386859
3318
์„ฑ๊ณต์ ์œผ๋กœ ์‹œ์žฅ์— ์‹ ์•ฝ์„ ์ถœ์‹œํ•˜๋Š”๋ฐ๋Š”
06:30
13 years โ€” that's one drug โ€”
123
390177
2186
ํ‰๊ท ์ ์œผ๋กœ 13๋…„์ด ๊ฑธ๋ฆฝ๋‹ˆ๋‹ค. -- ํ•œ๊ฐœ์˜ ์‹ ์•ฝ์— ๋Œ€ํ•ด์„œ์š”. --
06:32
with a sunk cost of 4 billion dollars,
124
392363
3388
๊ฒŒ๋‹ค๊ฐ€ 40์–ต๋‹ฌ๋Ÿฌ(4์กฐ์›)์ด๋ผ๋Š” ๋น„์šฉ์ด ๋“ค๊ณ 
06:35
and only one percent of the drugs that start down that road
125
395751
4867
๊ฐœ๋ฐœ ๊ณผ์ •์—์„œ ์ถœ์‹œ๊นŒ์ง€ ์„ฑ๊ณตํ•˜๋Š” ์‹ ์•ฝ์€
06:40
are actually going to get there.
126
400618
2248
๊ฒจ์šฐ 1% ์ •๋„ ์ž…๋‹ˆ๋‹ค.
06:42
You can't imagine other businesses
127
402866
2125
๋‹ค๋ฅธ ๋ถ„์•ผ์—์„œ ์ด๋Ÿฐ ์ •๋„์˜ ์„ฑ๊ณต๋ฅ ์„ ๊ฐ€์ง„
06:44
that you would think of going into
128
404991
1449
์‚ฌ์—…์— ๋›ฐ์–ด๋“œ๋Š” ๊ฒƒ์€
06:46
that have these kind of numbers.
129
406440
1755
์ƒ์ƒ์กฐ์ฐจ ํ•  ์ˆ˜ ์—†์„ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
06:48
It's a terrible business model.
130
408195
1802
๋”ฑ๋ด๋„ ์ •๋ง ์ง€๋…ํ•˜๊ฒŒ ๋‚˜์œ ์‚ฌ์—… ๋ชจ๋ธ์ด์ฃ .
06:49
But it is really a worse social model because of
131
409997
3989
๋˜ํ•œ ๊ทธ ์•ˆ์— ๊ฐœ์ž…๋œ ๋‹ค๋ฅธ ์—ฌ๋Ÿฌ ์ผ๋“ค๊ณผ ์šฐ๋ฆฌ๊ฐ€ ์‚ฌํšŒ ๊ตฌ์„ฑ์›์œผ๋กœ์„œ ๋ถ€๋‹ดํ•ด์•ผ ํ•˜๋Š” ๋น„์šฉ์„ ์ƒ๊ฐํ•˜๋ฉด
06:53
what's involved and the cost to all of us.
132
413986
3328
์ตœ์•…์˜ ์‚ฌ์—… ๋ชจ๋ธ์ธ๊ฑธ ๋– ๋‚˜ ๊ทธ๋ณด๋‹ค ๋” ๋‚˜์œ ์‚ฌํšŒ์  ๋ชจ๋ธ์ด๊ธฐ๋„ ํ•ฉ๋‹ˆ๋‹ค.
06:57
So the way we develop drugs now
133
417314
3752
ํ˜„์žฌ ์‹ ์•ฝ ๊ฐœ๋ฐœ์€
07:01
is by testing promising compounds on --
134
421066
3200
์น˜๋ฃŒ์— ํšจ๊ณผ๋ฅผ ๋ณด์ด๋Š” ๋ฌผ์งˆ์„ ์ด์šฉํ•œ ๋ฐ˜๋ณต๋œ ์‹คํ—˜์œผ๋กœ ์—ฐ๊ตฌํ•˜๋Š”๋ฐ์š”,
07:04
We didn't have disease modeling with human cells,
135
424266
1880
์•„์ง๊นŒ์ง€ ์ธ๊ฐ„์˜ ์„ธํฌ๋กœ ๋งŒ๋“  ์งˆ๋ณ‘ ๋ชจ๋ธ์€ ์—†์Šต๋‹ˆ๋‹ค.
07:06
so we'd been testing them on cells of mice
136
426146
3464
์ฆ‰, ์‹ ์•ฝ์— ๋Œ€ํ•œ ์‹คํ—˜์€ ์ฅ์˜ ์„ธํฌ๋‚˜
07:09
or other creatures or cells that we engineer,
137
429610
3667
๋‹ค๋ฅธ ๋™๋ฌผ๋“ค, ํ˜น์€ ์šฐ๋ฆฌ๊ฐ€ ์˜๊ณตํ•™์ ์œผ๋กœ ๋งŒ๋“ค์–ด๋‚ธ ์„ธํฌ์—๋งŒ ๊ตญํ•œ๋˜๊ณ  ์žˆ์–ด์š”.
07:13
but they don't have the characteristics of the diseases
138
433277
3061
๊ทธ๋Ÿฌ๋‹ˆ๊นŒ, ์šฐ๋ฆฌ๊ฐ€ ์‹ค์ œ๋กœ ์น˜๋ฃŒํ•˜๊ณ ์ž ํ•˜๋Š”
07:16
that we're actually trying to cure.
139
436338
2336
์„ธํฌ์™€ ์งˆ๋ณ‘์œผ๋กœ ์—ฐ๊ตฌ๋ฅผ ํ•˜์ง€ ์•Š๋Š”๋‹ค๋Š” ๊ฒ๋‹ˆ๋‹ค.
07:18
You know, we're not mice, and you can't go into
140
438674
3046
์•„์‹œ๋‹ค์‹œํ”ผ, ์šฐ๋ฆฌ๋Š” ์ฅ๊ฐ€ ์•„๋‹ˆ์ž–์•„์š”.
07:21
a living person with an illness
141
441720
2418
๊ทธ๋ ‡๋‹ค๊ณ  ๋ฉ€์ฉกํžˆ ์‚ด์•„์žˆ๋Š” ํ™˜์ž์˜ ๋ชธ์„ ์—ด์–ด์„œ
07:24
and just pull out a few brain cells or cardiac cells
142
444138
2928
์•„๋ฌด๋ ‡์ง€ ์•Š๊ฒŒ ๋‡Œ ์„ธํฌ๋‚˜ ์‹ฌ์žฅ ์„ธํฌ๋ฅผ ๋–ผ์–ด๋‚ด
07:27
and then start fooling around in a lab to test
143
447066
2289
์‹คํ—˜์‹ค์—์„œ ์ด๋Ÿฐ์ €๋Ÿฐ ํ…Œ์ŠคํŠธ๋ฅผ ํ•˜๋ฉฐ
07:29
for, you know, a promising drug.
144
449355
3561
์‹ ์•ฝ ๊ฐœ๋ฐœ์„ ํ•˜๋Š” ๊ฒƒ๋„ ์žˆ์„ ์ˆ˜ ์—†๋Š” ์ผ์ด์ฃ .
07:32
But what you can do with human stem cells, now,
145
452916
3585
๊ทธ๋Ÿฐ๋ฐ, ์‚ฌ๋žŒ์˜ ์ค„๊ธฐ ์„ธํฌ๋ฅผ ๊ฐ€์ง€๊ณ ๋Š” ์ด์ œ
07:36
is actually create avatars, and you can create the cells,
146
456501
4337
์‹ค์ œ๋กœ ํ™˜์ž์˜ ์•„๋ฐ”ํƒ€๋ฅผ ๋งŒ๋“ค์–ด ์„ธํฌ๋ฅผ ์ƒ์„ฑํ•˜๊ณ ,
07:40
whether it's the live motor neurons
147
460838
1967
์šด๋™ ์‹ ๊ฒฝ์ด๋“ , ๋ฐ•๋™ํ•˜๊ณ  ์žˆ๋Š” ์‹ฌ์žฅ ์„ธํฌ๋“ ,
07:42
or the beating cardiac cells or liver cells
148
462805
3010
๊ฐ„ ์„ธํฌ๋“ , ํ˜น์€ ๋‹ค๋ฅธ ๊ทธ ์–ด๋–ค ์„ธํฌ๋“ ์ง€ ๊ฐ„์—
07:45
or other kinds of cells, and you can test for drugs,
149
465815
4109
์‹ ์•ฝ์— ๋Œ€ํ•œ ์‹คํ—˜์„ ํ• ์ˆ˜ ์žˆ๋‹ค๋Š”๊ฑฐ์ฃ .
07:49
promising compounds, on the actual cells
150
469924
3125
์‹ค์ œ๋กœ ์น˜๋ฃŒ๋ฅผ ํ•˜๋ ค๋Š” ์„ธํฌ์—
07:53
that you're trying to affect, and this is now,
151
473049
3631
์ง์ ‘ ์‹คํ—˜ํ•˜๋Š”๊ฒ๋‹ˆ๋‹ค.
07:56
and it's absolutely extraordinary,
152
476680
2814
์ด๊ฒŒ ์ง€๊ธˆ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ๋Š” ์ผ์ด๊ณ , ์ •๋ง ๊ฒฝ์ด๋กœ์›Œ ๋งˆ๋‹ค์•Š๋Š” ์ผ์ด์—์š”.
07:59
and you're going to know at the beginning,
153
479494
3156
์ด์ œ๋Š” ์‹ ์•ฝ ๊ฐœ๋ฐœ์˜ ์ฒซ ์‹œ์ž‘ ๋‹จ๊ณ„์—์„œ
08:02
the very early stages of doing your assay development
154
482650
3744
๋ญ๊ฐ€ ์ž˜๋ชป๋˜๋Š”์ง€, ๋˜ ์–ด๋–ป๊ฒŒ ํ•ด์•ผํ•˜๋Š”์ง€ ๋ฐ”๋กœ ์•Œ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
08:06
and your testing, you're not going to have to wait 13 years
155
486394
3389
๋ง‰์ƒ ์‹ ์•ฝ์ด ๊ฐœ๋ฐœ๋˜์–ด ์‹œ์žฅ์— ๋‚˜์™”์ง€๋งŒ ์‹ค์ œ๋กœ๋Š” ์•ฝํšจ๊ฐ€ ์—†๋‹ค๊ฑฐ๋‚˜,
08:09
until you've brought a drug to market, only to find out
156
489783
3319
์‹ฌ์ง€์–ด ํ•ด๊ฐ€ ๋˜๊ธฐ๋„ ํ•œ๋‹ค๋Š” ์‚ฌ์‹ค์„ ์•Œ ๋•Œ๊นŒ์ง€
08:13
that actually it doesn't work, or even worse, harms people.
157
493102
5056
13๋…„์ด๋‚˜ ๊ธฐ๋‹ค๋ฆฌ์ง€ ์•Š์•„๋„ ๋œ๋‹ค๋Š”๊ฑฐ์ฃ .
08:18
But it isn't really enough just to look at
158
498158
4340
ํ•˜์ง€๋งŒ ๊ทธ๋ ‡๊ฒŒ ํ•˜๋ ค๋ฉด,
08:22
the cells from a few people or a small group of people,
159
502498
3782
๊ทธ์ € ์†Œ์ˆ˜ ๋ช‡ ์‚ฌ๋žŒ๋“ค์˜ ์„ธํฌ๋ฅผ ๋ณด๋Š” ๊ฒƒ ๋งŒ์œผ๋กœ๋Š”
08:26
because we have to step back.
160
506280
1644
์ ˆ๋Œ€์ ์œผ๋กœ ๋ถ€์กฑํ•ฉ๋‹ˆ๋‹ค.
08:27
We've got to look at the big picture.
161
507924
1851
ํ•œ๋ฐœ์ง ๋ฌผ๋Ÿฌ์„œ์„œ, ํฐ ๊ทธ๋ฆผ์„ ๋ด์•ผํ•ฉ๋‹ˆ๋‹ค.
08:29
Look around this room. We are all different,
162
509775
3136
์ด ๊ฐ•์—ฐ์žฅ์„ ํ•œ๋ฒˆ ๋‘˜๋Ÿฌ ๋ณด์„ธ์š”. ์šฐ๋ฆฌ๋Š” ๊ฐ์ž ๋ชจ๋‘ ๋‹ค๋ฆ…๋‹ˆ๋‹ค.
08:32
and a disease that I might have,
163
512911
2740
์ œ๊ฒŒ ์žˆ์„๋Ÿฐ์ง€๋„ ๋ชจ๋ฅผ ์งˆ๋ณ‘--
08:35
if I had Alzheimer's disease or Parkinson's disease,
164
515651
2877
์˜ˆ๋ฅผ ๋“ค์–ด, ๊ฐ™์€ ๋ณ‘์ผ์ง€๋ผ๋„ ์ €์˜ ์•Œ์ธ ํ•˜์ด๋จธ๋‚˜ ํŒŒํ‚จ์Šจ ๋ณ‘์€
08:38
it probably would affect me differently than if
165
518528
3766
์—ฌ๋Ÿฌ๋ถ„๋“ค์ค‘ ํ•œ๋ช…์˜ ์•Œ์ธ ํ•˜์ด๋จธ๋‚˜ ํŒŒํ‚จ์Šจ๊ณผ๋Š”
08:42
one of you had that disease,
166
522294
1641
์‚ฌ๋ญ‡ ๋‹ค๋ฅผ ๊ฒ๋‹ˆ๋‹ค.
08:43
and if we both had Parkinson's disease,
167
523935
4345
๋งŒ์•ฝ ์—ฌ๋Ÿฌ๋ถ„๊ณผ ์ œ๊ฐ€ ํŒŒํ‚จ์Šจ ๋ณ‘์— ๊ฑธ๋ ค
08:48
and we took the same medication,
168
528280
2268
๋˜‘๊ฐ™์€ ์•ฝ์„ ๋ณต์šฉํ•œ๋‹ค ํ•ด๋„
08:50
but we had different genetic makeup,
169
530548
2747
์šฐ๋ฆฌ์˜ ์œ ์ „์  ํŠน์„ฑ์ด ๋‹ค๋ฅด๊ฒŒ ๋•Œ๋ฌธ์—
08:53
we probably would have a different result,
170
533295
2285
์„œ๋กœ ๋‹ค๋ฅธ ๊ฒฐ๊ณผ๊ฐ€ ๋‚˜ํƒ€๋‚˜๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
08:55
and it could well be that a drug that worked wonderfully
171
535580
3731
์ œ๊ฒŒ๋Š” ๋†€๋ผ์šธ ์ •๋„๋กœ ์ž˜ ๋“ฃ๋˜ ์•ฝ์ด
08:59
for me was actually ineffective for you,
172
539311
3579
์—ฌ๋Ÿฌ๋ถ„๋“ค์—๊ฒŒ๋Š” ์•„๋ฌด ํšจ๊ณผ๊ฐ€ ์—†์„ ๊ฐ€๋Šฅ์„ฑ๋„ ๊ฝค ์žˆ์Šต๋‹ˆ๋‹ค.
09:02
and similarly, it could be that a drug that is harmful for you
173
542890
4692
๊ฐ™์€ ๋งฅ๋ฝ์—์„œ, ์—ฌ๋Ÿฌ๋ถ„์—๊ฒŒ ํ•ด๋กœ์šด ์ž‘์šฉ์„ ํ–ˆ๋˜ ์•ฝ์ด
09:07
is safe for me, and, you know, this seems totally obvious,
174
547582
4302
์ œ๊ฒŒ๋Š” ์•ˆ์ „ํ•œ ๊ฒฝ์šฐ๋„ ์žˆ๊ฒ ์ฃ . ์ด๊ฑด ๋ถ„๋ช…ํ•ฉ๋‹ˆ๋‹ค.
09:11
but unfortunately it is not the way
175
551884
2728
๊ทธ๋Ÿฐ๋ฐ, ๋ถˆํ–‰ํ•˜๊ฒŒ๋„ ์ œ์•ฝ ์‚ฐ์—…์ด
09:14
that the pharmaceutical industry has been developing drugs
176
554612
3186
์‹ ์•ฝ์„ ๊ฐœ๋ฐœํ•˜๋Š” ๋ฐฉ๋ฒ•์€ ๊ทธ๋ ‡์ง€ ๋ชปํ–ˆ์Šต๋‹ˆ๋‹ค.
09:17
because, until now, it hasn't had the tools.
177
557798
3986
์™œ๋ƒํ•˜๋ฉด, ์ด์ œ๊นŒ์ง€๋Š” ๊ทธ๋Ÿด ์ˆ˜ ์žˆ๋Š” ๋„๊ตฌ๊ฐ€ ์—†์—ˆ๊ฑฐ๋“ ์š”.
09:21
And so we need to move away
178
561784
2292
๊ทธ๋Ÿฌ๋‹ˆ๊นŒ ์ด์ œ ์šฐ๋ฆฌ๋Š” ์ด๋Ÿฐ ๋งŒ๋ณ‘ํ†ต์น˜์ 
09:24
from this one-size-fits-all model.
179
564076
2954
๋ชจ๋ธ๋กœ๋ถ€ํ„ฐ ๋ฒ—์–ด๋‚˜์•ผ ํ•ฉ๋‹ˆ๋‹ค.
09:27
The way we've been developing drugs is essentially
180
567030
3177
์šฐ๋ฆฌ๊ฐ€ ์‹ ์•ฝ์„ ๊ฐœ๋ฐœํ•˜๋Š” ๋ฐฉ๋ฒ•์€ ๊ทผ๋ณธ์ ์œผ๋กœ
09:30
like going into a shoe store,
181
570207
1379
์‹ ๋ฐœ ๊ฐ€๊ฒŒ์— ๊ฐ€๋Š” ๊ฒƒ๊ณผ ๊ฐ™์•„์•ผ ํ•ฉ๋‹ˆ๋‹ค.
09:31
no one asks you what size you are, or
182
571586
2283
์•„๋ฌด๋„ ์—ฌ๋Ÿฌ๋ถ„์—๊ฒŒ ์–ด๋–ค ๋ฐœํฌ๊ธฐ์—ฌ์•ผ ํ•œ๋‹ค๊ฑฐ๋‚˜
09:33
if you're going dancing or hiking.
183
573869
2210
์ถค์„ ์ถ”๊ฑฐ๋‚˜ ๊ฑท๊ธฐ๋ฅผ ์š”๊ตฌํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
09:36
They just say, "Well, you have feet, here are your shoes."
184
576079
2808
๊ทธ๋“ค์€ ๊ทธ์ € "์†๋‹˜์˜ ๋ฐœ์ด ์ด๋ ‡๊ตฐ์š”. ๋งž๋Š” ์‹ ๋ฐœ์ด ์žˆ์Šต๋‹ˆ๋‹ค"๋ผ๊ณ  ํ•˜์ฃ .
09:38
It doesn't work with shoes, and our bodies are
185
578887
3600
์‹ ๋ฐœ์— ๋งž์ถ”๋Š”๊ฒŒ ์•„๋‹™๋‹ˆ๋‹ค. ์šฐ๋ฆฌ์˜ ์‹ ์ฒด๋Š”
09:42
many times more complicated than just our feet.
186
582487
3472
๋ฐœ๋ณด๋‹ค๋„ ๋ช‡ ๋ฐฐ๋‚˜ ๋” ๋ณต์žกํ•ฉ๋‹ˆ๋‹ค.
09:45
So we really have to change this.
187
585959
2541
๊ทธ๋Ÿฌ๋‹ˆ๊นŒ ์šฐ๋ฆฌ๋Š” ์ด๋Ÿฐ ๋ฐฉ์‹์„ ์ •๋ง๋กœ ๋ฐ”๊ฟ”์•ผ ํ•ฉ๋‹ˆ๋‹ค.
09:48
There was a very sad example of this in the last decade.
188
588500
5184
์ง€๋‚œ 10๋…„ ์‚ฌ์ด์— ์ด๋Ÿฐ ์Šฌํ”ˆ ์‚ฌ์—ฐ์ด ์žˆ์—ˆ์–ด์š”.
09:53
There's a wonderful drug, and a class of drugs actually,
189
593684
2648
๋Œ€๋‹จํ•œ ์‹ ์•ฝ์ด ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค. ์‚ฌ์‹ค ๋‹ค์ˆ˜์˜ ์•ฝ๋“ค์ด ์žˆ์—ˆ๋Š”๋ฐ,
09:56
but the particular drug was Vioxx, and
190
596332
2680
๊ทธ์ค‘ ํ•˜๋‚˜๊ฐ€ ๋ฐ”์ด์˜ฅ์Šค์˜€์ง€์š”.
09:59
for people who were suffering from severe arthritis pain,
191
599012
4376
๊ทน์‹ฌํ•œ ๊ด€์ ˆ์—ผ์„ ์•“๋Š” ํ™˜์ž๋“ค์„ ์œ„ํ•œ ์•ฝ์ด์—ˆ๋Š”๋ฐ,
10:03
the drug was an absolute lifesaver,
192
603388
3392
๊ด€์ ˆ์—ผ ํ™˜์ž๋“ค์—๊ฒŒ๋Š” ๊ฑฐ์˜ ์ง„์ •ํ•œ ์‚ถ์˜ ๊ตฌ์›์ž์˜€์Šต๋‹ˆ๋‹ค.
10:06
but unfortunately, for another subset of those people,
193
606780
5080
ํ•˜์ง€๋งŒ ์ด ๊ด€์ ˆ์—ผ์— ํƒ์›”ํ•œ ์•ฝ์€
10:11
they suffered pretty severe heart side effects,
194
611860
4769
๋ถˆํ–‰ํžˆ๋„ ๋‹ค๋ฅธ ๋ช‡๋ช‡์˜ ์‚ฌ๋žŒ๋“ค์—๊ฒŒ๋Š” ์‹ฌ์žฅ์— ๋ถ€์ž‘์šฉ์„ ์•ผ๊ธฐํ–ˆ์–ด์š”.
10:16
and for a subset of those people, the side effects were
195
616629
2728
๊ทธ๋“ค์ค‘ ๋ช‡์—๊ฒŒ๋Š” ํŠนํžˆ ์‹ฌ๊ฐํ–ˆ๊ณ ,
10:19
so severe, the cardiac side effects, that they were fatal.
196
619357
3897
๊ฒฐ๊ตญ ์ฃฝ์Œ์„ ์ดˆ๋ž˜ํ–ˆ์ฃ .
10:23
But imagine a different scenario,
197
623254
4042
์ž, ์ด์ œ ๋‹ค๋ฅธ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ์ƒ์ƒํ•ด๋ณด์ฃ .
10:27
where we could have had an array, a genetically diverse array,
198
627296
4302
์šฐ๋ฆฌ๊ฐ€ ์„œ๋กœ ๋‹ค๋ฅธ, ์œ ์ „์ ์œผ๋กœ ๋‹ค๋ฅธ ์‹ฌ์žฅ ์„ธํฌ์—ด์„ ๊ฐ€์กŒ์ง€๋งŒ,
10:31
of cardiac cells, and we could have actually tested
199
631598
3626
๋ฐ”์ด์˜ฅ์Šค ๋ผ๋Š” ์•ฝ์— ๋Œ€ํ•œ ์‹คํ—˜์„ ํ†ตํ•ด
10:35
that drug, Vioxx, in petri dishes, and figured out,
200
635224
5081
์‹คํ—˜์šฉ ์ ‘์‹œ ์œ„์—์„œ ๋ฏธ๋ฆฌ ๊ทธ๊ฑธ ์•Œ์•„๋„€๋‹ค๋ฉด์š”--
10:40
well, okay, people with this genetic type are going to have
201
640305
3744
"์•„, ์ด๋Ÿฐ ์œ ์ „ ํ˜•์งˆ์„ ๊ฐ€์ง„ ์‚ฌ๋žŒ๋“ค์€
10:44
cardiac side effects, people with these genetic subgroups
202
644049
5000
์‹ฌ์žฅ๋ณ‘ ๋ถ€์ž‘์šฉ์ด ์ƒ๊ธธ์ˆ˜๋„ ์žˆ๊ฒ ๊ตฌ๋‚˜!"
10:49
or genetic shoes sizes, about 25,000 of them,
203
649049
5144
"๋ฐ˜๋ฉด์— ๋‹ค๋ฅธ ์œ ์ „์  '๋ฐœ ํฌ๊ธฐ'๋ฅผ ๊ฐ€์ง„ ์‚ฌ๋žŒ๋“ค (์•ฝ 25,000๋ช…)์—๊ฒŒ๋Š”
10:54
are not going to have any problems.
204
654193
2760
์•„๋ฌด๋Ÿฐ ๋ฌธ์ œ๊ฐ€ ์—†๊ฒ ๊ตฌ๋‚˜!"๋ผ๊ณ  ์•Œ์•˜๋”๋ผ๋ฉด,
10:56
The people for whom it was a lifesaver
205
656953
2615
๊ทธ ์•ฝ์„ ์‚ถ์˜ ๊ตฌ์›์ฒ˜๋Ÿผ ์—ฌ๊ธฐ๋˜ ๊ด€์ ˆ์—ผ ํ™˜์ž๋“ค์€
10:59
could have still taken their medicine.
206
659568
1677
์—ฌ์ „ํžˆ ๊ทธ ์•ฝ์„ ์‚ฌ์šฉํ• ๋Ÿฐ์ง€ ๋ชจ๋ฆ…๋‹ˆ๋‹ค.
11:01
The people for whom it was a disaster, or fatal,
207
661245
4386
๋˜ํ•œ ์•ฝ์ด ์น˜๋ช…์ ์œผ๋กœ ์ž‘์šฉํ•  ์‚ฌ๋žŒ๋“ค์—๊ฒŒ๋Š”
11:05
would never have been given it, and
208
665631
2091
์•„์˜ˆ ์‹ ์•ฝ์ด ์ œ๊ณต๋˜์ง€ ์•Š์•˜๊ฒ ์ฃ .
11:07
you can imagine a very different outcome for the company,
209
667722
2583
์•ฝ์„ ํšŒ์ˆ˜ํ•ด์•ผ ํ–ˆ๋˜ ํšŒ์‚ฌ์˜ ์ž…์žฅ์—์„œ๋Š” ๋งค์šฐ ์ƒ๋ฐ˜๋œ ๊ฒฐ๊ณผ๋ฅผ
11:10
who had to withdraw the drug.
210
670305
2768
์–ป๊ฒŒ ๋˜์—ˆ์œผ๋ฆฌ๋ผ๋Š” ๊ฒƒ์„ ์ƒ์ƒํ•˜์‹ค ์ˆ˜ ์žˆ์„ ๊ฒ๋‹ˆ๋‹ค.
11:13
So that is terrific,
211
673073
2816
์ž, ์ด์ œ ์–ด๋Š์ •๋„ ๋ฌธ์ œ๋ฅผ ์•Œ์•˜์œผ๋‹ˆ,
11:15
and we thought, all right,
212
675889
1834
์šฐ๋ฆฌ๋Š” ์ด๊ฑธ ํ•ด๊ฒฐํ•˜๋ ค๊ณ  ํ–ˆ์Šต๋‹ˆ๋‹ค.
11:17
as we're trying to solve this problem,
213
677723
2759
๊ทธ ๊ณผ์ •์—์„œ
11:20
clearly we have to think about genetics,
214
680482
2197
์œ ์ „ํ•™์„ ์ƒ๊ฐํ•ด์•ผํ–ˆ๊ณ ,
11:22
we have to think about human testing,
215
682679
2834
์‚ฌ๋žŒ์— ๋Œ€ํ•œ ์‹คํ—˜๋„ ๊ณ ๋ คํ•ด์•ผ ํ–ˆ์Šต๋‹ˆ๋‹ค.
11:25
but there's a fundamental problem,
216
685513
1579
ํ•˜์ง€๋งŒ ๊ทธ๊ฒƒ๋ณด๋‹ค ๋” ๊ทผ๋ณธ์ ์ธ ๋ฌธ์ œ๊ฐ€ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
11:27
because right now, stem cell lines,
217
687092
2699
ํ˜„์žฌ ์ค„๊ธฐ์„ธํฌ ์—ด์€
11:29
as extraordinary as they are,
218
689791
1710
์•„๋ฌด๋ฆฌ ํŠน๋ณ„ํ•˜๋‹ค ํ• ์ง€๋ผ๋„
11:31
and lines are just groups of cells,
219
691501
1744
"์—ด" ์ด๋ผ๋Š”๊ฑด ๊ทธ์ € ์—ฌ๋Ÿฌ ์„ธํฌ์˜ ๋ชจ์ž„์ž…๋‹ˆ๋‹ค.
11:33
they are made by hand, one at a time,
220
693245
4332
์ด ์„ธํฌ๋“ค์€ ์†์œผ๋กœ ์ผ์ผ์ด ๋งŒ๋“ค์–ด์•ผ ํ•˜๊ณ 
11:37
and it takes a couple of months.
221
697577
2224
๋งŒ๋“œ๋Š”๋ฐ ๋ช‡๋‹ฌ์”ฉ ๊ฑธ๋ฆฝ๋‹ˆ๋‹ค.
11:39
This is not scalable, and also when you do things by hand,
222
699801
4366
์ด๊ฑด ์–ด๋–ป๊ฒŒ ๋” ์ค„์ผ ์ˆ˜๊ฐ€ ์—†๋Š” ๊ธฐ๊ฐ„์ด์—์š”. ๋”๊ตฐ๋‹ค๋‚˜ ๋ชจ๋“ ๊ฑธ ์ˆ˜์ž‘์—…์œผ๋กœ ํ•˜๊ฒŒ๋˜๋ฉด
11:44
even in the best laboratories,
223
704167
1543
๊ทธ ์–ด๋–ค ์ตœ๊ณ ์˜ ์‹คํ—˜์‹ค์—์„œ ์กฐ์ฐจ
11:45
you have variations in techniques,
224
705710
3161
๊ธฐ์ˆ ์˜ ์ฐจ์ด๊ฐ€ ์žˆ๊ธฐ ๋งˆ๋ จ์ธ๋ฐ,
11:48
and you need to know, if you're making a drug,
225
708871
3181
์•„์‹œ๋‹ค์‹œํ”ผ ์•ฝ์„ ์ œ์กฐํ•œ๋‹ค ํ• ๋•Œ๋Š”
11:52
that the Aspirin you're going to take out of the bottle
226
712052
1898
์›”์š”์ผ์— ๋ณ‘์—์„œ ๊บผ๋‚ธ ์•„์Šคํ”ผ๋ฆฐ์ด
11:53
on Monday is the same as the Aspirin
227
713950
2440
์ˆ˜์š”์ผ์— ๋ณ‘์—์„œ ๊บผ๋‚ธ ์•„์Šคํ”ผ๋ฆฐ๊ณผ
11:56
that's going to come out of the bottle on Wednesday.
228
716390
2081
๊ฐ™์•„์•ผ ํ•˜์ž–์•„์š”.
11:58
So we looked at this, and we thought, okay,
229
718471
3791
์ €ํฌ๊ฐ€ ์ด ๋ชจ๋“  ์ƒ๊ฐ์„ ํ•˜๊ณ  ๋‚ด๋ฆฐ ๊ฒฐ๋ก ์€
12:02
artisanal is wonderful in, you know, your clothing
230
722262
3152
์˜ท ์ˆ˜์„ , ์ œ๋นต, ๊ณต์˜ˆํ’ˆ ์ œ์ž‘์—๋Š”
12:05
and your bread and crafts, but
231
725414
2944
์žฅ์ธ์ด ๊ฐ€์žฅ ๋›ฐ์–ด๋‚œ ์‹ค๋ ฅ์„ ๊ฐ€์กŒ๊ฒ ์ง€๋งŒ,
12:08
artisanal really isn't going to work in stem cells,
232
728358
2983
์‚ฌ์‹ค ์ค„๊ธฐ ์„ธํฌ๋ฅผ ๋งŒ๋“œ๋Š”๋ฐ๋Š” ์žฅ์ธ์ด ์žˆ์„ ์ˆ˜ ์—†๋‹ค๊ณ  ํ–ˆ์Šต๋‹ˆ๋‹ค.
12:11
so we have to deal with this.
233
731341
2390
์ €ํฌ๋Š” ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•ด์•ผ๋งŒ ํ–ˆ์–ด์š”.
12:13
But even with that, there still was another big hurdle,
234
733731
3920
ํ•˜์ง€๋งŒ, ๊ทธ๋ฆฌ๊ณ  ๋‚˜์„œ๋„ ์—ฌ์ „ํžˆ ๋˜ ๋‹ค๋ฅธ ํฐ ๋ฌธ์ œ๊ฐ€ ์žˆ์—ˆ๋Š”๋ฐ
12:17
and that actually brings us back to
235
737651
3564
์ด ๋ฌธ์ œ๋Š” ๋ชจ๋“ ๊ฑธ
12:21
the mapping of the human genome, because
236
741215
2384
์›์ ์ธ ์ธ๊ฐ„์˜ ๊ฒŒ๋†ˆ ์ง€๋„๋กœ ๋˜๋Œ๋ฆฌ์ฃ :
12:23
we're all different.
237
743599
2711
๋ฌธ์ œ๋Š” ๋ฐ”๋กœ, ์‚ฌ๋žŒ์€ ๋ชจ๋‘ ๋‹ค๋ฆ…๋‹ˆ๋‹ค.
12:26
We know from the sequencing of the human genome
238
746310
2832
์šฐ๋ฆฌ๋Š” ์ธ๊ฐ„์˜ ์—ผ๊ธฐ ์„œ์—ด์ด ๋ชจ๋‘
12:29
that it's shown us all of the A's, C's, G's and T's
239
749142
2557
A, C, G, T ์˜ ๋ฐฐ์—ด์ด๋ผ๋Š” ๊ฑธ ์•Œ๊ณ  ์žˆ์–ด์š”.
12:31
that make up our genetic code,
240
751699
2468
์ธ๊ฐ„์˜ ์œ ์ „์ž ์•”ํ˜ธ๋ฅผ ์ด๋ฃจ๋Š” ๊ฒƒ๋“ค์ด์ฃ .
12:34
but that code, by itself, our DNA,
241
754167
4269
ํ•˜์ง€๋งŒ ๊ทธ ์•”ํ˜ธ๋“ค, ์ฆ‰ ์šฐ๋ฆฌ์˜ DNA๋Š”
12:38
is like looking at the ones and zeroes of the computer code
242
758436
4599
๊ทธ๊ฑธ ์ฝ์–ด๋‚ผ ์ปดํ“จํ„ฐ๋„ ์—†์ด
12:43
without having a computer that can read it.
243
763035
2825
์ปดํ“จํ„ฐ ์•”ํ˜ธ์˜ 0๊ณผ 1์„ ๋“ค์—ฌ๋‹ค ๋ณด๋Š” ๊ฒƒ๊ณผ ๋น„์Šทํ•ฉ๋‹ˆ๋‹ค.
12:45
It's like having an app without having a smartphone.
244
765860
3288
๋งˆ์น˜ ์Šค๋งˆํŠธํฐ๋„ ์—†์ด ์•ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋Š”๊ฒƒ ์ฒ˜๋Ÿผ์š”.
12:49
We needed to have a way of bringing the biology
245
769148
3884
์šฐ๋ฆฌ๋Š” ์ด ๋ฐฉ๋Œ€ํ•œ ์ž๋ฃŒ์— ์ƒ๋ฌผํ•™์„ ์ ์šฉํ•˜๋Š”
12:53
to that incredible data,
246
773032
2209
์ƒˆ๋กœ์šด ๋ฐฉ๋ฒ•์„ ๊ณ ์•ˆํ•ด์•ผํ–ˆ๋Š”๋ฐ,
12:55
and the way to do that was to find
247
775241
3115
๊ทธ๋ ‡๊ฒŒ ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š”
12:58
a stand-in, a biological stand-in,
248
778356
2687
๋ชจ๋“  ์œ ์ „์  ์ •๋ณด๋ฅผ ํฌํ•จํ•˜๊ณ  ์žˆ์œผ๋ฉด์„œ
13:01
that could contain all of the genetic information,
249
781043
4025
๋™์‹œ์— ๊ทธ ๋ง‰๋Œ€ํ•œ ์–‘์˜ ์ •๋ณด๋ฅผ ๋‹ค ์ฝ์„ ์ˆ˜ ์žˆ๋Š”
13:05
but have it be arrayed in such a way
250
785068
2528
์ƒ๋ฌผํ•™์  ๋Œ€์ฒด๋ฌผ์ด ํ•„์š”ํ–ˆ์Šต๋‹ˆ๋‹ค.
13:07
as it could be read together
251
787596
2864
๋ชจ๋“  ์ •๋ณด๋ฅผ ์ดํ•ดํ•œ ๋’ค
13:10
and actually create this incredible avatar.
252
790460
3256
์‹ค์ œ๋กœ ์•„๋ฐ”ํƒ€๋ฅผ ๋งŒ๋“ค ์ˆ˜ ์žˆ๋„๋ก ๋ง์ด์ฃ .
13:13
We need to have stem cells from all the genetic sub-types
253
793716
3704
์‹คํ—˜์‹ค์—์„œ ์šฐ๋ฆฌ๋ฅผ ์ œ๋Œ€๋กœ ๋ฌ˜์‚ฌํ•˜๋ ค๋ฉด
13:17
that represent who we are.
254
797420
2952
์กด์žฌํ•˜๋Š” ๋ชจ๋“  ์ข…๋ฅ˜์˜ ์ค„๊ธฐ์„ธํฌ๊ฐ€ ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค.
13:20
So this is what we've built.
255
800372
2760
๊ทธ๋ž˜์„œ ๋งŒ๋“ค์–ด๋‚ธ๊ฒŒ ์ด๊ฒ๋‹ˆ๋‹ค.
13:23
It's an automated robotic technology.
256
803132
3320
์ด๊ฑด ์ž๋™ํ™”๋œ ๋กœ๋ณดํŠธ ๊ธฐ์ˆ ์ธ๋ฐ์š”,
13:26
It has the capacity to produce thousands and thousands
257
806452
2608
์ด๊ฒƒ์œผ๋กœ ์ˆ˜์ฒœ ์ˆ˜ ๋งŒ์˜ ์ค„๊ธฐ ์„ธํฌ์—ด์„
13:29
of stem cell lines. It's genetically arrayed.
258
809060
4239
๋งŒ๋“ค ์ˆ˜ ์žˆ์–ด์š”. ์œ ์ „์  ์—ด์„ ๋งž์ถ”๋Š” ๊ฒƒ์ด์ฃ .
13:33
It has massively parallel processing capability,
259
813299
3749
์ด ๊ธฐ๊ณ„๋Š” ์—„์ฒญ๋‚œ ์–‘์˜ ๋™์‹œ ์ž‘์—… ๋Šฅ๋ ฅ์„ ๊ฐ€์ง€๊ณ  ์žˆ์ฃ .
13:37
and it's going to change the way drugs are discovered,
260
817048
3320
๊ฒฐ๊ณผ์ ์œผ๋กœ ์ด ๊ธฐ๊ณ„๊ฐ€ ์‹ ์•ฝ์„ ๋งŒ๋“œ๋Š” ๋ฐฉ๋ฒ•์„ ๋ฐ”๊พธ์–ด ๋†“๊ธฐ๋ฅผ ๋ฐ”๋ž๋‹ˆ๋‹ค.
13:40
we hope, and I think eventually what's going to happen
261
820368
3835
์šฐ๋ฆฌ ์—ฐ๊ตฌ์ง„๋“ค์˜ ์†Œ๋ง์ด์ž ์ œ๊ฐ€ ์ƒ๊ฐํ•˜๋Š” ๋ฐ”๋กœ๋Š”
13:44
is that we're going to want to re-screen drugs,
262
824203
2199
๊ฒฐ๊ตญ ๋ชจ๋“  ์•ฝ์„ ์žฌ์ ๊ฒ€ ํ–ˆ์œผ๋ฉด ํ•ฉ๋‹ˆ๋‹ค.
13:46
on arrays like this, that already exist,
263
826402
2491
ํ˜„์กดํ•˜๋Š” ๋ชจ๋“  ์•ฝ์„
13:48
all of the drugs that currently exist,
264
828893
1871
๋‹ค์‹œ ๊ฒ€์‚ฌ ํ•˜๋Š”๊ฑฐ์ฃ .
13:50
and in the future, you're going to be taking drugs
265
830764
2911
๊ทธ๋ฆฌ๊ณ  ๋ฏธ๋ž˜์—๋Š” ์น˜๋ฃŒ์•ฝ๊ณผ ๋ฐ€์ ‘ํ•˜๊ฒŒ ๊ด€๋ จ๋œ
13:53
and treatments that have been tested for side effects
266
833675
2872
๋‡Œ, ์‹ฌ์žฅ, ๊ฐ„ ์„ธํฌ ์™ธ์—๋„ ๋ชจ๋“  ์„ธํฌ๋ฅผ ๋Œ€์ƒ์œผ๋กœ
13:56
on all of the relevant cells,
267
836547
2303
๋ถ€์ž‘์šฉ์— ๋Œ€ํ•œ ์‹คํ—˜์„ ๊ฑฐ์นœ ์•ฝ๊ณผ ์น˜๋ฃŒ๋ฒ•์„
13:58
on brain cells and heart cells and liver cells.
268
838850
3153
์‚ฌ์šฉํ•˜๊ฒŒ ๋˜๋ฆฌ๋ผ๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
14:02
It really has brought us to the threshold
269
842003
3329
์ด ๊ธฐ์ˆ ์€ ์‚ฌ์‹ค ์ธ๋ฅ˜์—๊ฒŒ ๊ฐœ์ธ ๋งž์ถคํ™”๋œ ์•ฝ์— ๋Œ€ํ•œ
14:05
of personalized medicine.
270
845332
2214
์ถœ๋ฐœ์ ์„ ์„ ์‚ฌํ•œ๊ฒ๋‹ˆ๋‹ค.
14:07
It's here now, and in our family,
271
847546
4441
๊ทธ๋Ÿฐ ์‹œ๋Œ€๊ฐ€ ์˜จ๊ฑฐ์˜ˆ์š”. ์ œ ๊ฐ€์กฑ ์–˜๊ธฐ๋ฅผ ํ•˜์ž๋ฉด,
14:11
my son has type 1 diabetes,
272
851987
2938
์ œ ์•„๋“ค์€ ์ œ 1ํ˜• ๋‹น๋‡จ๋ณ‘์ด ์žˆ์Šต๋‹ˆ๋‹ค.
14:14
which is still an incurable disease,
273
854925
2648
์•„์ง๊นŒ์ง€๋Š” ๋ถˆ์น˜๋ณ‘์ด์ฃ .
14:17
and I lost my parents to heart disease and cancer,
274
857573
3442
์ €ํฌ ๋ถ€๋ชจ๋‹˜๋“ค์€ ์‹ฌ์žฅ๋ณ‘๊ณผ ์•”์œผ๋กœ ๋Œ์•„๊ฐ€์…จ๊ตฌ์š”.
14:21
but I think that my story probably sounds familiar to you,
275
861015
3733
์ €์˜ ์ด์•ผ๊ธฐ๋Š” ์•„๋งˆ ์—ฌ๋Ÿฌ๋ถ„๋“ค์—๊ฒŒ๋„ ์ต์ˆ™ํ• ๊ฑฐ์—์š”.
14:24
because probably a version of it is your story.
276
864748
4230
์•„๋งˆ๋„ ์ด๋Ÿฐ ์ด์•ผ๊ธฐ๊ฐ€ ์—ฌ๋Ÿฌ๋ถ„๋“ค์˜ ์ด์•ผ๊ธฐ์ด๊ธฐ๋„ ํ•˜๊ธฐ ๋•Œ๋ฌธ์ผ๊ฒ๋‹ˆ๋‹ค.
14:28
At some point in our lives, all of us,
277
868978
3944
๋ˆ„๊ตฌ๋“ ์ง€ ์–ด๋–ค ์‹œ์ ์—๋Š” ์šฐ๋ฆฌ ๋ชจ๋‘๋Š”,
14:32
or people we care about, become patients,
278
872922
2736
๋˜ ์šฐ๋ฆฌ๊ฐ€ ์•„๋ผ๋Š” ์‚ฌ๋žŒ๋“ค๋„, ํ™˜์ž๊ฐ€ ๋ฉ๋‹ˆ๋‹ค.
14:35
and that's why I think that stem cell research
279
875658
2609
๊ทธ๊ฒƒ์ด ๋ฐ”๋กœ ์ค„๊ธฐ ์„ธํฌ ์—ฐ๊ตฌ๊ฐ€ ์šฐ๋ฆฌ ๋ชจ๋‘์—๊ฒŒ
14:38
is incredibly important for all of us.
280
878267
3383
๋งค์šฐ ์ค‘์š”ํ•˜๋‹ค๊ณ  ์ƒ๊ฐํ•˜๋Š” ์ด์œ ์ž…๋‹ˆ๋‹ค.
14:41
Thank you. (Applause)
281
881650
3668
๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค. (๋ฐ•์ˆ˜)
14:45
(Applause)
282
885318
7108
(๋ฐ•์ˆ˜)
์ด ์›น์‚ฌ์ดํŠธ ์ •๋ณด

์ด ์‚ฌ์ดํŠธ๋Š” ์˜์–ด ํ•™์Šต์— ์œ ์šฉํ•œ YouTube ๋™์˜์ƒ์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ „ ์„ธ๊ณ„ ์ตœ๊ณ ์˜ ์„ ์ƒ๋‹˜๋“ค์ด ๊ฐ€๋ฅด์น˜๋Š” ์˜์–ด ์ˆ˜์—…์„ ๋ณด๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ฐ ๋™์˜์ƒ ํŽ˜์ด์ง€์— ํ‘œ์‹œ๋˜๋Š” ์˜์–ด ์ž๋ง‰์„ ๋”๋ธ” ํด๋ฆญํ•˜๋ฉด ๊ทธ๊ณณ์—์„œ ๋™์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค. ๋น„๋””์˜ค ์žฌ์ƒ์— ๋งž์ถฐ ์ž๋ง‰์ด ์Šคํฌ๋กค๋ฉ๋‹ˆ๋‹ค. ์˜๊ฒฌ์ด๋‚˜ ์š”์ฒญ์ด ์žˆ๋Š” ๊ฒฝ์šฐ ์ด ๋ฌธ์˜ ์–‘์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฌธ์˜ํ•˜์‹ญ์‹œ์˜ค.

https://forms.gle/WvT1wiN1qDtmnspy7