The math behind Michael Jordan’s legendary hang time - Andy Peterson and Zack Patterson

Matematika iza legendarnog skoka Majkla Džordana - Endi Piterson i Zek Paterson

1,422,480 views

2015-06-04 ・ TED-Ed


New videos

The math behind Michael Jordan’s legendary hang time - Andy Peterson and Zack Patterson

Matematika iza legendarnog skoka Majkla Džordana - Endi Piterson i Zek Paterson

1,422,480 views ・ 2015-06-04

TED-Ed


Please double-click on the English subtitles below to play the video.

Prevodilac: Mile Živković Lektor: Anja Saric
00:12
Michael Jordan once said,
0
12923
1742
Majkl Džordan je jednom rekao:
00:14
"I don't know whether I'll fly or not.
1
14665
1813
"Ne znam da li ću poleteti ili ne.
00:16
I know that when I'm in the air
2
16478
2392
Znam da kada sam u vazduhu,
00:18
sometimes I feel like I don't ever have to come down."
3
18870
2866
ponekad se osećam kao da nikada ne moram da siđem."
00:21
But thanks to Isaac Newton,
4
21736
1566
Ali zahvaljujući Isaku Njutnu,
00:23
we know that what goes up must eventually come down.
5
23302
3789
znamo da sve što se popne nekada mora i da siđe.
00:27
In fact, the human limit on a flat surface for hang time,
6
27091
4671
Zapravo, ljudsko ograničenje za lebdenje na ravnoj površini,
00:31
or the time from when your feet leave the ground to when they touch down again,
7
31762
4617
ili vreme od kada vaša stopala napuste zemlju do kad je ponovo pipnu
00:36
is only about one second,
8
36379
2275
iznosi samo oko jedan sekund,
00:38
and, yes, that even includes his airness,
9
38654
2929
i da, do uključuje i njegovo vazduhovisočanstvo
00:41
whose infamous dunk from the free throw line
10
41583
2853
čije je čuveno zakucavanje sa linije slobodnog šuta
00:44
has been calculated at .92 seconds.
11
44436
4081
izmereno na ,92 sekunde.
00:48
And, of course, gravity is what's making it so hard to stay in the air longer.
12
48517
5141
Naravno, gravitacija je ta koja otežava da duže ostanete u vazduhu.
00:53
Earth's gravity pulls all nearby objects towards the planet's surface,
13
53658
4848
Zemljina gravitacija sve obližnje predmete vuče ka površini planete
00:58
accelerating them at 9.8 meters per second squared.
14
58506
4912
i one ubrzavaju na 9,8 metara po sekundi na kvadrat.
01:03
As soon as you jump, gravity is already pulling you back down.
15
63418
5464
Čim skočite, gravitacija vas već vuče nadole.
01:08
Using what we know about gravity,
16
68882
1895
Koristeći ono što znamo o gravitaciji,
01:10
we can derive a fairly simple equation that models hang time.
17
70777
4519
možemo izvesti prilično jednostavnu jednačinu za model lebdenja.
01:15
This equation states that the height of a falling object above a surface
18
75296
4439
Ova jednačina kaže da je visina objekta u padu iznad površine
01:19
is equal to the object's initial height from the surface plus its initial velocity
19
79735
5450
jednaka prvobitnoj visini objekta od površine plus prvobintnoj brzini
01:25
multiplied by how many seconds it's been in the air,
20
85185
3500
pomnoženo se brojem sekunda koliko boravi u vazduhu,
01:28
plus half of the gravitational acceleration
21
88685
2979
plus polovina gravitacionog ubrzanja
01:31
multiplied by the square of the number of seconds spent in the air.
22
91664
5362
pomnožena sa kvadratom broja sekundi provedenih u vazduhu.
01:37
Now we can use this equation to model MJ's free throw dunk.
23
97026
4076
Sada možemo napraviti model Džordanovog zakucavanja uz ovu jednačinu.
01:41
Say MJ starts, as one does, at zero meters off the ground,
24
101102
4148
Recimo da Džordan, kao i svi, počinje sa nula metara na zemlji
01:45
and jumps with an initial vertical velocity of 4.51 meters per second.
25
105250
6258
i skače sa početnom vertikalnom brzinom od 4,51 metara po sekundi.
01:51
Let's see what happens if we model this equation on a coordinate grid.
26
111508
3885
Da vidimo šta se desi ako ovu jednačinu prebacimo u koordinatni sistem.
01:55
Since the formula is quadratic,
27
115393
1995
Pošto je formula kvadratna,
01:57
the relationship between height and time spent in the air
28
117388
3432
veza između visine i vremena provedenog u vazduhu
02:00
has the shape of a parabola.
29
120820
2470
ima oblik parabole.
02:03
So what does it tell us about MJ's dunk?
30
123290
2540
Šta nam to govori o Džordanovom zakucavanju?
02:05
Well, the parabola's vertex shows us his maximum height off the ground
31
125830
4536
Najviša tačka parabole pokazuje nam njegovu maksimalnu visinu
02:10
at 1.038 meters,
32
130366
3393
na 1,308 metara
02:13
and the X-intercepts tell us when he took off
33
133759
2993
a presek X-ose govori nam kada je skočio
02:16
and when he landed, with the difference being the hang time.
34
136752
5718
i kada se spustio, dok vreme lebdenja čini razliku.
02:22
It looks like Earth's gravity makes it pretty hard
35
142470
2564
Čini se kao da Zemljina gravitacija prilično otežava Džordanu
02:25
for even MJ to get some solid hang time.
36
145034
3179
da bude u vazduhu neko vreme.
02:28
But what if he were playing an away game somewhere else, somewhere far?
37
148213
4913
Ali šta kada bismo igrali u gostima negde drugde, negde daleko?
02:33
Well, the gravitational acceleration on our nearest planetary neighbor, Venus,
38
153126
4847
Pa, gravitaciono ubrzanje na našem najbližem susedu, Veneri,
02:37
is 8.87 meters per second squared, pretty similar to Earth's.
39
157973
5849
iznosi 8,87 metara po sekundi na kvadrat, prilično slično Zemlji.
02:43
If Michael jumped here with the same force as he did back on Earth,
40
163822
4007
Ako bi Majkl ovde skočio istom silom kao na Zemlji,
02:47
he would be able to get more than a meter off the ground,
41
167829
3311
uspeo bi da skoči više od metra od tla,
02:51
giving him a hang time of a little over one second.
42
171140
4832
čime bi dobio vreme u vazduhu nešto preko jedne sekunde.
02:55
The competition on Jupiter with its gravitational pull
43
175972
3098
Takmičenje na Jupiteru sa njegovom gravitacionom silom
02:59
of 24.92 meters per second squared would be much less entertaining.
44
179070
5759
od 24,92 metra po sekundi na kvadrat bilo bi mnogo manje zabavno.
03:04
Here, Michael wouldn't even get a half meter off the ground,
45
184829
3952
Ovde se Majkl ne bi odvojio ni pola metra od tla
03:08
and would remain airborne a mere .41 seconds.
46
188781
4528
i u vazduhu bio ostao samo ,41 sekundu.
03:13
But a game on the moon would be quite spectacular.
47
193309
3340
Ali utakmica na mesecu bila bi spektakularna.
03:16
MJ could take off from behind half court,
48
196649
2877
Džordan bi mogao da skoči iza polovine terena,
03:19
jumping over six meters high,
49
199526
2571
do šest metara u vazduh,
03:22
and his hang time of over five and half seconds,
50
202097
3316
gde bi proveo preko pet ipo sekundi,
03:25
would be long enough for anyone to believe he could fly.
51
205413
3786
što bi bilo dovoljno da bilo ko poveruje da on može da leti.
About this website

This site will introduce you to YouTube videos that are useful for learning English. You will see English lessons taught by top-notch teachers from around the world. Double-click on the English subtitles displayed on each video page to play the video from there. The subtitles scroll in sync with the video playback. If you have any comments or requests, please contact us using this contact form.

https://forms.gle/WvT1wiN1qDtmnspy7