Where's Google going next? | Larry Page

1,112,213 views ・ 2014-03-22

TED


請雙擊下方英文字幕播放視頻。

譯者: Kuan-Yi Li 審譯者: Ana Choi
00:13
Charlie Rose: So Larry sent me an email
0
13381
3626
查理.羅斯:賴瑞發了封信給我,
00:17
and he basically said,
1
17007
1987
基本上他就是說,
00:18
we've got to make sure that we don't seem like we're
2
18994
3729
我們得確保我們看起來不能像
00:22
a couple of middle-aged boring men.
3
22723
4491
兩個乏味的中年人。
00:27
I said, I'm flattered by that --
4
27214
3042
我回他說,你這麼講我深感榮幸──
00:30
(Laughter) —
5
30256
2372
(笑聲)──
00:32
because I'm a bit older,
6
32628
3515
因為我年紀大一點,
00:36
and he has a bit more net worth than I do.
7
36143
4151
而他的淨資產又比我多一點。
00:40
Larry Page: Well, thank you.
8
40294
2599
賴瑞.佩吉:呵,謝謝。
00:42
CR: So we'll have a conversation about
9
42893
2980
查理.羅斯:我們會聊聊網際網路,
00:45
the Internet, and we'll have a conversation Google,
10
45873
2698
還會聊聊 Google,
00:48
and we'll have a conversation about search
11
48571
1434
聊聊搜尋,
00:50
and privacy,
12
50005
1367
和隱私,
00:51
and also about your philosophy
13
51372
1555
還有你的處世哲學,
00:52
and a sense of how you've connected the dots
14
52927
2456
以及你如何把這 一切聯接起來的,
00:55
and how this journey that began
15
55383
2091
以及多年前開始的
00:57
some time ago
16
57474
1284
這個旅程,
00:58
has such interesting prospects.
17
58758
1895
具有怎樣的有趣前景。
01:00
Mainly we want to talk about the future.
18
60653
2596
我們主要來討論一下未來。
01:03
So my first question: Where is Google
19
63249
1589
那我的第一個問題是:Google 身在何處,
01:04
and where is it going?
20
64838
2046
它將前往何方?
01:06
LP: Well, this is something we think about a lot,
21
66884
1459
賴瑞.佩吉: 好的,這個問題我們思考過很多,
01:08
and our mission we defined a long time ago
22
68343
3575
我們很早以前所定下的目標
01:11
is to organize the world's information
23
71918
2263
就是將全世界的資訊組織起來
01:14
and make it universally accessible and useful.
24
74181
3438
讓全世界的人們可以 獲得它並且從中受益。
01:17
And people always say,
25
77619
2042
人們總會問,
01:19
is that really what you guys are still doing?
26
79661
2215
你們還在做這樣的事情嗎?
01:21
And I always kind of think about that myself,
27
81876
2118
我自己也常思考這問題,
01:23
and I'm not quite sure.
28
83994
2196
我還不是很確定。
01:26
But actually, when I think about search,
29
86190
4007
但事實上,說到搜尋,
01:30
it's such a deep thing for all of us,
30
90197
2616
對所有人來說都 是個深奧的問題,
01:32
to really understand what you want,
31
92813
2243
要真正理解你想要的是什麼,
01:35
to understand the world's information,
32
95056
2368
要理解這個世界的資訊,
01:37
and we're still very much in the early stages of that,
33
97424
3532
我們還處於非常早期的階段,
01:40
which is totally crazy.
34
100956
1813
這真的很誇張。
01:42
We've been at it for 15 years already,
35
102769
2518
我們在這個領域裡已有十五年,
01:45
but it's not at all done.
36
105287
3575
卻離實現它還差得很遠。
01:48
CR: When it's done, how will it be?
37
108862
2676
查理.羅斯: 當實現時,它會是什麼樣?
01:51
LP: Well, I guess,
38
111538
2717
賴瑞.佩吉:我猜,
01:54
in thinking about where we're going --
39
114255
2400
想想我們的前進方向──
01:56
you know, why is it not done? --
40
116655
2287
像是,為什麼還沒有完成?──
01:58
a lot of it is just computing's kind of a mess.
41
118942
2436
大部分原因是 數據計算還是一團亂。
02:01
You know, your computer doesn't know where you are,
42
121378
1803
電腦不知道你在哪、
02:03
it doesn't know what you're doing,
43
123181
2035
不知道你在做什麼,
02:05
it doesn't know what you know,
44
125216
1682
也不知道你懂什麼。
02:06
and a lot we've been trying to do recently
45
126898
2576
近年來我們花了很多的精力,
02:09
is just make your devices work,
46
129474
3295
只為了讓你的設備運作起來,
02:12
make them understand your context.
47
132769
2341
讓它理解你的大致意圖。
02:15
Google Now, you know, knows where you are,
48
135110
2003
Google Now 知道你人在哪,
02:17
knows what you may need.
49
137113
2182
知道你可能需要什麼。
02:19
So really having computing work and understand you
50
139295
4108
所以讓電腦真正地 運作起來、理解你
02:23
and understand that information,
51
143403
2056
並且理解這些資訊,
02:25
we really haven't done that yet.
52
145459
2310
我們還沒真的做到那步。
02:27
It's still very, very clunky.
53
147769
1549
它仍非常地不成熟。
02:29
CR: Tell me, when you look at what Google is doing,
54
149318
2366
查理.羅斯: 對於 Google 正在做的事,
02:31
where does Deep Mind fit?
55
151684
2969
DeepMind 扮演什麼角色?
02:34
LP: Yeah, so Deep Mind is a company
56
154653
1584
賴瑞.佩吉:DeepMind 這家公司,
02:36
we just acquired recently.
57
156237
2531
我們最近才併購進來。
02:38
It's in the U.K.
58
158768
3082
它在英國。
02:41
First, let me tell you the way we got there,
59
161850
2654
首先,我講一下我們當時的狀況,
02:44
which was looking at search
60
164504
2228
當時我們焦點放在搜尋,
02:46
and really understanding,
61
166732
1623
並真正地理解,
02:48
trying to understand everything,
62
168355
2233
試圖理解一切,
02:50
and also make the computers not clunky
63
170588
1605
讓電腦不那麼遲鈍,
02:52
and really understand you --
64
172193
2201
並且真正地理解你──
02:54
like, voice was really important.
65
174394
2112
比如,語音非常重要。
02:56
So what's the state of the art on speech recognition?
66
176506
2861
最先進的語音辨識技術是怎樣的?
02:59
It's not very good.
67
179367
1660
它不是很好,
03:01
It doesn't really understand you.
68
181027
2066
它並不能真正地理解你。
03:03
So we started doing machine learning research
69
183093
2003
於是我們研究機器學習,
03:05
to improve that.
70
185096
1537
以改進它,
03:06
That helped a lot.
71
186633
1703
結果成效很大。
03:08
And we started just looking at things like YouTube.
72
188336
2367
然後我們開始轉向 YouTube 之類的東西。
03:10
Can we understand YouTube?
73
190703
1968
我們可以理解 YouTube 嗎?
03:12
But we actually ran machine learning on YouTube
74
192671
2686
我們實際在 YouTube 上 進行機器學習,
03:15
and it discovered cats, just by itself.
75
195357
4085
它找到了貓,完全靠自己。
03:19
Now, that's an important concept.
76
199442
2091
這是個重要的概念。
03:21
And we realized there's really something here.
77
201533
2991
我們意識到,其中有著深義。
03:24
If we can learn what cats are,
78
204524
2117
如果我們能學習貓是什麼,
03:26
that must be really important.
79
206641
2075
那一定是非常重要的。
03:28
So I think Deep Mind,
80
208716
2629
所以我認為 DeepMind,
03:31
what's really amazing about Deep Mind
81
211345
2364
它的真正神奇之處
03:33
is that it can actually --
82
213709
2004
在於它真的可以
03:35
they're learning things in this unsupervised way.
83
215713
3557
自主學習,無需人的干預。
03:39
They started with video games,
84
219270
2567
他們從遊戲開始,
03:41
and really just, maybe I can show the video,
85
221837
2493
真的只是 ──也許我可以播一下那影片──
03:44
just playing video games,
86
224330
2204
只是玩遊戲,
03:46
and learning how to do that automatically.
87
226534
2015
並且學習怎樣自動地玩。
03:48
CR: Take a look at the video games
88
228549
1852
查理.羅斯:看一下這遊戲,
03:50
and how machines are coming to be able
89
230401
2410
機器是如何開始有能力
03:52
to do some remarkable things.
90
232811
2456
做一些驚人的事情。
03:55
LP: The amazing thing about this
91
235267
1329
賴瑞.佩吉:這驚人之處在於,
03:56
is this is, I mean, obviously,
92
236596
1680
我覺得很明顯,
03:58
these are old games,
93
238276
1474
這些都是老遊戲,
03:59
but the system just sees what you see, the pixels,
94
239750
4798
但是系統和你看到的 完全一樣,就是像素,
04:04
and it has the controls and it has the score,
95
244548
2431
並且它能控制、能得分,
04:06
and it's learned to play all of these games,
96
246979
2211
還有它學會了所有這些遊戲,
04:09
same program.
97
249190
1579
同一個程式。
04:10
It's learned to play all of these games
98
250769
2037
它學會了所有這些遊戲,
04:12
with superhuman performance.
99
252806
1786
而且表現是超人級的。
04:14
We've not been able to do things like this
100
254592
1855
在過去,電腦是做不到這些事的。
04:16
with computers before.
101
256447
1518
04:17
And maybe I'll just narrate this one quickly.
102
257965
2295
我要簡單說明一下,
04:20
This is boxing, and it figures out it can
103
260260
2805
這是拳擊遊戲,系統算出
04:23
sort of pin the opponent down.
104
263065
2634
如何制伏對手。
04:25
The computer's on the left,
105
265699
1739
左邊的是電腦,
04:27
and it's just racking up points.
106
267438
3085
它就是要贏得高分。
04:30
So imagine if this kind
107
270523
2086
所以設想一下,如果這樣的
04:32
of intelligence were thrown at your schedule,
108
272609
2127
人工智慧能用在你的排程、
04:34
or your information needs, or things like that.
109
274736
4637
解決你的訊息需求, 或類似的事情。
04:39
We're really just at the beginning of that,
110
279373
2618
機器學習其實還在起步階段,
04:41
and that's what I'm really excited about.
111
281991
2365
而這讓我感到無比興奮。
04:44
CR: When you look at all that's taken place
112
284356
2470
查理.羅斯: 當你看到 DeepMind 和拳擊遊戲
04:46
with Deep Mind and the boxing,
113
286826
2584
上所發生的這一切,
04:49
also a part of where we're going
114
289410
2340
加上人工智慧
04:51
is artificial intelligence.
115
291750
2889
也是我們前進的方向之一。
04:54
Where are we, when you look at that?
116
294639
2799
從這些來看,我們走到哪步了?
04:57
LP: Well, I think for me,
117
297438
1785
賴瑞.佩吉:我認為對於我來說,
04:59
this is kind of one of the most exciting things
118
299223
1503
這是我看到的 最令人興奮的事情之一,
05:00
I've seen in a long time.
119
300726
1912
在很長時間以來。
05:02
The guy who started this company, Demis,
120
302638
2413
創立這家公司的德米斯
05:05
has a neuroscience and a computer science background.
121
305051
2778
擁有神經學和電腦科學的背景。
05:07
He went back to school
122
307829
1630
他回學校攻讀博士,
05:09
to get his Ph.D. to study the brain.
123
309459
3126
課題是研究大腦。
05:12
And so I think we're seeing a lot of exciting work
124
312585
2620
我們看到許多激勵人心的成果,
05:15
going on that sort of crosses computer science
125
315205
3081
出現在跨神經學與 電腦科學的領域。
05:18
and neuroscience
126
318286
1750
05:20
in terms of really understanding
127
320036
2325
關於如何真正去理解,
05:22
what it takes to make something smart
128
322361
2454
去打造出有智慧的機器,
05:24
and do really interesting things.
129
324815
1715
來做一些有趣的事。
05:26
CR: But where's the level of it now?
130
326530
2138
查理.羅斯: 我們現在處於什麼階段呢?
05:28
And how fast do you think we are moving?
131
328668
2706
你覺得我們的進展速度如何?
05:31
LP: Well, this is the state of the art right now,
132
331374
3269
賴瑞.佩吉: 這是當前達到的最高水準,
05:34
understanding cats on YouTube
133
334643
2131
理解 YouTube 上的貓
05:36
and things like that,
134
336774
1283
還有類似的事情,
05:38
improving voice recognition.
135
338057
2147
加強語音辨識技術。
05:40
We used a lot of machine learning
136
340204
2418
我們使用了許多機器學習
05:42
to improve things incrementally,
137
342622
2479
來逐步改進各種問題,
05:45
but I think for me, this example's really exciting,
138
345101
3394
我個人認為這例子非常令人興奮,
05:48
because it's one program
139
348495
2243
因為它只是一個程式
05:50
that can do a lot of different things.
140
350738
2044
卻可以做許多不同事情。
05:52
CR: I don't know if we can do this,
141
352782
1138
查理.羅斯: 我不知道這樣做合不合適,
05:53
but we've got the image of the cat.
142
353920
1185
我這兒有一張貓的圖片,
05:55
It would be wonderful to see this.
143
355105
1754
這張圖意義非凡。
05:56
This is how machines looked at cats
144
356859
2509
這就是機器看貓,
05:59
and what they came up with.
145
359368
1115
反映出的形象。
06:00
Can we see that image?
146
360483
1055
可以看一下圖片嗎?
06:01
LP: Yeah. CR: There it is. Can you see the cat?
147
361538
2402
賴瑞.佩吉:好的。 查理.羅斯:這就是了。你能看到貓嗎?
06:03
Designed by machines, seen by machines.
148
363940
2027
機器自己設計、看到了它。
06:05
LP: That's right.
149
365967
1110
賴瑞.佩吉:是的。
06:07
So this is learned from just watching YouTube.
150
367077
2607
這是僅僅透過觀看 YouTube 學到的。
06:09
And there's no training,
151
369684
1867
沒有事先訓練過,
06:11
no notion of a cat,
152
371551
1384
沒有貓的概念,
06:12
but this concept of a cat
153
372935
2561
但這個貓的概念挺重要的,
06:15
is something important that you would understand,
154
375496
2808
我們都知道什麼是貓,
06:18
and now that the machines can kind of understand.
155
378304
2523
而現在機器也有了一定理解。
06:20
Maybe just finishing
156
380827
1172
也許它已經完成了搜尋這部分,
06:21
also on the search part,
157
381999
2222
06:24
it started with search, really understanding
158
384221
2786
它從搜尋開始,去理解人的意圖
06:27
people's context and their information.
159
387007
2564
和他們的資訊。
06:29
I did have a video
160
389571
1860
我有一個影片,
06:31
I wanted to show quickly on that
161
391431
2010
我想快速展示一下
06:33
that we actually found.
162
393441
1647
我發現了什麼。
06:35
(Video) ["Soy, Kenya"]
163
395088
5112
(影片) 「肯亞,索伊」
06:40
Zack Matere: Not long ago,
164
400580
1872
查克.馬泰爾:不久之前,
06:42
I planted a crop of potatoes.
165
402452
2586
我種了一片馬鈴薯,
06:45
Then suddenly they started dying one after the other.
166
405038
3400
然後突然地, 不斷有馬鈴薯死掉。
06:48
I checked out the books and they didn't tell me much.
167
408438
2750
我查了書,但沒發現多少資訊,
06:51
So, I went and I did a search.
168
411188
1946
所以我去搜尋了一下。
06:53
["Zack Matere, Farmer"]
169
413134
3119
「查克.馬泰爾,農民」
06:57
Potato diseases.
170
417609
3147
馬鈴薯、疾病。
07:00
One of the websites told me
171
420756
1728
有一個網站告訴我
07:02
that ants could be the problem.
172
422484
1902
問題可能是螞蟻。
07:04
It said, sprinkle wood ash over the plants.
173
424386
2271
它說,在作物上撒一些木灰。
07:06
Then after a few days the ants disappeared.
174
426657
2284
幾天之後螞蟻消失了。
07:08
I got excited about the Internet.
175
428941
2594
網路讓我非常興奮。
07:11
I have this friend
176
431535
1665
我有個朋友,
07:13
who really would like to expand his business.
177
433200
3618
他很想擴展生意,
07:16
So I went with him to the cyber cafe
178
436818
3195
於是我和他一起去了網咖,
07:20
and we checked out several sites.
179
440013
2541
我們查了一些網站。
07:22
When I met him next, he was going to put a windmill
180
442554
2541
再次見到他時,
他準備在當地學校建一座風車。
07:25
at the local school.
181
445095
2694
07:27
I felt proud because
182
447789
1604
我感到很驕傲,
07:29
something that wasn't there before
183
449393
2028
因為一個以前沒有的東西,
07:31
was suddenly there.
184
451421
1887
就這樣突然出現了。
07:33
I realized that not everybody
185
453308
2690
我意識到,
並不是所有人都能夠用
07:35
can be able to access
186
455998
1534
07:37
what I was able to access.
187
457532
1486
我能用的東西。
07:39
I thought that I need to have an Internet
188
459018
1838
我想我需要有種網路,
07:40
that my grandmother can use.
189
460856
1801
讓我奶奶也會用它。
07:42
So I thought about a notice board.
190
462657
2457
所以我想到了一個公告欄,
07:45
A simple wooden notice board.
191
465114
1916
一個簡單的木製公告欄。
07:47
When I get information on my phone,
192
467030
2315
我從手機上得到資訊的時候,
07:49
I'm able to post the information
193
469345
2237
我就可以把它
07:51
on the notice board.
194
471582
1722
公布在公告欄上。
07:53
So it's basically like a computer.
195
473304
2858
所以,它有點像部電腦,
07:56
I use the Internet to help people.
196
476162
3889
我用網際網路來幫助別人。
08:00
I think I am searching for
197
480051
3410
我認為我是在尋找
08:03
a better life
198
483461
1541
一個更好的生活,
08:05
for me and my neighbors.
199
485002
4114
為我,也為我的鄰居們。
08:09
So many people have access to information,
200
489116
3984
這樣許多人都可以得到資訊,
08:13
but there's no follow-up to that.
201
493100
2581
但是在這之後就沒有後續了。
08:15
I think the follow-up to that is our knowledge.
202
495681
2508
我認為「後續」就是我們的知識。
08:18
When people have the knowledge,
203
498189
1606
人們有了知識,
08:19
they can find solutions
204
499795
1630
他們就能找到方法,
08:21
without having to helped out.
205
501425
1984
而不需要找人幫忙。
08:23
Information is powerful,
206
503440
2121
資訊的力量很強大,
08:25
but it is how we use it that will define us.
207
505561
4602
但是如何使用資訊 才決定我們的未來。
08:30
(Applause)
208
510163
4381
(掌聲)
08:34
LP: Now, the amazing thing about that video,
209
514544
2546
賴瑞.佩吉: 這段影片的精彩之處在於,
08:37
actually, was we just read about it in the news,
210
517090
1466
我們是先從新聞看到,
08:38
and we found this gentlemen,
211
518556
2505
我們才找這位先生,
08:41
and made that little clip.
212
521061
2315
錄了這段影片。
08:43
CR: When I talk to people about you,
213
523376
1391
查理.羅斯:當我和別人說起你,
08:44
they say to me, people who know you well, say,
214
524767
2605
這些很了解你的人,他們對我說,
08:47
Larry wants to change the world,
215
527372
1891
賴瑞想要改變世界,
08:49
and he believes technology can show the way.
216
529263
4112
他相信科技可以指引方向,
08:53
And that means access to the Internet.
217
533375
1858
而這需要有網路。
08:55
It has to do with languages.
218
535233
1731
這也和語言有關。
08:56
It also means how people can get access
219
536964
2829
這也意味著, 人們要如何存取網路
08:59
and do things that will affect their community,
220
539793
2706
來做一些事情, 會影響到他所在的群體。
09:02
and this is an example.
221
542499
2493
這就是一個例子。
09:04
LP: Yeah, that's right, and I think for me,
222
544992
3576
賴瑞.佩吉:是的,對我來說,
09:08
I have been focusing on access more,
223
548568
2382
我致力於更易用的網路,
09:10
if we're talking about the future.
224
550950
2198
如果我們說的是未來的話。
09:13
We recently released this Loon Project
225
553148
2674
我們最近推出了 Loon 專案,
09:15
which is using balloons to do it.
226
555822
2300
用熱氣球來存取網路,
09:18
It sounds totally crazy.
227
558122
1660
聽起來很瘋狂。
09:19
We can show the video here.
228
559782
2539
我們可以在這裡播一下影片。
09:22
Actually, two out of three people in the world
229
562321
1480
世界上三分之二的人
09:23
don't have good Internet access now.
230
563801
2386
沒好的網路可用。
09:26
We actually think this can really help people
231
566187
2906
我們認為這個專案可以幫助人們,
09:29
sort of cost-efficiently.
232
569093
2057
並且費用低廉。
09:31
CR: It's a balloon. LP: Yeah, get access to the Internet.
233
571150
3371
查理.羅斯:這是一個氣球。 賴瑞.佩吉:是的,可以連網。
09:34
CR: And why does this balloon give you access
234
574521
2143
查理.羅斯:為什麼可以透過這氣球連網?
09:36
to the Internet?
235
576664
1213
09:37
Because there was some interesting things
236
577877
1215
因為你得想出一些有趣的辦法,
09:39
you had to do to figure out how
237
579092
1834
09:40
to make balloons possible,
238
580926
2131
來讓氣球連網成為可能,
09:43
they didn't have to be tethered.
239
583057
1749
還不用給氣球插上線。
09:44
LP: Yeah, and this is a good example of innovation.
240
584806
2081
賴瑞.佩吉: 是的,這是個關於創新的好例子。
09:46
Like, we've been thinking about this idea
241
586887
2544
在我們在著手之前
09:49
for five years or more
242
589431
1772
就已經在思考這想法了,
09:51
before we started working on it,
243
591203
1601
有五年甚至更久,
09:52
but it was just really,
244
592804
1319
但問題在於,
09:54
how do we get access points up high, cheaply?
245
594123
3520
如何才能便宜地 在天上設一個存取點?
09:57
You normally have to use satellites
246
597643
1792
傳統得用人造衛星,
09:59
and it takes a long time to launch them.
247
599435
2939
但發射需要很長時間。
10:02
But you saw there how easy it is to launch a balloon
248
602374
2494
然後我們就想到,放個氣球到天上,
10:04
and get it up,
249
604868
1519
是多麼簡單的事,
10:06
and actually again, it's the power of the Internet,
250
606387
2001
這再次說明網路的力量。
10:08
I did a search on it,
251
608388
1780
我確實搜尋過這件事,
10:10
and I found, 30, 40 years ago,
252
610168
2304
我發現三四十年前
10:12
someone had put up a balloon
253
612472
1889
就有人放出過一個氣球,
10:14
and it had gone around the Earth multiple times.
254
614361
2805
而這個氣球繞著地球轉了不少圈。
10:17
And I thought, why can't we do that today?
255
617166
2835
然後我想,我們如今 為何不這麼做呢?
10:20
And that's how this project got going.
256
620001
2367
這個專案就這樣開始了。
10:22
CR: But are you at the mercy of the wind?
257
622368
2330
查理.羅斯: 但是你受風的影響大嗎?
10:24
LP: Yeah, but it turns out,
258
624698
2122
賴瑞.佩吉:是的,但實際上,
10:26
we did some weather simulations
259
626820
1493
我們做了些氣象模擬,
10:28
which probably hadn't really been done before,
260
628313
2547
很可能以前從來沒人做過,
10:30
and if you control the altitude of the balloons,
261
630860
2110
如果控制氣球的高度,
10:32
which you can do by pumping air into them
262
632970
2281
可以通過充氣或別的方法實現,
10:35
and other ways,
263
635251
1822
10:37
you can actually control roughly where they go,
264
637073
2929
就可以大致控制氣球的動向,
10:40
and so I think we can build a worldwide mesh
265
640002
2205
因此,我想我們可以 建造一個世界性網路,
10:42
of these balloons that can cover the whole planet.
266
642207
3339
用這些氣球來覆蓋全球。
10:45
CR: Before I talk about the future and transportation,
267
645546
2242
查理.羅斯: 在我們聊未來和運輸之前
10:47
where you've been a nerd for a while,
268
647788
1895
──這兩樣你已浸淫了一段時間。
10:49
and this fascination you have with transportation
269
649683
2424
你對運輸、自動駕駛汽車和 自行車研究很深──
10:52
and automated cars and bicycles,
270
652107
2063
10:54
let me talk a bit about what's been the subject here
271
654170
1737
我先提一下有關 愛德華.史諾登的話題,
10:55
earlier with Edward Snowden.
272
655907
2443
稍早前也是 TED 主題,
10:58
It is security and privacy.
273
658350
3106
事關安全與隱私。
11:01
You have to have been thinking about that.
274
661456
2340
你一定一直有在思考這問題。
11:03
LP: Yeah, absolutely.
275
663796
1354
賴瑞.佩吉:是的,毫無疑問。
11:05
I saw the picture of Sergey with Edward Snowden yesterday.
276
665150
2843
昨天我看到了謝爾蓋和 愛德華.史諾登的照片。
11:07
Some of you may have seen it.
277
667993
2870
在座的有些人應該也看到了。
11:10
But I think, for me, I guess,
278
670863
3171
但我個人覺得,
11:14
privacy and security are a really important thing.
279
674034
3662
隱私和安全是非常重要的事情。
11:17
We think about it in terms of both things,
280
677696
2245
我們在這兩方面都有所思考,
11:19
and I think you can't have privacy without security,
281
679941
2903
我認為沒有安全就不存在隱私,
11:22
so let me just talk about security first,
282
682844
2371
所以我先談談安全,
11:25
because you asked about Snowden and all of that,
283
685215
2596
因為你問到了有關史諾登的事情,
11:27
and then I'll say a little bit about privacy.
284
687811
2441
然後我會再講一點隱私。
11:30
I think for me, it's tremendously disappointing
285
690252
3800
我個人感到極度失望,
11:34
that the government
286
694052
1439
政府偷偷做了這些事 沒有告訴我們。
11:35
secretly did all this stuff and didn't tell us.
287
695491
2330
11:37
I don't think we can have a democracy
288
697821
3303
我將不再擁有民主,
11:41
if we're having to protect you and our users
289
701124
3430
如果我們被迫由政府手中,
11:44
from the government
290
704554
1696
保護大家
11:46
for stuff that we've never had a conversation about.
291
706250
2803
不受未討論的事情侵害的話。
11:49
And I don't mean we have to know
292
709053
1896
我倒不是說我們必須知道
11:50
what the particular terrorist attack is they're worried
293
710949
1695
政府所擔心的具體 恐怖襲擊是什麼,
11:52
about protecting us from,
294
712644
1762
11:54
but we do need to know
295
714406
1798
而是我們需要知道
11:56
what the parameters of it is,
296
716204
2410
在什麼樣的情況下,
11:58
what kind of surveillance the government's
297
718614
2044
政府要進行何種監控,
12:00
going to do and how and why,
298
720658
2168
打算怎麼做,為什麼這樣做,
12:02
and I think we haven't had that conversation.
299
722826
2277
我認為我們並沒有 討論過這些問題。
12:05
So I think the government's actually done
300
725103
2567
我認為政府偷做這些事情,
12:07
itself a tremendous disservice
301
727670
2168
這種失職造成了嚴重的傷害。
12:09
by doing all that in secret.
302
729838
2161
12:11
CR: Never coming to Google
303
731999
1615
查理.羅斯: 絕不要找 Google 要任何東西?
12:13
to ask for anything.
304
733614
1525
12:15
LP: Not Google, but the public.
305
735139
2030
賴瑞.佩吉:不是 Google,而是大眾。
12:17
I think we need to have a debate about that,
306
737169
3773
我認為我們需要討論一下這個問題,
12:20
or we can't have a functioning democracy.
307
740942
2499
否則我們的民主就名不符實。
12:23
It's just not possible.
308
743441
1406
這不可能稱為民主。
12:24
So I'm sad that Google's
309
744847
2244
對於 Google 處在一個,
12:27
in the position of protecting you and our users
310
747091
2616
要防範政府偷雞摸狗的位置,
12:29
from the government
311
749707
1534
12:31
doing secret thing that nobody knows about.
312
751241
2244
我覺得很可悲。
12:33
It doesn't make any sense.
313
753485
1747
這毫無道理。
12:35
CR: Yeah. And then there's a privacy side of it.
314
755232
2990
查理.羅斯:沒錯,然後還有隱私方面的問題。
12:38
LP: Yes. The privacy side,
315
758222
2427
賴瑞.佩吉:是的,還有隱私面,
12:40
I think it's -- the world is changing.
316
760649
1969
我認為,世界在變。
12:42
You carry a phone. It knows where you are.
317
762618
3905
你帶著手機,它知道你在哪裡。
12:46
There's so much more information about you,
318
766523
3085
還有許多你的個人資訊,
12:49
and that's an important thing,
319
769608
2846
這是件非常重要的事情,
12:52
and it makes sense why people are asking
320
772454
2272
人們也合理地提出一些,
12:54
difficult questions.
321
774726
2036
難以回答的問題。
12:56
We spend a lot of time thinking about this
322
776762
3367
我們花了很多時間去思考這一點,
13:00
and what the issues are.
323
780129
2711
以及問題所在。
13:02
I'm a little bit --
324
782840
1729
我有一點……
13:04
I think the main thing that we need to do
325
784569
1260
我認為我們需要做的事情裡最主要的一點,
13:05
is just provide people choice,
326
785829
2362
就是讓人們可以選擇,
13:08
show them what data's being collected --
327
788191
2512
告訴他們什麼數據會被收集──
13:10
search history, location data.
328
790703
4751
搜尋記錄、位置資訊。
13:15
We're excited about incognito mode in Chrome,
329
795454
2772
我們對於 Chrome 瀏覽器的 無痕模式感到很興奮,
13:18
and doing that in more ways,
330
798226
2249
將它應用到更多的方面,
13:20
just giving people more choice
331
800475
1396
也就是給予人們更多選擇,
13:21
and more awareness of what's going on.
332
801871
3293
讓他們更完整地 認識到發生了什麼事。
13:25
I also think it's very easy.
333
805164
2393
我也認為這非常簡單。
13:27
What I'm worried is that we throw out
334
807557
1277
我所擔心的是,
13:28
the baby with the bathwater.
335
808834
2090
我們會因噎廢食。
13:30
And I look at, on your show, actually,
336
810924
2914
我看到,在你的節目上,
13:33
I kind of lost my voice,
337
813838
1719
我嗓子有點啞了,
13:35
and I haven't gotten it back.
338
815557
1331
我還沒有恢復。
13:36
I'm hoping that by talking to you
339
816888
1644
我希望和你聊聊
13:38
I'm going to get it back.
340
818532
1653
能恢復得快一點。
13:40
CR: If I could do anything, I would do that.
341
820185
1732
查理.羅斯: 如果我能幫上什麼忙,我一定會幫。
13:41
LP: All right. So get out your voodoo doll
342
821917
2180
賴瑞.佩吉:那好,拿出你的巫毒娃娃,
13:44
and whatever you need to do.
343
824097
2419
該做什麼儘管做。
13:46
But I think, you know what, I look at that,
344
826516
2328
但是我認為,我看著這件事,
13:48
I made that public,
345
828844
1830
我把它公開化了,
13:50
and I got all this information.
346
830674
1217
我得到很多資訊。
13:51
We got a survey done on medical conditions
347
831891
2729
我做了個關於身體狀況的調查,
13:54
with people who have similar issues,
348
834620
3371
調查對象都有些類似的問題。
13:57
and I look at medical records, and I say,
349
837991
4741
我一邊看著醫療記錄,一邊說,
14:02
wouldn't it be amazing
350
842732
1405
如果每個人的醫療記錄
14:04
if everyone's medical records were available
351
844137
2050
都可以匿名地提供給
14:06
anonymously
352
846187
1683
14:07
to research doctors?
353
847870
2636
做研究的醫生,
豈不是很好?
14:10
And when someone accesses your medical record,
354
850506
3041
當有人查看你的醫療記錄時,
14:13
a research doctor,
355
853547
1609
一個做研究的醫生,
14:15
they could see, you could see which doctor
356
855156
2634
他們可以看到,你也可以看到
14:17
accessed it and why,
357
857790
1860
是哪位醫生看了,為什麼,
14:19
and you could maybe learn about
358
859650
1580
然後你也許可以了解到
14:21
what conditions you have.
359
861230
1630
你的狀況如何。
14:22
I think if we just did that,
360
862860
1502
我想我們若做到這點,
14:24
we'd save 100,000 lives this year.
361
864362
2165
一年就可以多救十萬人。
14:26
CR: Absolutely. Let me go — (Applause)
362
866527
2948
查理.羅斯:毫無疑問。讓我…… (掌聲)
14:29
LP: So I guess I'm just very worried that
363
869475
2762
賴瑞.佩吉:我想我就是非常擔心
14:32
with Internet privacy,
364
872237
1806
網路隱私的問題。
14:34
we're doing the same thing we're doing with medical records,
365
874043
2300
我們的問題和醫療記錄一樣,
14:36
is we're throwing out the baby with the bathwater,
366
876347
2529
就是我們因噎廢食了,
14:38
and we're not really thinking
367
878876
1828
我們沒有真正地思考過
14:40
about the tremendous good that can come
368
880704
2210
資訊共享帶來的巨大益處,
14:42
from people sharing information
369
882914
2191
人們分享資訊,
14:45
with the right people in the right ways.
370
885105
2577
與正確的人分享,用正確的方式。
14:47
CR: And the necessary condition
371
887682
2237
查理.羅斯:還有一個必要條件,
14:49
that people have to have confidence
372
889919
1702
就是人們得有信心,
14:51
that their information will not be abused.
373
891621
2455
相信他們的資訊不會被濫用。
14:54
LP: Yeah, and I had this problem with my voice stuff.
374
894076
1777
賴瑞.佩吉:是的, 我在嗓音上有同樣的問題,
14:55
I was scared to share it.
375
895853
1508
我害怕分享出來。
14:57
Sergey encouraged me to do that,
376
897361
1890
謝爾蓋鼓勵我這麼做,
14:59
and it was a great thing to do.
377
899251
1827
這件事非常值得做。
15:01
CR: And the response has been overwhelming.
378
901078
1734
查理.羅斯: 而且大家的反應出奇地好。
15:02
LP: Yeah, and people are super positive.
379
902812
1660
賴瑞.佩吉: 是的,而且人們的反應極為正面。
15:04
We got thousands and thousands of people
380
904472
2833
我們調查了成千上萬的人,
15:07
with similar conditions,
381
907305
1288
都有類似狀況,
15:08
which there's no data on today.
382
908593
3028
而這些數據至今都是沒有的。
15:11
So it was a really good thing.
383
911621
1356
所以這是件非常好的事情。
15:12
CR: So talking about the future, what is it about you
384
912977
3019
查理.羅斯: 說到未來,你是怎麼
15:15
and transportation systems?
385
915996
3758
注意到運輸系統的?
15:19
LP: Yeah. I guess I was just frustrated
386
919754
2177
賴瑞.佩吉: 我在密西根州讀大學的時候,
15:21
with this when I was at college in Michigan.
387
921931
2539
我是感到非常沮喪的。
15:24
I had to get on the bus and take it
388
924470
1450
我必須坐公共汽車,
15:25
and wait for it.
389
925920
1642
還要等它。
15:27
And it was cold and snowing.
390
927562
2179
當時很冷,又在下雪。
15:29
I did some research on how much it cost,
391
929741
2655
我做了點成本研究,
15:32
and I just became a bit obsessed with transportation systems.
392
932396
6425
然後我就有點迷上了運輸系統。
15:38
CR: And that began the idea of an automated car.
393
938821
2370
查理.羅斯: 於是就有了自動駕駛汽車的想法。
15:41
LP: Yeah, about 18 years ago I learned about
394
941191
1694
賴瑞.佩吉: 是的,大約 18 年前我發現
15:42
people working on automated cars,
395
942885
3182
有人在研究自動駕駛,
15:46
and I became fascinated by that,
396
946067
1623
我被深深吸引,
15:47
and it takes a while to get these projects going,
397
947690
2777
讓這些專案有所進展得花點時間,
15:50
but I'm super excited about the possibilities of that
398
950467
5097
但是想到有可能讓世界變得更好,
我感到無比興奮。
15:55
improving the world.
399
955564
1668
15:57
There's 20 million people or more injured per year.
400
957232
4526
每年有超過兩千萬人受傷。
16:01
It's the leading cause of death
401
961758
1986
這是美國 34 歲以下群體
16:03
for people under 34 in the U.S.
402
963744
2130
的主要死因。
16:05
CR: So you're talking about saving lives.
403
965874
1551
查理.羅斯:這就是拯救生命了。
16:07
LP: Yeah, and also saving space
404
967425
2355
賴瑞.佩吉:是的,也是節省空間
16:09
and making life better.
405
969780
3915
和讓生活更美好。
16:13
Los Angeles is half parking lots and roads,
406
973695
4245
在洛杉磯一半的土地 都是停車場和道路,
16:17
half of the area,
407
977940
1733
一半的土地,
16:19
and most cities are not far behind, actually.
408
979673
2827
而且大部分城市其實也差不多了。
16:22
It's just crazy
409
982500
1564
這實在是太瘋狂了,
16:24
that that's what we use our space for.
410
984064
1593
我們居然這樣利用空間。
16:25
CR: And how soon will we be there?
411
985657
2343
查理.羅斯:我們什麼時候可以實現?
16:28
LP: I think we can be there very, very soon.
412
988000
1926
賴瑞.佩吉: 我想非常、非常快就可以實現了。
16:29
We've driven well over 100,000 miles
413
989926
3501
我們已正常行駛超過十萬英里,
16:33
now totally automated.
414
993427
4093
現在完全是自動行駛。
16:37
I'm super excited about getting that out quickly.
415
997520
3652
能夠這麼快地實現它,讓我無比興奮。
16:41
CR: But it's not only you're talking about automated cars.
416
1001172
2405
查理.羅斯:但你考慮的 不只是自動駕駛汽車,
16:43
You also have this idea for bicycles.
417
1003577
2386
你對自行車也有這樣的想法。
16:45
LP: Well at Google, we got this idea
418
1005963
2246
賴瑞.佩吉: 在 Google,我們有個想法,
16:48
that we should just provide free bikes to everyone,
419
1008209
3451
我們應該向每一個人 提供免費自行車,
16:51
and that's been amazing, most of the trips.
420
1011660
2768
這非常棒,對大多數旅行都是。
16:54
You see bikes going everywhere,
421
1014428
1586
自行車哪都能去,
16:56
and the bikes wear out.
422
1016014
1566
而自行車會磨損,
16:57
They're getting used 24 hours a day.
423
1017580
1454
一天 24 小時都在用。
16:59
CR: But you want to put them above the street, too.
424
1019034
2160
查理.羅斯:但你也想把自行車放到街道上。
17:01
LP: Well I said, how do we get people
425
1021194
1575
賴瑞.佩吉:我就說,怎樣才能
17:02
using bikes more?
426
1022769
1527
讓人們多騎自行車呢?
17:04
CR: We may have a video here.
427
1024296
1625
查理.羅斯:我們這有一段影片。
17:05
LP: Yeah, let's show the video.
428
1025921
1278
賴瑞.佩吉: 好,我們來播一下影片,
17:07
I just got excited about this.
429
1027199
3092
這個讓我非常興奮。
17:10
(Music)
430
1030291
4042
(音樂)
17:16
So this is actually how you might separate
431
1036213
2425
其實這就是把自行車與 汽車分離的最經濟方法,
17:18
bikes from cars with minimal cost.
432
1038638
3629
17:26
Anyway, it looks totally crazy,
433
1046711
1755
這看起來很瘋狂,
17:28
but I was actually thinking about our campus,
434
1048466
2327
但實際上我考慮的是我們的校園,
17:30
working with the Zippies and stuff,
435
1050793
2060
和許多城市等等一起合作,
17:32
and just trying to get a lot more bike usage,
436
1052853
2298
就是想大大提高自行車使用率,
17:35
and I was thinking about,
437
1055151
1548
我還在想,
17:36
how do you cost-effectively separate
438
1056699
2831
我們怎樣才能有效並且廉價地
17:39
the bikes from traffic?
439
1059530
1414
把自行車從車流中分離?
17:40
And I went and searched,
440
1060944
1150
我做了研究,
17:42
and this is what I found.
441
1062094
1371
這就是我所得到的。
17:43
And we're not actually working on this,
442
1063465
1845
我們其實沒有研究這個,
17:45
that particular thing,
443
1065310
1292
我是說這個具體方案,
17:46
but it gets your imagination going.
444
1066602
2054
但它擴展了想像力。
17:48
CR: Let me close with this.
445
1068656
1764
查理.羅斯: 我們把這個話題先告一段落,
17:50
Give me a sense of the philosophy of your own mind.
446
1070420
2345
說一下你內心的哲學。
17:52
You have this idea of [Google X].
447
1072765
2488
你有了 Google X 這個想法,
17:55
You don't simply want
448
1075253
2996
你想要的不只是一些
17:58
to go in some small, measurable arena of progress.
449
1078249
5596
小的,規模有限的舞臺。
18:03
LP: Yeah, I think
450
1083845
1713
賴瑞.佩吉:是的,我認為
18:05
many of the things we just talked about are like that,
451
1085558
2131
我們剛討論過的許多事情就是這樣,
18:07
where they're really --
452
1087689
2952
它們真是……
18:10
I almost use the economic concept of additionality,
453
1090641
3630
我差點要用經濟學 概念上的額外性了,
18:14
which means that you're doing something
454
1094271
2190
就是說,你要做的事情 本來並不會發生,
18:16
that wouldn't happen unless you were actually doing it.
455
1096461
2948
除非你真的動手做。
18:19
And I think the more you can do things like that,
456
1099409
3140
我認為這樣的事情你做得越多,
18:22
the bigger impact you have,
457
1102549
2071
你的影響力就越大,
18:24
and that's about doing things
458
1104620
2990
重點在於
18:27
that people might not think are possible.
459
1107610
3607
去做人們認為不可能的事。
18:31
And I've been amazed,
460
1111217
1829
我驚訝地發現,
18:33
the more I learn about technology,
461
1113046
2229
我懂的技術越多,
18:35
the more I realize I don't know,
462
1115275
2196
就越意識到自己的不足。
18:37
and that's because this technological horizon,
463
1117471
3337
這是因為技術的眼界提高了,
18:40
the thing that you can see to do next,
464
1120808
2897
也就是預見下一步 該怎麼做的能力。
18:43
the more you learn about technology,
465
1123705
1840
你懂的技術越多,
18:45
the more you learn what's possible.
466
1125545
2602
你就越知道什麼是可能的。
18:48
You learn that the balloons are possible
467
1128147
2246
你知道氣球專案是可能的,
18:50
because there's some material that will work for them.
468
1130393
2337
因為有合適的材料可用。
18:52
CR: What's interesting about you too, though, for me,
469
1132730
2379
查理.羅斯:不過在我看來, 你的有趣之處在於,
18:55
is that, we have lots of people
470
1135109
1711
有很多的人在思考未來,
18:56
who are thinking about the future,
471
1136820
2142
有很多的人在思考未來,
18:58
and they are going and looking and they're coming back,
472
1138962
3268
他們去看了看,又回來了,
19:02
but we never see the implementation.
473
1142230
2127
而我們卻沒有看到最終實現。
19:04
I think of somebody you knew
474
1144357
1605
我想到了一個人,你一定知道,
19:05
and read about, Tesla.
475
1145962
2907
特斯拉。
19:08
The principle of that for you is what?
476
1148869
3804
你在這方面的原則是怎樣的?
19:12
LP: Well, I think invention is not enough.
477
1152673
1785
賴瑞.佩吉: 我認為僅僅有發明是不夠的。
19:14
If you invent something,
478
1154458
1221
如果你發明一樣東西,
19:15
Tesla invented electric power that we use,
479
1155679
3195
特斯拉發明了 我們用的電力系統,
19:18
but he struggled to get it out to people.
480
1158874
2661
但是他推廣起來就非常困難,
19:21
That had to be done by other people.
481
1161535
1684
普及是由別人實現的,
19:23
It took a long time.
482
1163219
1626
花費了很長時間。
19:24
And I think if we can actually combine both things,
483
1164845
3867
我認為,如果我們能將 二者真正結合起來,
19:28
where we have an innovation and invention focus,
484
1168712
3531
同時著眼於創新與發明,
19:32
plus the ability to really -- a company
485
1172243
2972
再加上一家公司,
19:35
that can really commercialize things
486
1175215
1998
可以使成果真正商業化,
19:37
and get them to people
487
1177213
1630
讓人們接觸到它,
19:38
in a way that's positive for the world
488
1178843
2075
讓它對世界有積極的影響,
19:40
and to give people hope.
489
1180918
2056
並給人們帶來希望。
19:42
You know, I'm amazed with the Loon Project
490
1182974
2774
你知道,大家對氣球專案的關注程度
19:45
just how excited people were about that,
491
1185748
2786
讓我很是吃驚,
19:48
because it gave them hope
492
1188534
1814
因為它帶來了希望,
19:50
for the two thirds of the world
493
1190348
1621
尤其是對世界上無法 上網的三分之二來說,
19:51
that doesn't have Internet right now that's any good.
494
1191969
2726
19:54
CR: Which is a second thing about corporations.
495
1194695
2122
查理.羅斯: 這就是關於公司的第二件事。
19:56
You are one of those people who believe
496
1196817
2476
有些人,包括你,認為,
19:59
that corporations are an agent of change
497
1199293
2317
公司可以成為帶來改變的媒介,
20:01
if they are run well.
498
1201610
1471
如果好好經營的話。
20:03
LP: Yeah. I'm really dismayed
499
1203081
1821
賴瑞.佩吉:是的, 多數人認為企業是邪惡的,
20:04
most people think companies are basically evil.
500
1204902
3294
這讓我很是沮喪,
20:08
They get a bad rap.
501
1208196
1766
這麼說並不公正,
20:09
And I think that's somewhat correct.
502
1209962
2241
但我認為在某程度上又是正確的。
20:12
Companies are doing the same incremental thing
503
1212203
2870
公司做的事情就是漸進發展,
20:15
that they did 50 years ago
504
1215073
1763
五十年前的公司就這樣做,
20:16
or 20 years ago.
505
1216836
1631
或者說二十年前,
20:18
That's not really what we need.
506
1218467
1370
這也並非是我們真正需要的。
20:19
We need, especially in technology,
507
1219837
2218
我們需要的是,特別是在科技上,
20:22
we need revolutionary change,
508
1222055
2117
是革命性改變,
20:24
not incremental change.
509
1224172
1413
而不是漸進式改變。
20:25
CR: You once said, actually,
510
1225585
1169
查理.羅斯:你曾說過,
20:26
as I think I've got this about right,
511
1226754
1818
我希望我的理解是對的,
20:28
that you might consider,
512
1228572
1645
就是,你可能考慮,
20:30
rather than giving your money,
513
1230217
1753
相較於直接捐出你的錢,
20:31
if you were leaving it to some cause,
514
1231970
3320
你更願意用於某些事業,
20:35
just simply giving it to Elon Musk,
515
1235290
2006
給伊隆.馬斯克就好了,
20:37
because you had confidence
516
1237296
1163
因為你相信
20:38
that he would change the future,
517
1238459
1842
他會改變未來,
20:40
and that you would therefore —
518
1240301
1777
因此你就會……
20:42
LP: Yeah, if you want to go Mars,
519
1242078
1584
賴瑞.佩吉:是的,如果你想去火星,
20:43
he wants to go to Mars,
520
1243662
1721
他想去火星,
20:45
to back up humanity,
521
1245383
1971
來為人類尋找後備方案,
20:47
that's a worthy goal, but it's a company,
522
1247354
1672
這目標很有價值, 但對公司來說是慈善事業。
20:49
and it's philanthropical.
523
1249026
2555
20:51
So I think we aim to do kind of similar things.
524
1251581
2952
所以我覺得我們的目標 是做些類似的事情。
20:54
And I think, you ask, we have a lot of employees
525
1254533
2987
你問過,我們在 Google 有許多員工,
20:57
at Google who have become pretty wealthy.
526
1257520
3315
他們非常富有,
21:00
People make a lot of money in technology.
527
1260835
2520
通過技術賺了很多錢,
21:03
A lot of people in the room are pretty wealthy.
528
1263355
2156
很多人都非常富有。
21:05
You're working because you want to change the world.
529
1265511
2314
你工作的目的是改變世界,
21:07
You want to make it better.
530
1267825
1762
你想讓世界變得更好。
21:09
Why isn't the company that you work for
531
1269587
3445
為什麼你工作的這家公司,
21:13
worthy not just of your time
532
1273032
1943
值得你投入時間,
21:14
but your money as well?
533
1274975
2151
卻不值得你投入金錢呢?
21:17
I mean, but we don't have a concept of that.
534
1277126
1722
我的意思是,我們並不這樣認為,
21:18
That's not how we think about companies,
535
1278848
2304
我們也不是這樣看待公司的。
21:21
and I think it's sad,
536
1281152
1467
我也覺得很傷感,
21:22
because companies are most of our effort.
537
1282619
3767
因為我們所付出的努力 絕大部分都花在了公司上。
21:26
They're where most of people's time is,
538
1286386
2515
人們在這裡付出了最多的時間,
21:28
where a lot of the money is,
539
1288901
1854
也花費了許多金錢,
21:30
and so I think I'd like for us to help out
540
1290755
2352
所以我想我要幫助大家,
21:33
more than we are.
541
1293107
1126
而非只顧自己。
21:34
CR: When I close conversations with lots of people,
542
1294233
1721
查理.羅斯: 我跟許多人的談話結束時,
21:35
I always ask this question:
543
1295954
1779
我總是問這樣的一個問題:
21:37
What state of mind,
544
1297733
1515
怎樣的心態,
21:39
what quality of mind is it
545
1299248
1809
怎樣的心靈特質,
21:41
that has served you best?
546
1301057
1767
讓你最有收穫?
21:42
People like Rupert Murdoch have said curiosity,
547
1302824
2521
像魯柏.梅鐸這樣的人 說是好奇心,
21:45
and other people in the media have said that.
548
1305345
2628
別的媒體人士也這樣說。
21:47
Bill Gates and Warren Buffett have said focus.
549
1307973
3024
比爾.蓋茲和華倫.巴菲特 說是專注,
21:50
What quality of mind,
550
1310997
1427
什麼樣的心靈特質
21:52
as I leave this audience,
551
1312424
1374
──在與觀眾說再見前──
21:53
has enabled you to think about the future
552
1313798
3530
使得你能夠思考未來,
21:57
and at the same time
553
1317328
1647
而且與此同時,
21:58
change the present?
554
1318975
2205
改變現在?
22:01
LP: You know, I think the most important thing --
555
1321180
1670
賴瑞.佩吉: 我認為最重要的事情,
22:02
I looked at lots of companies
556
1322850
1612
我見過很多公司,
22:04
and why I thought they don't succeed over time.
557
1324462
3303
為什麼我認為它們 沒能經受時間的考驗。
22:07
We've had a more rapid turnover of companies.
558
1327765
2833
如今公司的人員流動更快,
22:10
And I said, what did they fundamentally do wrong?
559
1330598
2769
我問,他們出錯的根源是什麼?
22:13
What did those companies all do wrong?
560
1333367
2167
這些公司都錯在了哪裡?
22:15
And usually it's just that they missed the future.
561
1335534
3272
通常就是因為他們錯失了未來。
22:18
And so I think, for me,
562
1338806
2444
所以在我看來,
22:21
I just try to focus on that and say,
563
1341250
2424
我就是專注於這一點,並且在想,
22:23
what is that future really going to be
564
1343674
2184
未來將真正走向何方,
22:25
and how do we create it,
565
1345858
1787
我們要如何創造未來,
22:27
and how do we cause our organization,
566
1347645
4667
我們怎樣才能讓我們的組織
22:32
to really focus on that
567
1352312
2440
真正專注於它,
22:34
and drive that at a really high rate?
568
1354752
3325
並且帶領組織快速行動呢?
22:38
And so that's been curiosity,
569
1358077
1360
所以那就是好奇心,
22:39
it's been looking at things
570
1359437
1733
去尋找人們
22:41
people might not think about,
571
1361170
1718
可能沒有想過的東西,
22:42
working on things that no one else is working on,
572
1362888
3105
研究別人所沒有研究過的東西,
22:45
because that's where the additionality really is,
573
1365993
3306
因為那才是真正的額外性,
22:49
and be willing to do that,
574
1369299
1551
同時樂於去做,
22:50
to take that risk.
575
1370850
1382
樂於承擔風險。
22:52
Look at Android.
576
1372232
1065
看看 Android,
22:53
I felt guilty about working on Android
577
1373297
2785
為 Android 花心力曾讓我感到內疚,
22:56
when it was starting.
578
1376082
1316
在它剛起步時,
22:57
It was a little startup we bought.
579
1377398
1958
我們併購它時, 它只是個小公司。
22:59
It wasn't really what we were really working on.
580
1379356
2670
它當時也不是我們 真正努力的方向。
23:02
And I felt guilty about spending time on that.
581
1382026
2495
為它花時間讓我感到內疚,
23:04
That was stupid.
582
1384521
1454
那真是非常傻。
23:05
That was the future, right?
583
1385975
1051
但那就是未來,對吧?
23:07
That was a good thing to be working on.
584
1387026
2285
那是個很棒的東西, 值得為之努力。
23:09
CR: It is great to see you here.
585
1389311
1417
查理.羅斯: 很高興在這裡見到你,
23:10
It's great to hear from you,
586
1390728
1460
很高興聽到你的講述,
23:12
and a pleasure to sit at this table with you.
587
1392188
2297
和你一起坐在這也是我的榮幸。
23:14
Thanks, Larry.
588
1394485
928
謝謝賴瑞。
23:15
LP: Thank you.
589
1395413
2103
賴瑞.佩吉:謝謝你。
23:17
(Applause)
590
1397516
3932
(掌聲)
23:21
CR: Larry Page.
591
1401448
3311
查理.羅斯:賴瑞.佩吉。
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog