Susan Etlinger: What do we do with all this big data?

155,722 views ・ 2014-10-20

TED


请双击下面的英文字幕来播放视频。

翻译人员: Yumeng Guo 校对人员: Bighead Ge
00:13
Technology has brought us so much:
0
13354
3135
科技极大程度上改变了世界:
00:16
the moon landing, the Internet,
1
16489
2019
登月计划,互联网,基因组测序。
00:18
the ability to sequence the human genome.
2
18508
2625
00:21
But it also taps into a lot of our deepest fears,
3
21133
3724
但随之而来的是我们内心深处的忧虑,
00:24
and about 30 years ago,
4
24857
1856
大约30年前,
00:26
the culture critic Neil Postman wrote a book
5
26713
2553
文学评论家尼尔•波兹曼出了一本书,
00:29
called "Amusing Ourselves to Death,"
6
29266
2115
名为《娱乐至死》,
00:31
which lays this out really brilliantly.
7
31381
2759
将这个问题展现得淋漓尽致。
00:34
And here's what he said,
8
34140
1650
他这样写道,
00:35
comparing the dystopian visions
9
35790
2263
将乔治•奥威尔和阿道司•赫胥黎
00:38
of George Orwell and Aldous Huxley.
10
38053
3573
两人的反乌托邦观点做比较,
00:41
He said, Orwell feared we would become
11
41626
3126
奥威尔害怕我们的文化成为「受制文化」。
00:44
a captive culture.
12
44752
2248
00:47
Huxley feared we would become a trivial culture.
13
47000
3752
赫胥黎担心的是我们的文化成为「琐碎文化」
00:50
Orwell feared the truth would be
14
50752
2145
奥威尔害怕的是真理被隐瞒,
00:52
concealed from us,
15
52897
1923
00:54
and Huxley feared we would be drowned
16
54820
2190
赫胥黎担心的是我们被淹没在
00:57
in a sea of irrelevance.
17
57010
2693
无聊烦琐的世事中。
00:59
In a nutshell, it's a choice between
18
59703
2170
简言之,这是「老大哥」看你
01:01
Big Brother watching you
19
61873
2600
01:04
and you watching Big Brother.
20
64473
2496
还是你看「老大哥」的选择。 (译者注:「老大哥」典出奥威尔名著《1984》)
01:06
(Laughter)
21
66969
1931
(笑声)
01:08
But it doesn't have to be this way.
22
68900
1734
但事实不尽然,
01:10
We are not passive consumers of data and technology.
23
70634
3336
我们不是只能被动地接受数据和科技。
01:13
We shape the role it plays in our lives
24
73970
2403
我们能改变科技在我们生活中扮演的角色,
01:16
and the way we make meaning from it,
25
76373
2130
也能改变享受数据带来的恩惠的方式,
01:18
but to do that,
26
78503
1603
但要实现这一目的,
01:20
we have to pay as much attention to how we think
27
80106
3513
思考方式固然重要, 我们也要对如何解读数据
01:23
as how we code.
28
83619
2030
投以同样高的关注度。
01:25
We have to ask questions, and hard questions,
29
85649
3098
我们需要问问题,要问深刻的问题,
01:28
to move past counting things
30
88747
1869
不再单纯地统计数据,
01:30
to understanding them.
31
90616
2602
而是要进一步理解数据。
01:33
We're constantly bombarded with stories
32
93218
2446
我们身边充斥着那些
01:35
about how much data there is in the world,
33
95664
2476
讲述世界上有海量数据的故事,
01:38
but when it comes to big data
34
98140
1580
但当我们面临大数据,
01:39
and the challenges of interpreting it,
35
99720
2596
面临理解大数据所的挑战,
01:42
size isn't everything.
36
102316
2088
数据量的大小不代表一切。
01:44
There's also the speed at which it moves,
37
104404
2903
还有数据传播的速度,
01:47
and the many varieties of data types,
38
107307
1696
数据的类型,
01:49
and here are just a few examples:
39
109003
2498
举几个例子:
01:51
images,
40
111501
2198
图像,
01:53
text,
41
113699
4007
文字,
01:57
video,
42
117706
2095
视频,
01:59
audio.
43
119801
1830
音频。
02:01
And what unites this disparate types of data
44
121631
3042
不同类型的数据能有机地结合在一起,
02:04
is that they're created by people
45
124673
2221
因为正是人类创造了这些数据,
02:06
and they require context.
46
126894
2775
而且要在一定背景前提下理解特定数据。
02:09
Now, there's a group of data scientists
47
129669
2445
目前,一个来自伊利诺大学 芝加哥分校的数据科学家团队,
02:12
out of the University of Illinois-Chicago,
48
132114
2305
02:14
and they're called the Health Media Collaboratory,
49
134419
2554
自称「健康媒体合作实验室」,
02:16
and they've been working with the Centers for Disease Control
50
136973
2587
正与疾控中心合作,
02:19
to better understand
51
139560
1505
试图进一步了解
02:21
how people talk about quitting smoking,
52
141065
2848
人们谈论戒烟的方式,
02:23
how they talk about electronic cigarettes,
53
143913
2680
谈论电子烟的方式,
02:26
and what they can do collectively
54
146593
1985
以及他们如何协作
02:28
to help them quit.
55
148578
1984
来帮助人们戒烟。
02:30
The interesting thing is, if you want to understand
56
150562
2013
有趣的是,如果你想了解
02:32
how people talk about smoking,
57
152575
2216
人们谈论吸烟的方式,
02:34
first you have to understand
58
154791
1901
首先需要了解
02:36
what they mean when they say "smoking."
59
156692
2565
「烟」在他们口中的含义。
02:39
And on Twitter, there are four main categories:
60
159257
3926
在Twitter上,「烟」的含义通常有四类:
02:43
number one, smoking cigarettes;
61
163183
2997
第一,吸烟;
02:46
number two, smoking marijuana;
62
166180
2807
第二,抽大麻;
02:48
number three, smoking ribs;
63
168987
2643
第三,烟熏肋排;
02:51
and number four, smoking hot women.
64
171630
3553
第四,闻香识女。
02:55
(Laughter)
65
175183
2993
(笑声)
02:58
So then you have to think about, well,
66
178176
2426
然后你就会想,
03:00
how do people talk about electronic cigarettes?
67
180602
2140
人们是如何谈论电子烟的呢?
03:02
And there are so many different ways
68
182742
2025
人们谈论电子烟的方式非常多,
03:04
that people do this, and you can see from the slide
69
184767
2599
从屏幕上你们可以看到谈论的方式是如此繁多。
03:07
it's a complex kind of a query.
70
187366
2610
03:09
And what it reminds us is that
71
189976
3224
这就让我们想到,
03:13
language is created by people,
72
193200
2411
语言是人类创造的,
03:15
and people are messy and we're complex
73
195611
2340
人类的语言是复杂混乱的,
03:17
and we use metaphors and slang and jargon
74
197951
2767
我们用各种语言,无时无刻不在讲着比喻, 说着俚语和术语,
03:20
and we do this 24/7 in many, many languages,
75
200718
3279
03:23
and then as soon as we figure it out, we change it up.
76
203997
3224
好不容易弄清了,立马就又变掉了。
03:27
So did these ads that the CDC put on,
77
207221
5118
那么,疾控中心投放的广告,
03:32
these television ads that featured a woman
78
212339
2430
以及电视上那种看起来让人非常不安的
03:34
with a hole in her throat and that were very graphic
79
214769
2021
形象地画了一个喉咙烧出来洞的女性的广告,
03:36
and very disturbing,
80
216790
1904
03:38
did they actually have an impact
81
218694
1885
这些广告会影响人们戒烟吗?
03:40
on whether people quit?
82
220579
2671
03:43
And the Health Media Collaboratory respected the limits of their data,
83
223250
3307
健康媒体合作实验室承认其数据的有限性,
03:46
but they were able to conclude
84
226557
2005
但他们还是做了这样的结论,
03:48
that those advertisements — and you may have seen them —
85
228562
3312
那些广告——或许你们都见到过——
03:51
that they had the effect of jolting people
86
231874
2591
确实会震颤人的内心,
03:54
into a thought process
87
234465
1822
让他们有所思考,
03:56
that may have an impact on future behavior.
88
236287
3667
这样或许会影响他们未来的行为。
03:59
And what I admire and appreciate about this project,
89
239954
3891
这个项目让我尊重和欣赏的地方,
04:03
aside from the fact, including the fact
90
243845
1489
不仅在于该项目基于人们的真实需求,
04:05
that it's based on real human need,
91
245334
4057
04:09
is that it's a fantastic example of courage
92
249391
2846
还在于它充分诠释了面对「无聊烦琐的世事」
04:12
in the face of a sea of irrelevance.
93
252237
4443
展现出来的勇气。
04:16
And so it's not just big data that causes
94
256680
3305
因此,并不只是大数据在挑战我们对事物的理解,
04:19
challenges of interpretation, because let's face it,
95
259985
2601
让我们直面这一事实吧,
04:22
we human beings have a very rich history
96
262586
2594
不管处理多少数据,哪怕再少的数据,
04:25
of taking any amount of data, no matter how small,
97
265180
2693
人们也能把它搞得一团糟,
04:27
and screwing it up.
98
267873
1617
「见多不怪」了。
04:29
So many years ago, you may remember
99
269490
3737
你或许会记得,几年前,
04:33
that former President Ronald Reagan
100
273227
2273
前总统罗纳德•里根
04:35
was very criticized for making a statement
101
275500
1991
在声称「事实是愚蠢的」后
04:37
that facts are stupid things.
102
277491
3010
被严厉指责。
04:40
And it was a slip of the tongue, let's be fair.
103
280501
2794
平心而论,这是一个口误。
04:43
He actually meant to quote John Adams' defense
104
283295
2430
他原本是想引用约翰•亚当斯
04:45
of British soldiers in the Boston Massacre trials
105
285725
2751
在波士顿惨案审判为英军士兵的辩言
04:48
that facts are stubborn things.
106
288476
3150
「事实是顽固不化的。」
04:51
But I actually think there's
107
291626
2624
但事实上,我认为
04:54
a bit of accidental wisdom in what he said,
108
294250
3418
里根总统那句话蕴含着些许智慧,
04:57
because facts are stubborn things,
109
297668
2776
事实固然顽固不化,
05:00
but sometimes they're stupid, too.
110
300444
2923
有时确实是愚蠢的。
05:03
I want to tell you a personal story
111
303367
1888
这对我意义深远,
05:05
about why this matters a lot to me.
112
305255
3548
我讲一个私人故事来告诉你们为什么。
05:08
I need to take a breath.
113
308803
2437
我要深吸一口气。
05:11
My son Isaac, when he was two,
114
311240
2754
我的儿子艾萨克,在他两岁的时候,
05:13
was diagnosed with autism,
115
313994
2417
被诊断出患有自闭症,
05:16
and he was this happy, hilarious,
116
316411
2161
在我们眼里,他是个幸福、欢快、
05:18
loving, affectionate little guy,
117
318572
2035
充满爱意、惹人喜欢的小孩,
05:20
but the metrics on his developmental evaluations,
118
320607
2902
但该发展水平评估
05:23
which looked at things like the number of words —
119
323509
2070
关注的指标是诸如言多言寡——
05:25
at that point, none —
120
325579
3657
当时,是零——
05:29
communicative gestures and minimal eye contact,
121
329236
3940
互动性姿势和最少目光接触,
05:33
put his developmental level
122
333176
2003
根据这套评估标准的结果,
05:35
at that of a nine-month-old baby.
123
335179
3961
他的发展水平相当于9月大的婴儿。
05:39
And the diagnosis was factually correct,
124
339140
2960
按照这套标准,结果无可厚非,
05:42
but it didn't tell the whole story.
125
342100
3209
但这不是全部。
05:45
And about a year and a half later,
126
345309
1401
一年半之后,
05:46
when he was almost four,
127
346710
2102
在他快要四岁的时候,
05:48
I found him in front of the computer one day
128
348812
2363
有一天我发现他坐在电脑前,
05:51
running a Google image search on women,
129
351175
5453
在Google图片搜索中搜索「women」
05:56
spelled "w-i-m-e-n."
130
356628
3616
拼成了「wimen」
06:00
And I did what any obsessed parent would do,
131
360244
2740
接下来我做了任何有心的父母都会做的事,
06:02
which is immediately started hitting the "back" button
132
362984
1901
我立马就按了后退按钮,
06:04
to see what else he'd been searching for.
133
364885
3363
看看他还搜索了什么。
06:08
And they were, in order: men,
134
368248
2171
查到了,按顺序来:男人,
06:10
school, bus and computer.
135
370419
7267
学校,汽车和电脑。
06:17
And I was stunned,
136
377686
2070
我目瞪口呆,
06:19
because we didn't know that he could spell,
137
379756
2002
因为我们还不知道他会拼单词,
06:21
much less read, and so I asked him,
138
381758
1766
更别说读写了,因此我问他,
06:23
"Isaac, how did you do this?"
139
383524
2193
「艾萨克,你是如何做到的?」
06:25
And he looked at me very seriously and said,
140
385717
2678
他很严肃地看着我说,
06:28
"Typed in the box."
141
388395
3352
「在搜索框里输入。」
06:31
He was teaching himself to communicate,
142
391747
3734
他一直在自我学习如何去沟通,
06:35
but we were looking in the wrong place,
143
395481
3004
但我们将注意力投在了别处,
06:38
and this is what happens when assessments
144
398485
2295
很显然,那些发展水平评估
06:40
and analytics overvalue one metric —
145
400780
2396
过分注重了一个指标——
06:43
in this case, verbal communication —
146
403176
2609
言语沟通——
06:45
and undervalue others, such as creative problem-solving.
147
405785
5703
而忽视了其他指标,如问题解决能力。
06:51
Communication was hard for Isaac,
148
411488
2307
沟通对于艾萨克而言很难,
06:53
and so he found a workaround
149
413795
1912
所以他找到了一个变通方法,
06:55
to find out what he needed to know.
150
415707
2857
自己去探索想要知道的信息。
06:58
And when you think about it, it makes a lot of sense,
151
418564
1890
你考虑一下,这确实很有道理,
07:00
because forming a question
152
420454
2081
因为提出一个问题
07:02
is a really complex process,
153
422535
2565
是复杂的过程,
07:05
but he could get himself a lot of the way there
154
425100
2522
但他能通过在搜索框中输入单词来达到同样目的。
07:07
by putting a word in a search box.
155
427622
4092
07:11
And so this little moment
156
431714
2936
因此,这一个小插曲
07:14
had a really profound impact on me
157
434650
2836
深深影响了我和我的家庭,
07:17
and our family
158
437486
1309
07:18
because it helped us change our frame of reference
159
438795
3141
因为它让我们对发生在他身上的一切 有了全新的认识,
07:21
for what was going on with him,
160
441936
2208
07:24
and worry a little bit less and appreciate
161
444144
2976
也不那么担心他了,
而且更加欣赏他的「人小鬼大」。
07:27
his resourcefulness more.
162
447120
2182
07:29
Facts are stupid things.
163
449302
2861
事实是愚蠢的,
07:32
And they're vulnerable to misuse,
164
452163
2397
极容易被误用,
07:34
willful or otherwise.
165
454560
1653
有意或无意地。
07:36
I have a friend, Emily Willingham, who's a scientist,
166
456213
3026
我有一个叫Emily Willingham的朋友,是科学家,
07:39
and she wrote a piece for Forbes not long ago
167
459239
2801
不久前他为福布斯杂志写过一篇文章,
07:42
entitled "The 10 Weirdest Things
168
462040
1980
名为《十个最奇怪的跟自闭症相关的事情》
07:44
Ever Linked to Autism."
169
464020
1810
07:45
It's quite a list.
170
465830
3005
此文深得我心。
07:48
The Internet, blamed for everything, right?
171
468835
3532
「互联网」,一切罪恶的源头,对吧?
07:52
And of course mothers, because.
172
472367
3757
当然,「母亲」也是其中一条。
07:56
And actually, wait, there's more,
173
476124
1587
事实上,没这么简单,
07:57
there's a whole bunch in the "mother" category here.
174
477711
3430
「母亲」还进一步细分为多条。
08:01
And you can see it's a pretty rich and interesting list.
175
481141
4815
你们可以看到这个清单真的内涵丰富又有趣。
08:05
I'm a big fan of
176
485956
2193
我很「欣赏」那些在在高速路旁怀孕的人。
08:08
being pregnant near freeways, personally.
177
488149
3704
08:11
The final one is interesting,
178
491853
1539
最后一条很有趣,
08:13
because the term "refrigerator mother"
179
493392
3003
因为「冰箱母亲」在最初被认为是
08:16
was actually the original hypothesis
180
496395
2605
孩童自闭症的原因,
08:19
for the cause of autism,
181
499000
1431
08:20
and that meant somebody who was cold and unloving.
182
500431
2735
这个词表示那些冰冷的、没有爱心的人。
08:23
And at this point, you might be thinking,
183
503166
1562
话已至此,你们也许会问,
08:24
"Okay, Susan, we get it,
184
504728
1657
「好吧,苏珊,我们明白了,
08:26
you can take data, you can make it mean anything."
185
506385
1782
你能理解数据,你可以决定数据的意义。」
08:28
And this is true, it's absolutely true,
186
508167
4703
这是对的,这绝对是没问题的,
08:32
but the challenge is that
187
512870
5610
但挑战在于,
08:38
we have this opportunity
188
518480
2448
你们自己也有机会明白数据的意义,
08:40
to try to make meaning out of it ourselves,
189
520928
2284
08:43
because frankly, data doesn't create meaning. We do.
190
523212
5352
因为,坦白地讲,数据自己不会创造意义, 是我们创造数据的意义。
08:48
So as businesspeople, as consumers,
191
528564
3256
因此,作为商人,作为消费者,
08:51
as patients, as citizens,
192
531820
2539
作为病人,作为公民,
08:54
we have a responsibility, I think,
193
534359
2396
我认为我们都有责任
08:56
to spend more time
194
536755
2194
花更多时间来锻炼批判性思维能力。
08:58
focusing on our critical thinking skills.
195
538949
2870
09:01
Why?
196
541819
1078
为什么?
09:02
Because at this point in our history, as we've heard
197
542897
3178
因为历史发展到今天,
09:06
many times over,
198
546075
1706
我们总是听到这样的说法,
09:07
we can process exabytes of data
199
547781
1981
我们能以闪电般速度
09:09
at lightning speed,
200
549762
2153
处理海量数据,
09:11
and we have the potential to make bad decisions
201
551915
3515
这就意味着我们能以更快地速度做出错误的决策,
09:15
far more quickly, efficiently,
202
555430
1834
09:17
and with far greater impact than we did in the past.
203
557264
5028
带给我们史无前例的巨大影响。
09:22
Great, right?
204
562292
1388
没错吧?
09:23
And so what we need to do instead
205
563680
3030
因此,我们需要做的就是
09:26
is spend a little bit more time
206
566710
2330
多花一点时间在
09:29
on things like the humanities
207
569040
2746
人文学,
09:31
and sociology, and the social sciences,
208
571786
3464
社会学,社会科学,
09:35
rhetoric, philosophy, ethics,
209
575250
2308
修辞学,哲学,伦理学,
09:37
because they give us context that is so important
210
577558
2856
因为这些知识非常有助于帮助我们理解大数据,
09:40
for big data, and because
211
580414
2576
09:42
they help us become better critical thinkers.
212
582990
2418
而且也能锻炼我们的批判性思维。
09:45
Because after all, if I can spot
213
585408
4207
毕竟,如果我能在一个论断中发现问题,
09:49
a problem in an argument, it doesn't much matter
214
589615
2486
这个问题是以文字还是数字的形式呈现并不那么重要。
09:52
whether it's expressed in words or in numbers.
215
592101
2759
09:54
And this means
216
594860
2719
而且,这些知识会
09:57
teaching ourselves to find those confirmation biases
217
597579
4421
让我们有能力辨识出事实与偏见,
10:02
and false correlations
218
602000
1822
错误的关联信息,
10:03
and being able to spot a naked emotional appeal
219
603822
2138
有能力在30码开外就看透赤裸裸的情感诉求,
10:05
from 30 yards,
220
605960
1662
10:07
because something that happens after something
221
607622
2522
因为,乙事件发生在甲事件之后,
10:10
doesn't mean it happened because of it, necessarily,
222
610144
3082
并不意味着是甲导致乙的发生,
10:13
and if you'll let me geek out on you for a second,
223
613226
2119
允许我耍一下酷,
10:15
the Romans called this "post hoc ergo propter hoc,"
224
615345
4297
罗马人称之为 「post hoc ergo propter hoc」
10:19
after which therefore because of which.
225
619642
3296
即「后此谬误」。
10:22
And it means questioning disciplines like demographics.
226
622938
3757
这意味着我们要对人口统计学 这样的学科打个问号。
10:26
Why? Because they're based on assumptions
227
626695
2520
为什么?因为这样的学科基于的假设是
10:29
about who we all are based on our gender
228
629215
2306
性别、年龄和住址等数据
10:31
and our age and where we live
229
631521
1462
决定我们的身份,
10:32
as opposed to data on what we actually think and do.
230
632983
3478
而不是基于我们的思想和行为。
10:36
And since we have this data,
231
636461
1663
我们获取了这些数据,
10:38
we need to treat it with appropriate privacy controls
232
638124
3139
我们需要做好隐私控制,
10:41
and consumer opt-in,
233
641263
3576
并保证民众的选择权,
10:44
and beyond that, we need to be clear
234
644839
2993
除此之外,我们需要弄清楚所做的假设,
10:47
about our hypotheses,
235
647832
2103
10:49
the methodologies that we use,
236
649935
2596
采用的研究方法,
10:52
and our confidence in the result.
237
652531
2804
以及对结果的信任。
10:55
As my high school algebra teacher used to say,
238
655335
2474
就像高中代数老师曾对我说的,
10:57
show your math,
239
657809
1531
给我看看你的解题步骤,
10:59
because if I don't know what steps you took,
240
659340
3441
因为如果我不知道你的步骤,
11:02
I don't know what steps you didn't take,
241
662781
1991
我就不知道你落下了哪些步骤,
11:04
and if I don't know what questions you asked,
242
664772
2438
如果我不知道你问了些什么,
11:07
I don't know what questions you didn't ask.
243
667210
3197
我就不知道哪些问题你没有问。
11:10
And it means asking ourselves, really,
244
670407
1523
我们应该问自己这个最难回答的问题,
11:11
the hardest question of all:
245
671930
1479
这真是值得的:
11:13
Did the data really show us this,
246
673409
3500
数据真的显示出了这个结果,
11:16
or does the result make us feel
247
676909
2311
还是这样的结果让我们感觉更成功、更舒服?
11:19
more successful and more comfortable?
248
679220
3878
11:23
So the Health Media Collaboratory,
249
683098
2584
因此,健康媒体合作实验室
11:25
at the end of their project, they were able
250
685682
1699
在该项目结束时发现,
11:27
to find that 87 percent of tweets
251
687381
3408
谈论那些很形象、令人不安的广告的推特中,
11:30
about those very graphic and disturbing
252
690789
2144
11:32
anti-smoking ads expressed fear,
253
692933
4038
有87%的表达出了恐惧,
11:36
but did they conclude
254
696971
1856
但他们做出这些广告让人戒烟的结论了吗?
11:38
that they actually made people stop smoking?
255
698827
3161
11:41
No. It's science, not magic.
256
701988
2542
没有。这是科学,但不是魔法。
11:44
So if we are to unlock
257
704530
3190
因此,如果我们想要激发
11:47
the power of data,
258
707720
2862
数据中潜在的能量,
11:50
we don't have to go blindly into
259
710582
3448
我们没必要盲目地
11:54
Orwell's vision of a totalitarian future,
260
714030
3436
游走于奥威尔所谓的极端未来,
11:57
or Huxley's vision of a trivial one,
261
717466
3117
或赫胥黎所谓的琐碎的未来,
12:00
or some horrible cocktail of both.
262
720583
3020
或两种思想的杂糅。
12:03
What we have to do
263
723603
2379
我们需要做的就是,
12:05
is treat critical thinking with respect
264
725982
2718
积极进行批判性思维,
12:08
and be inspired by examples
265
728700
2029
并学习健康媒体合作实验室的做法,
12:10
like the Health Media Collaboratory,
266
730729
2610
12:13
and as they say in the superhero movies,
267
733339
2328
就像超级英雄电影里说的那样,
12:15
let's use our powers for good.
268
735667
1822
力量用在行善上。
12:17
Thank you.
269
737489
2351
谢谢。
12:19
(Applause)
270
739840
2334
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog