The math behind Michael Jordan’s legendary hang time - Andy Peterson and Zack Patterson
喬丹傳奇的滯空時間背後的數學 - Andy Peterson 和 Zack Patterson
1,422,480 views ・ 2015-06-04
請雙擊下方英文字幕播放視頻。
譯者: Zongzhen Yang
審譯者: Wang-Ju Tsai
00:12
Michael Jordan once said,
0
12923
1742
喬丹曾說過,
00:14
"I don't know whether I'll fly or not.
1
14665
1813
“我不知道我是否會飛,
00:16
I know that when I'm in the air
2
16478
2392
但我知道我一旦在空中,
00:18
sometimes I feel like I don't ever
have to come down."
3
18870
2866
有時我感覺我再也不會下來。“
00:21
But thanks to Isaac Newton,
4
21736
1566
但是透過牛頓的定理,
00:23
we know that what goes up
must eventually come down.
5
23302
3789
我們知道了飛起來的東西最後一定會掉下來。
00:27
In fact, the human limit
on a flat surface for hang time,
6
27091
4671
事實上,人類離一平面的滯空時間,
00:31
or the time from when your feet leave
the ground to when they touch down again,
7
31762
4617
或者從雙腳離開到再回到地面的時間,
00:36
is only about one second,
8
36379
2275
差不多只有一秒,
00:38
and, yes, that even includes his airness,
9
38654
2929
而且,是的,甚至包括了喬丹的滯空,
00:41
whose infamous dunk
from the free throw line
10
41583
2853
他著名的罰球線起跳灌籃
00:44
has been calculated at .92 seconds.
11
44436
4081
經過計算是0.92秒,
00:48
And, of course, gravity is what's making it
so hard to stay in the air longer.
12
48517
5141
而且,當然,重力使滯空時間很難延長。
00:53
Earth's gravity pulls all nearby objects
towards the planet's surface,
13
53658
4848
地心引力把所有東西拉向地球表面,
00:58
accelerating them
at 9.8 meters per second squared.
14
58506
4912
以9.8米每平方秒加速。
01:03
As soon as you jump,
gravity is already pulling you back down.
15
63418
5464
一旦你起跳時,重力就把你往下拉。
01:08
Using what we know about gravity,
16
68882
1895
根據我們對重力的認知,
01:10
we can derive a fairly simple equation
that models hang time.
17
70777
4519
我們可以推導出一個相當簡單,
可以計算滯空時間的公式。
01:15
This equation states that the height
of a falling object above a surface
18
75296
4439
這個公式說明落體到地面的高度
01:19
is equal to the object's initial height
from the surface plus its initial velocity
19
79735
5450
等於這個物體最初的高度加最初的速度
01:25
multiplied by how many seconds
it's been in the air,
20
85185
3500
乘以滯空的時間,
01:28
plus half of the
gravitational acceleration
21
88685
2979
加上一半的重力加速度
01:31
multiplied by the square of the number
of seconds spent in the air.
22
91664
5362
乘以滯空時間的平方。
01:37
Now we can use this equation to model
MJ's free throw dunk.
23
97026
4076
現在我們可以使用這個公式
來求出喬丹的罰球線灌籃。
01:41
Say MJ starts, as one does,
at zero meters off the ground,
24
101102
4148
當MJ一起跳時,他與地面的距離為零,
01:45
and jumps with an initial vertical
velocity of 4.51 meters per second.
25
105250
6258
他最初的垂直速度是每秒4.51米。
01:51
Let's see what happens if we model
this equation on a coordinate grid.
26
111508
3885
讓我們看看如果我們
把這個公式放到坐標會發生什麼。
01:55
Since the formula is quadratic,
27
115393
1995
因為這是一個二次方程式,
01:57
the relationship between height
and time spent in the air
28
117388
3432
高度和滯空時間的關係
02:00
has the shape of a parabola.
29
120820
2470
形成了一個拋物線。
02:03
So what does it tell us about MJ's dunk?
30
123290
2540
這能告訴我們什麼有關MJ的灌籃的事?
02:05
Well, the parabola's vertex shows us
his maximum height off the ground
31
125830
4536
那麼這個拋物線的頂點
告訴我們他離地面的最大距離
02:10
at 1.038 meters,
32
130366
3393
是1.038米,
02:13
and the X-intercepts tell us
when he took off
33
133759
2993
而且x的截點告訴我們他起跳
02:16
and when he landed,
with the difference being the hang time.
34
136752
5718
和落地之間的時間是滯空時間。
02:22
It looks like Earth's gravity
makes it pretty hard
35
142470
2564
看起來地心引力讓事情變得困難
02:25
for even MJ to get some solid hang time.
36
145034
3179
甚至讓MJ無法得到更長的滯空時間。
02:28
But what if he were playing an away game
somewhere else, somewhere far?
37
148213
4913
但是如果我們在很遠很遠的地方比賽
結果會有何不同?
02:33
Well, the gravitational acceleration
on our nearest planetary neighbor, Venus,
38
153126
4847
離我們最近的星球鄰居金星的地心引力是
02:37
is 8.87 meters per second squared,
pretty similar to Earth's.
39
157973
5849
8.87米每平方秒,這與地球的地心引力類似。
02:43
If Michael jumped here with the same
force as he did back on Earth,
40
163822
4007
如果喬丹用和在地球上一樣的力跳,
02:47
he would be able to get more
than a meter off the ground,
41
167829
3311
他會跳得離地面一米多一點,
02:51
giving him a hang time
of a little over one second.
42
171140
4832
並給他比一秒還多一點的滯空時間。
02:55
The competition on Jupiter
with its gravitational pull
43
175972
3098
在木星上的比賽,因為它的引力
02:59
of 24.92 meters per second squared
would be much less entertaining.
44
179070
5759
是24.92米每平方秒,會沒有那麼有趣的。
03:04
Here, Michael wouldn't even
get a half meter off the ground,
45
184829
3952
在那裡,喬丹甚至都不能離地半米,
03:08
and would remain airborne
a mere .41 seconds.
46
188781
4528
而且滯空時間也僅僅只有0.41秒。
03:13
But a game on the moon
would be quite spectacular.
47
193309
3340
但是在月亮上的比賽會相當的令人驚嘆。
03:16
MJ could take off from behind half court,
48
196649
2877
MJ可以從中場線起跳,
03:19
jumping over six meters high,
49
199526
2571
跳六米高,
03:22
and his hang time of over
five and half seconds,
50
202097
3316
而且有五秒半的滯空時間,
03:25
would be long enough for anyone
to believe he could fly.
51
205413
3786
足夠讓任何人覺得自己可以飛。
New videos
關於本網站
本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。