Susan Etlinger: What do we do with all this big data?

153,264 views ・ 2014-10-20

TED


请双击下面的英文字幕来播放视频。

翻译人员: Yumeng Guo 校对人员: Bighead Ge
00:13
Technology has brought us so much:
0
13354
3135
科技极大程度上改变了世界:
00:16
the moon landing, the Internet,
1
16489
2019
登月计划,互联网,基因组测序。
00:18
the ability to sequence the human genome.
2
18508
2625
00:21
But it also taps into a lot of our deepest fears,
3
21133
3724
但随之而来的是我们内心深处的忧虑,
00:24
and about 30 years ago,
4
24857
1856
大约30年前,
00:26
the culture critic Neil Postman wrote a book
5
26713
2553
文学评论家尼尔•波兹曼出了一本书,
00:29
called "Amusing Ourselves to Death,"
6
29266
2115
名为《娱乐至死》,
00:31
which lays this out really brilliantly.
7
31381
2759
将这个问题展现得淋漓尽致。
00:34
And here's what he said,
8
34140
1650
他这样写道,
00:35
comparing the dystopian visions
9
35790
2263
将乔治•奥威尔和阿道司•赫胥黎
00:38
of George Orwell and Aldous Huxley.
10
38053
3573
两人的反乌托邦观点做比较,
00:41
He said, Orwell feared we would become
11
41626
3126
奥威尔害怕我们的文化成为「受制文化」。
00:44
a captive culture.
12
44752
2248
00:47
Huxley feared we would become a trivial culture.
13
47000
3752
赫胥黎担心的是我们的文化成为「琐碎文化」
00:50
Orwell feared the truth would be
14
50752
2145
奥威尔害怕的是真理被隐瞒,
00:52
concealed from us,
15
52897
1923
00:54
and Huxley feared we would be drowned
16
54820
2190
赫胥黎担心的是我们被淹没在
00:57
in a sea of irrelevance.
17
57010
2693
无聊烦琐的世事中。
00:59
In a nutshell, it's a choice between
18
59703
2170
简言之,这是「老大哥」看你
01:01
Big Brother watching you
19
61873
2600
01:04
and you watching Big Brother.
20
64473
2496
还是你看「老大哥」的选择。 (译者注:「老大哥」典出奥威尔名著《1984》)
01:06
(Laughter)
21
66969
1931
(笑声)
01:08
But it doesn't have to be this way.
22
68900
1734
但事实不尽然,
01:10
We are not passive consumers of data and technology.
23
70634
3336
我们不是只能被动地接受数据和科技。
01:13
We shape the role it plays in our lives
24
73970
2403
我们能改变科技在我们生活中扮演的角色,
01:16
and the way we make meaning from it,
25
76373
2130
也能改变享受数据带来的恩惠的方式,
01:18
but to do that,
26
78503
1603
但要实现这一目的,
01:20
we have to pay as much attention to how we think
27
80106
3513
思考方式固然重要, 我们也要对如何解读数据
01:23
as how we code.
28
83619
2030
投以同样高的关注度。
01:25
We have to ask questions, and hard questions,
29
85649
3098
我们需要问问题,要问深刻的问题,
01:28
to move past counting things
30
88747
1869
不再单纯地统计数据,
01:30
to understanding them.
31
90616
2602
而是要进一步理解数据。
01:33
We're constantly bombarded with stories
32
93218
2446
我们身边充斥着那些
01:35
about how much data there is in the world,
33
95664
2476
讲述世界上有海量数据的故事,
01:38
but when it comes to big data
34
98140
1580
但当我们面临大数据,
01:39
and the challenges of interpreting it,
35
99720
2596
面临理解大数据所的挑战,
01:42
size isn't everything.
36
102316
2088
数据量的大小不代表一切。
01:44
There's also the speed at which it moves,
37
104404
2903
还有数据传播的速度,
01:47
and the many varieties of data types,
38
107307
1696
数据的类型,
01:49
and here are just a few examples:
39
109003
2498
举几个例子:
01:51
images,
40
111501
2198
图像,
01:53
text,
41
113699
4007
文字,
01:57
video,
42
117706
2095
视频,
01:59
audio.
43
119801
1830
音频。
02:01
And what unites this disparate types of data
44
121631
3042
不同类型的数据能有机地结合在一起,
02:04
is that they're created by people
45
124673
2221
因为正是人类创造了这些数据,
02:06
and they require context.
46
126894
2775
而且要在一定背景前提下理解特定数据。
02:09
Now, there's a group of data scientists
47
129669
2445
目前,一个来自伊利诺大学 芝加哥分校的数据科学家团队,
02:12
out of the University of Illinois-Chicago,
48
132114
2305
02:14
and they're called the Health Media Collaboratory,
49
134419
2554
自称「健康媒体合作实验室」,
02:16
and they've been working with the Centers for Disease Control
50
136973
2587
正与疾控中心合作,
02:19
to better understand
51
139560
1505
试图进一步了解
02:21
how people talk about quitting smoking,
52
141065
2848
人们谈论戒烟的方式,
02:23
how they talk about electronic cigarettes,
53
143913
2680
谈论电子烟的方式,
02:26
and what they can do collectively
54
146593
1985
以及他们如何协作
02:28
to help them quit.
55
148578
1984
来帮助人们戒烟。
02:30
The interesting thing is, if you want to understand
56
150562
2013
有趣的是,如果你想了解
02:32
how people talk about smoking,
57
152575
2216
人们谈论吸烟的方式,
02:34
first you have to understand
58
154791
1901
首先需要了解
02:36
what they mean when they say "smoking."
59
156692
2565
「烟」在他们口中的含义。
02:39
And on Twitter, there are four main categories:
60
159257
3926
在Twitter上,「烟」的含义通常有四类:
02:43
number one, smoking cigarettes;
61
163183
2997
第一,吸烟;
02:46
number two, smoking marijuana;
62
166180
2807
第二,抽大麻;
02:48
number three, smoking ribs;
63
168987
2643
第三,烟熏肋排;
02:51
and number four, smoking hot women.
64
171630
3553
第四,闻香识女。
02:55
(Laughter)
65
175183
2993
(笑声)
02:58
So then you have to think about, well,
66
178176
2426
然后你就会想,
03:00
how do people talk about electronic cigarettes?
67
180602
2140
人们是如何谈论电子烟的呢?
03:02
And there are so many different ways
68
182742
2025
人们谈论电子烟的方式非常多,
03:04
that people do this, and you can see from the slide
69
184767
2599
从屏幕上你们可以看到谈论的方式是如此繁多。
03:07
it's a complex kind of a query.
70
187366
2610
03:09
And what it reminds us is that
71
189976
3224
这就让我们想到,
03:13
language is created by people,
72
193200
2411
语言是人类创造的,
03:15
and people are messy and we're complex
73
195611
2340
人类的语言是复杂混乱的,
03:17
and we use metaphors and slang and jargon
74
197951
2767
我们用各种语言,无时无刻不在讲着比喻, 说着俚语和术语,
03:20
and we do this 24/7 in many, many languages,
75
200718
3279
03:23
and then as soon as we figure it out, we change it up.
76
203997
3224
好不容易弄清了,立马就又变掉了。
03:27
So did these ads that the CDC put on,
77
207221
5118
那么,疾控中心投放的广告,
03:32
these television ads that featured a woman
78
212339
2430
以及电视上那种看起来让人非常不安的
03:34
with a hole in her throat and that were very graphic
79
214769
2021
形象地画了一个喉咙烧出来洞的女性的广告,
03:36
and very disturbing,
80
216790
1904
03:38
did they actually have an impact
81
218694
1885
这些广告会影响人们戒烟吗?
03:40
on whether people quit?
82
220579
2671
03:43
And the Health Media Collaboratory respected the limits of their data,
83
223250
3307
健康媒体合作实验室承认其数据的有限性,
03:46
but they were able to conclude
84
226557
2005
但他们还是做了这样的结论,
03:48
that those advertisements — and you may have seen them —
85
228562
3312
那些广告——或许你们都见到过——
03:51
that they had the effect of jolting people
86
231874
2591
确实会震颤人的内心,
03:54
into a thought process
87
234465
1822
让他们有所思考,
03:56
that may have an impact on future behavior.
88
236287
3667
这样或许会影响他们未来的行为。
03:59
And what I admire and appreciate about this project,
89
239954
3891
这个项目让我尊重和欣赏的地方,
04:03
aside from the fact, including the fact
90
243845
1489
不仅在于该项目基于人们的真实需求,
04:05
that it's based on real human need,
91
245334
4057
04:09
is that it's a fantastic example of courage
92
249391
2846
还在于它充分诠释了面对「无聊烦琐的世事」
04:12
in the face of a sea of irrelevance.
93
252237
4443
展现出来的勇气。
04:16
And so it's not just big data that causes
94
256680
3305
因此,并不只是大数据在挑战我们对事物的理解,
04:19
challenges of interpretation, because let's face it,
95
259985
2601
让我们直面这一事实吧,
04:22
we human beings have a very rich history
96
262586
2594
不管处理多少数据,哪怕再少的数据,
04:25
of taking any amount of data, no matter how small,
97
265180
2693
人们也能把它搞得一团糟,
04:27
and screwing it up.
98
267873
1617
「见多不怪」了。
04:29
So many years ago, you may remember
99
269490
3737
你或许会记得,几年前,
04:33
that former President Ronald Reagan
100
273227
2273
前总统罗纳德•里根
04:35
was very criticized for making a statement
101
275500
1991
在声称「事实是愚蠢的」后
04:37
that facts are stupid things.
102
277491
3010
被严厉指责。
04:40
And it was a slip of the tongue, let's be fair.
103
280501
2794
平心而论,这是一个口误。
04:43
He actually meant to quote John Adams' defense
104
283295
2430
他原本是想引用约翰•亚当斯
04:45
of British soldiers in the Boston Massacre trials
105
285725
2751
在波士顿惨案审判为英军士兵的辩言
04:48
that facts are stubborn things.
106
288476
3150
「事实是顽固不化的。」
04:51
But I actually think there's
107
291626
2624
但事实上,我认为
04:54
a bit of accidental wisdom in what he said,
108
294250
3418
里根总统那句话蕴含着些许智慧,
04:57
because facts are stubborn things,
109
297668
2776
事实固然顽固不化,
05:00
but sometimes they're stupid, too.
110
300444
2923
有时确实是愚蠢的。
05:03
I want to tell you a personal story
111
303367
1888
这对我意义深远,
05:05
about why this matters a lot to me.
112
305255
3548
我讲一个私人故事来告诉你们为什么。
05:08
I need to take a breath.
113
308803
2437
我要深吸一口气。
05:11
My son Isaac, when he was two,
114
311240
2754
我的儿子艾萨克,在他两岁的时候,
05:13
was diagnosed with autism,
115
313994
2417
被诊断出患有自闭症,
05:16
and he was this happy, hilarious,
116
316411
2161
在我们眼里,他是个幸福、欢快、
05:18
loving, affectionate little guy,
117
318572
2035
充满爱意、惹人喜欢的小孩,
05:20
but the metrics on his developmental evaluations,
118
320607
2902
但该发展水平评估
05:23
which looked at things like the number of words —
119
323509
2070
关注的指标是诸如言多言寡——
05:25
at that point, none —
120
325579
3657
当时,是零——
05:29
communicative gestures and minimal eye contact,
121
329236
3940
互动性姿势和最少目光接触,
05:33
put his developmental level
122
333176
2003
根据这套评估标准的结果,
05:35
at that of a nine-month-old baby.
123
335179
3961
他的发展水平相当于9月大的婴儿。
05:39
And the diagnosis was factually correct,
124
339140
2960
按照这套标准,结果无可厚非,
05:42
but it didn't tell the whole story.
125
342100
3209
但这不是全部。
05:45
And about a year and a half later,
126
345309
1401
一年半之后,
05:46
when he was almost four,
127
346710
2102
在他快要四岁的时候,
05:48
I found him in front of the computer one day
128
348812
2363
有一天我发现他坐在电脑前,
05:51
running a Google image search on women,
129
351175
5453
在Google图片搜索中搜索「women」
05:56
spelled "w-i-m-e-n."
130
356628
3616
拼成了「wimen」
06:00
And I did what any obsessed parent would do,
131
360244
2740
接下来我做了任何有心的父母都会做的事,
06:02
which is immediately started hitting the "back" button
132
362984
1901
我立马就按了后退按钮,
06:04
to see what else he'd been searching for.
133
364885
3363
看看他还搜索了什么。
06:08
And they were, in order: men,
134
368248
2171
查到了,按顺序来:男人,
06:10
school, bus and computer.
135
370419
7267
学校,汽车和电脑。
06:17
And I was stunned,
136
377686
2070
我目瞪口呆,
06:19
because we didn't know that he could spell,
137
379756
2002
因为我们还不知道他会拼单词,
06:21
much less read, and so I asked him,
138
381758
1766
更别说读写了,因此我问他,
06:23
"Isaac, how did you do this?"
139
383524
2193
「艾萨克,你是如何做到的?」
06:25
And he looked at me very seriously and said,
140
385717
2678
他很严肃地看着我说,
06:28
"Typed in the box."
141
388395
3352
「在搜索框里输入。」
06:31
He was teaching himself to communicate,
142
391747
3734
他一直在自我学习如何去沟通,
06:35
but we were looking in the wrong place,
143
395481
3004
但我们将注意力投在了别处,
06:38
and this is what happens when assessments
144
398485
2295
很显然,那些发展水平评估
06:40
and analytics overvalue one metric —
145
400780
2396
过分注重了一个指标——
06:43
in this case, verbal communication —
146
403176
2609
言语沟通——
06:45
and undervalue others, such as creative problem-solving.
147
405785
5703
而忽视了其他指标,如问题解决能力。
06:51
Communication was hard for Isaac,
148
411488
2307
沟通对于艾萨克而言很难,
06:53
and so he found a workaround
149
413795
1912
所以他找到了一个变通方法,
06:55
to find out what he needed to know.
150
415707
2857
自己去探索想要知道的信息。
06:58
And when you think about it, it makes a lot of sense,
151
418564
1890
你考虑一下,这确实很有道理,
07:00
because forming a question
152
420454
2081
因为提出一个问题
07:02
is a really complex process,
153
422535
2565
是复杂的过程,
07:05
but he could get himself a lot of the way there
154
425100
2522
但他能通过在搜索框中输入单词来达到同样目的。
07:07
by putting a word in a search box.
155
427622
4092
07:11
And so this little moment
156
431714
2936
因此,这一个小插曲
07:14
had a really profound impact on me
157
434650
2836
深深影响了我和我的家庭,
07:17
and our family
158
437486
1309
07:18
because it helped us change our frame of reference
159
438795
3141
因为它让我们对发生在他身上的一切 有了全新的认识,
07:21
for what was going on with him,
160
441936
2208
07:24
and worry a little bit less and appreciate
161
444144
2976
也不那么担心他了,
而且更加欣赏他的「人小鬼大」。
07:27
his resourcefulness more.
162
447120
2182
07:29
Facts are stupid things.
163
449302
2861
事实是愚蠢的,
07:32
And they're vulnerable to misuse,
164
452163
2397
极容易被误用,
07:34
willful or otherwise.
165
454560
1653
有意或无意地。
07:36
I have a friend, Emily Willingham, who's a scientist,
166
456213
3026
我有一个叫Emily Willingham的朋友,是科学家,
07:39
and she wrote a piece for Forbes not long ago
167
459239
2801
不久前他为福布斯杂志写过一篇文章,
07:42
entitled "The 10 Weirdest Things
168
462040
1980
名为《十个最奇怪的跟自闭症相关的事情》
07:44
Ever Linked to Autism."
169
464020
1810
07:45
It's quite a list.
170
465830
3005
此文深得我心。
07:48
The Internet, blamed for everything, right?
171
468835
3532
「互联网」,一切罪恶的源头,对吧?
07:52
And of course mothers, because.
172
472367
3757
当然,「母亲」也是其中一条。
07:56
And actually, wait, there's more,
173
476124
1587
事实上,没这么简单,
07:57
there's a whole bunch in the "mother" category here.
174
477711
3430
「母亲」还进一步细分为多条。
08:01
And you can see it's a pretty rich and interesting list.
175
481141
4815
你们可以看到这个清单真的内涵丰富又有趣。
08:05
I'm a big fan of
176
485956
2193
我很「欣赏」那些在在高速路旁怀孕的人。
08:08
being pregnant near freeways, personally.
177
488149
3704
08:11
The final one is interesting,
178
491853
1539
最后一条很有趣,
08:13
because the term "refrigerator mother"
179
493392
3003
因为「冰箱母亲」在最初被认为是
08:16
was actually the original hypothesis
180
496395
2605
孩童自闭症的原因,
08:19
for the cause of autism,
181
499000
1431
08:20
and that meant somebody who was cold and unloving.
182
500431
2735
这个词表示那些冰冷的、没有爱心的人。
08:23
And at this point, you might be thinking,
183
503166
1562
话已至此,你们也许会问,
08:24
"Okay, Susan, we get it,
184
504728
1657
「好吧,苏珊,我们明白了,
08:26
you can take data, you can make it mean anything."
185
506385
1782
你能理解数据,你可以决定数据的意义。」
08:28
And this is true, it's absolutely true,
186
508167
4703
这是对的,这绝对是没问题的,
08:32
but the challenge is that
187
512870
5610
但挑战在于,
08:38
we have this opportunity
188
518480
2448
你们自己也有机会明白数据的意义,
08:40
to try to make meaning out of it ourselves,
189
520928
2284
08:43
because frankly, data doesn't create meaning. We do.
190
523212
5352
因为,坦白地讲,数据自己不会创造意义, 是我们创造数据的意义。
08:48
So as businesspeople, as consumers,
191
528564
3256
因此,作为商人,作为消费者,
08:51
as patients, as citizens,
192
531820
2539
作为病人,作为公民,
08:54
we have a responsibility, I think,
193
534359
2396
我认为我们都有责任
08:56
to spend more time
194
536755
2194
花更多时间来锻炼批判性思维能力。
08:58
focusing on our critical thinking skills.
195
538949
2870
09:01
Why?
196
541819
1078
为什么?
09:02
Because at this point in our history, as we've heard
197
542897
3178
因为历史发展到今天,
09:06
many times over,
198
546075
1706
我们总是听到这样的说法,
09:07
we can process exabytes of data
199
547781
1981
我们能以闪电般速度
09:09
at lightning speed,
200
549762
2153
处理海量数据,
09:11
and we have the potential to make bad decisions
201
551915
3515
这就意味着我们能以更快地速度做出错误的决策,
09:15
far more quickly, efficiently,
202
555430
1834
09:17
and with far greater impact than we did in the past.
203
557264
5028
带给我们史无前例的巨大影响。
09:22
Great, right?
204
562292
1388
没错吧?
09:23
And so what we need to do instead
205
563680
3030
因此,我们需要做的就是
09:26
is spend a little bit more time
206
566710
2330
多花一点时间在
09:29
on things like the humanities
207
569040
2746
人文学,
09:31
and sociology, and the social sciences,
208
571786
3464
社会学,社会科学,
09:35
rhetoric, philosophy, ethics,
209
575250
2308
修辞学,哲学,伦理学,
09:37
because they give us context that is so important
210
577558
2856
因为这些知识非常有助于帮助我们理解大数据,
09:40
for big data, and because
211
580414
2576
09:42
they help us become better critical thinkers.
212
582990
2418
而且也能锻炼我们的批判性思维。
09:45
Because after all, if I can spot
213
585408
4207
毕竟,如果我能在一个论断中发现问题,
09:49
a problem in an argument, it doesn't much matter
214
589615
2486
这个问题是以文字还是数字的形式呈现并不那么重要。
09:52
whether it's expressed in words or in numbers.
215
592101
2759
09:54
And this means
216
594860
2719
而且,这些知识会
09:57
teaching ourselves to find those confirmation biases
217
597579
4421
让我们有能力辨识出事实与偏见,
10:02
and false correlations
218
602000
1822
错误的关联信息,
10:03
and being able to spot a naked emotional appeal
219
603822
2138
有能力在30码开外就看透赤裸裸的情感诉求,
10:05
from 30 yards,
220
605960
1662
10:07
because something that happens after something
221
607622
2522
因为,乙事件发生在甲事件之后,
10:10
doesn't mean it happened because of it, necessarily,
222
610144
3082
并不意味着是甲导致乙的发生,
10:13
and if you'll let me geek out on you for a second,
223
613226
2119
允许我耍一下酷,
10:15
the Romans called this "post hoc ergo propter hoc,"
224
615345
4297
罗马人称之为 「post hoc ergo propter hoc」
10:19
after which therefore because of which.
225
619642
3296
即「后此谬误」。
10:22
And it means questioning disciplines like demographics.
226
622938
3757
这意味着我们要对人口统计学 这样的学科打个问号。
10:26
Why? Because they're based on assumptions
227
626695
2520
为什么?因为这样的学科基于的假设是
10:29
about who we all are based on our gender
228
629215
2306
性别、年龄和住址等数据
10:31
and our age and where we live
229
631521
1462
决定我们的身份,
10:32
as opposed to data on what we actually think and do.
230
632983
3478
而不是基于我们的思想和行为。
10:36
And since we have this data,
231
636461
1663
我们获取了这些数据,
10:38
we need to treat it with appropriate privacy controls
232
638124
3139
我们需要做好隐私控制,
10:41
and consumer opt-in,
233
641263
3576
并保证民众的选择权,
10:44
and beyond that, we need to be clear
234
644839
2993
除此之外,我们需要弄清楚所做的假设,
10:47
about our hypotheses,
235
647832
2103
10:49
the methodologies that we use,
236
649935
2596
采用的研究方法,
10:52
and our confidence in the result.
237
652531
2804
以及对结果的信任。
10:55
As my high school algebra teacher used to say,
238
655335
2474
就像高中代数老师曾对我说的,
10:57
show your math,
239
657809
1531
给我看看你的解题步骤,
10:59
because if I don't know what steps you took,
240
659340
3441
因为如果我不知道你的步骤,
11:02
I don't know what steps you didn't take,
241
662781
1991
我就不知道你落下了哪些步骤,
11:04
and if I don't know what questions you asked,
242
664772
2438
如果我不知道你问了些什么,
11:07
I don't know what questions you didn't ask.
243
667210
3197
我就不知道哪些问题你没有问。
11:10
And it means asking ourselves, really,
244
670407
1523
我们应该问自己这个最难回答的问题,
11:11
the hardest question of all:
245
671930
1479
这真是值得的:
11:13
Did the data really show us this,
246
673409
3500
数据真的显示出了这个结果,
11:16
or does the result make us feel
247
676909
2311
还是这样的结果让我们感觉更成功、更舒服?
11:19
more successful and more comfortable?
248
679220
3878
11:23
So the Health Media Collaboratory,
249
683098
2584
因此,健康媒体合作实验室
11:25
at the end of their project, they were able
250
685682
1699
在该项目结束时发现,
11:27
to find that 87 percent of tweets
251
687381
3408
谈论那些很形象、令人不安的广告的推特中,
11:30
about those very graphic and disturbing
252
690789
2144
11:32
anti-smoking ads expressed fear,
253
692933
4038
有87%的表达出了恐惧,
11:36
but did they conclude
254
696971
1856
但他们做出这些广告让人戒烟的结论了吗?
11:38
that they actually made people stop smoking?
255
698827
3161
11:41
No. It's science, not magic.
256
701988
2542
没有。这是科学,但不是魔法。
11:44
So if we are to unlock
257
704530
3190
因此,如果我们想要激发
11:47
the power of data,
258
707720
2862
数据中潜在的能量,
11:50
we don't have to go blindly into
259
710582
3448
我们没必要盲目地
11:54
Orwell's vision of a totalitarian future,
260
714030
3436
游走于奥威尔所谓的极端未来,
11:57
or Huxley's vision of a trivial one,
261
717466
3117
或赫胥黎所谓的琐碎的未来,
12:00
or some horrible cocktail of both.
262
720583
3020
或两种思想的杂糅。
12:03
What we have to do
263
723603
2379
我们需要做的就是,
12:05
is treat critical thinking with respect
264
725982
2718
积极进行批判性思维,
12:08
and be inspired by examples
265
728700
2029
并学习健康媒体合作实验室的做法,
12:10
like the Health Media Collaboratory,
266
730729
2610
12:13
and as they say in the superhero movies,
267
733339
2328
就像超级英雄电影里说的那样,
12:15
let's use our powers for good.
268
735667
1822
力量用在行善上。
12:17
Thank you.
269
737489
2351
谢谢。
12:19
(Applause)
270
739840
2334
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7