Susan Etlinger: What do we do with all this big data?

153,542 views ใƒป 2014-10-20

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Ido Dekkers ืžื‘ืงืจ: Tal Dekkers
00:13
Technology has brought us so much:
0
13354
3135
ื”ื˜ื›ื ื•ืœื•ื’ื™ื” ื”ื‘ื™ืื” ืœื ื• ื›ืœ ื›ืš ื”ืจื‘ื”:
00:16
the moon landing, the Internet,
1
16489
2019
ื”ื ื—ื™ืชื” ืขืœ ื”ื™ืจื—, ื”ืื™ื ื˜ืจื ื˜,
00:18
the ability to sequence the human genome.
2
18508
2625
ื”ื™ื›ื•ืœืช ืœืžืคื•ืช ืืช ื”ื’ื ื•ื ื”ืื ื•ืฉื™.
00:21
But it also taps into a lot of our deepest fears,
3
21133
3724
ืื‘ืœ ื”ื™ื ื’ื ืžื ืฆืœืช ื”ืจื‘ื” ืžื”ืคื—ื“ื™ื ื”ื’ื“ื•ืœื™ื ื‘ื™ื•ืชืจ ืฉืœื ื•,
00:24
and about 30 years ago,
4
24857
1856
ื•ืœืคื ื™ ื›ืฉืœื•ืฉื™ื ืฉื ื”,
00:26
the culture critic Neil Postman wrote a book
5
26713
2553
ืžื‘ืงืจ ื”ืชืจื‘ื•ืช ื ื™ืœ ืคื•ืกื˜ืžืŸ ื›ืชื‘ ืกืคืจ
00:29
called "Amusing Ourselves to Death,"
6
29266
2115
ืฉื ืงืจื "ืœืฉืขืฉืข ืืช ืขืฆืžื ื• ืœืžื•ื•ืช",
00:31
which lays this out really brilliantly.
7
31381
2759
ืฉืžืกื‘ื™ืจ ืืช ื–ื” ื‘ืฆื•ืจื” ืžืžืฉ ืžื‘ืจื™ืงื”.
00:34
And here's what he said,
8
34140
1650
ื•ื”ื ื” ืžื” ืฉื”ื•ื ืืžืจ,
00:35
comparing the dystopian visions
9
35790
2263
ื‘ืืžืฆืขื•ืช ื”ืฉื•ื•ืื” ื”ื—ื–ื™ื•ื ื•ืช ื”ื“ื™ืกื˜ื•ืคื™ื™ื
00:38
of George Orwell and Aldous Huxley.
10
38053
3573
ืฉืœ ื’'ื•ืจื’' ืื•ืจื•ื•ืœ ื•ืืœื“ื•ืก ื”ืืงืกืœื™,
00:41
He said, Orwell feared we would become
11
41626
3126
ื”ื•ื ืืžืจ, "ืื•ืจื•ื•ืœ ื—ืฉืฉ ืฉื ื”ืคื•ืš
00:44
a captive culture.
12
44752
2248
ืœืชืจื‘ื•ืช ืฉื‘ื•ื™ื”,
00:47
Huxley feared we would become a trivial culture.
13
47000
3752
ื”ืืงืกืœื™ ื—ืฉืฉ ืฉื ื”ืคื•ืš ืœืชืจื‘ื•ืช ื˜ืจื™ื•ื•ื™ืืœื™ืช.
00:50
Orwell feared the truth would be
14
50752
2145
ืื•ืจื•ื•ืœ ื—ืฉืฉ ืฉื”ืืžืช
00:52
concealed from us,
15
52897
1923
ืชื•ืกืชืจ ืžืืชื ื•,
00:54
and Huxley feared we would be drowned
16
54820
2190
ื•ื”ืืงืกืœื™ ื—ืฉืฉ ืฉื ื˜ื‘ืข
00:57
in a sea of irrelevance.
17
57010
2693
ื‘ื™ื ืฉืœ ื—ื•ืกืจ ืจืœื•ื•ื ื˜ื™ื•ืช.
00:59
In a nutshell, it's a choice between
18
59703
2170
ืขืœ ืงืฆื” ื”ืžื–ืœื’, ื–ื•ื”ื™ ื”ื‘ื—ื™ืจื” ื‘ื™ืŸ
01:01
Big Brother watching you
19
61873
2600
ื”ืื— ื”ื’ื“ื•ืœ ืฉืฆื•ืคื” ื‘ืš
01:04
and you watching Big Brother.
20
64473
2496
ื•ืืชื” ืฆื•ืคื” ื‘"ืื— ื”ื’ื“ื•ืœ".
01:06
(Laughter)
21
66969
1931
(ืฆื—ื•ืง)
01:08
But it doesn't have to be this way.
22
68900
1734
ืื‘ืœ ื–ื” ืœื ื—ื™ื™ื‘ ืœื”ื™ื•ืช ื›ืš.
01:10
We are not passive consumers of data and technology.
23
70634
3336
ืื ื—ื ื• ืื™ื ื ื• ืฆืจื›ื ื™ื™ื ืคืืกื™ื‘ื™ื™ื ืฉืœ ืžื™ื“ืข ื•ื˜ื›ื ื•ืœื•ื’ื™ื”
01:13
We shape the role it plays in our lives
24
73970
2403
ืื ื• ืžืขืฆื‘ื™ื ืืช ื”ืชืคืงื™ื“ ืื•ืชื• ื”ื ืชื•ืคืกื™ื ื‘ื—ื™ื™ื ื•
01:16
and the way we make meaning from it,
25
76373
2130
ื•ื”ื“ืจืš ื‘ื” ืื ื• ืฉื•ืื‘ื™ื ืžืฉืžืขื•ืช ืžื”ื,
01:18
but to do that,
26
78503
1603
ืื‘ืœ ืขืœ ืžื ืช ืœืขืฉื•ืช ื–ืืช,
01:20
we have to pay as much attention to how we think
27
80106
3513
ืขืœื™ื ื• ืœืฉื™ื ืœื‘ ื‘ืื•ืชื” ืžื™ื“ื” ืœืื•ืคืŸ ื”ื—ืฉื™ื‘ื” ืฉืœื ื•
01:23
as how we code.
28
83619
2030
ื•ืœืฆื•ืจืช ื”ืงื™ื“ื•ื“ ืฉืœื ื•.
01:25
We have to ask questions, and hard questions,
29
85649
3098
ืขืœื™ื ื• ืœืฉืื•ืœ ืฉืืœื•ืช, ื•ืฉืืœื•ืช ืงืฉื•ืช,
01:28
to move past counting things
30
88747
1869
ืœื”ืชืขืœื•ืช ืžืขืœ ืกืคื™ืจืช ื“ื‘ืจื™ื
01:30
to understanding them.
31
90616
2602
ืœื”ื‘ื ืชื.
01:33
We're constantly bombarded with stories
32
93218
2446
ืื ื—ื ื•, ื‘ืื•ืคืŸ ืžืชืžื™ื“, ืžื•ืคื’ื–ื™ื ื‘ืกื™ืคื•ืจื™ื
01:35
about how much data there is in the world,
33
95664
2476
ืขืœ ื›ืžื” ืžื™ื“ืข ืงื™ื™ื ื‘ืขื•ืœื
01:38
but when it comes to big data
34
98140
1580
ืื‘ืœ ื›ืืฉืจ ืžื“ื•ื‘ืจ ื‘ืžื™ื“ืข ื’ื“ื•ืœ
01:39
and the challenges of interpreting it,
35
99720
2596
ื•ื”ืืชื’ืจื™ื ื”ื›ืจื•ื›ื™ื ื‘ื”ื‘ื ืชื•,
01:42
size isn't everything.
36
102316
2088
ื”ื’ื•ื“ืœ ืื™ื ื• ื”ื›ืœ.
01:44
There's also the speed at which it moves,
37
104404
2903
ื™ืฉื ื” ื’ื ื”ืžื”ื™ืจื•ืช ื‘ื” ื”ื•ื ื ืข,
01:47
and the many varieties of data types,
38
107307
1696
ื•ื”ืžืืคื™ื™ื ื™ื ื”ืจื‘ื™ื ืฉืœ ืกื•ื’ื™ ื”ืžื™ื“ืข ื”ืงื™ื™ื.
01:49
and here are just a few examples:
39
109003
2498
ื•ื”ื ื” ื›ืžื” ื“ื•ื’ืžืื•ืช:
01:51
images,
40
111501
2198
ืชืžื•ื ื•ืช,
01:53
text,
41
113699
4007
ื˜ืงืกื˜,
01:57
video,
42
117706
2095
ื•ื™ื“ืื•,
01:59
audio.
43
119801
1830
ืื•ื“ื™ื• (ืฉืžืข).
02:01
And what unites this disparate types of data
44
121631
3042
ื•ืžื” ืฉืžืื—ื“ ืืช ืกื•ื’ื™ ื”ืžื™ื“ืข ื”ืฉื•ื ื™ื ื”ืืœื”
02:04
is that they're created by people
45
124673
2221
ื”ื•ื ืฉื”ื ื ื•ืฆืจื• ืขืœ ื™ื“ื™ ืื ืฉื™ื
02:06
and they require context.
46
126894
2775
ื•ื”ื ื“ื•ืจืฉื™ื ื”ืงืฉืจ.
02:09
Now, there's a group of data scientists
47
129669
2445
ืขื›ืฉื™ื•, ื™ืฉื ื” ืงื‘ื•ืฆื” ืฉืœ ืžื“ืขื ื™ ืžื™ื“ืข
02:12
out of the University of Illinois-Chicago,
48
132114
2305
ื‘ืื•ื ื™ื‘ืจืกื™ื˜ืช ืฉื™ืงื’ื• ืื™ืœื™ื ื•ื™,
02:14
and they're called the Health Media Collaboratory,
49
134419
2554
ื•ื”ื ื ืงืจืื™ื ืฉื™ืชื•ืคื™ื•ืช ืžื“ื™ื™ืช ื”ื‘ืจื™ืื•ืช,
02:16
and they've been working with the Centers for Disease Control
50
136973
2587
ื•ื”ื ืขื‘ื“ื• ืขื ื”ืžืจื›ื– ืœืžื ื™ืขืช ืžื—ืœื•ืช
02:19
to better understand
51
139560
1505
ื›ื“ื™ ืœื”ื‘ื™ืŸ ื˜ื•ื‘ ื™ื•ืชืจ
02:21
how people talk about quitting smoking,
52
141065
2848
ืื™ืš ืื ืฉื™ื ืžื“ื‘ืจื™ื ืขืœ ืœื”ืคืกื™ืง ืœืขืฉืŸ,
02:23
how they talk about electronic cigarettes,
53
143913
2680
ืื™ืš ื”ื ืžื“ื‘ืจื™ื ืขืœ ืกื™ื’ืจื™ื•ืช ืืœืงื˜ืจื•ื ื™ื•ืช,
02:26
and what they can do collectively
54
146593
1985
ื•ืžื” ื”ื ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ื™ื—ื“
02:28
to help them quit.
55
148578
1984
ื›ื“ื™ ืœืขื–ื•ืจ ืœื”ื ืœื”ืคืกื™ืง.
02:30
The interesting thing is, if you want to understand
56
150562
2013
ื”ื“ื‘ืจ ื”ืžืขื ื™ื™ืŸ ื”ื•ื, ืื ืืชื ืจื•ืฆื™ื ืœื”ื‘ื™ืŸ
02:32
how people talk about smoking,
57
152575
2216
ืื™ืš ืื ืฉื™ื ืžื“ื‘ืจื™ื ืขืœ ืขื™ืฉื•ืŸ,
02:34
first you have to understand
58
154791
1901
ืจืืฉื™ืช ืืชื ืฆืจื™ื›ื™ื ืœื”ื‘ื™ืŸ
02:36
what they mean when they say "smoking."
59
156692
2565
ืžื” ื”ื ืžืชื›ื•ื ื™ื ื›ืฉื”ื ืื•ืžืจื™ื "ืขื™ืฉื•ืŸ."
02:39
And on Twitter, there are four main categories:
60
159257
3926
ื•ื‘ื˜ื•ื•ื™ื˜ืจ, ื™ืฉ ืืจื‘ืข ืงื˜ื’ื•ืจื™ื•ืช ืขื™ืงืจื™ื•ืช:
02:43
number one, smoking cigarettes;
61
163183
2997
ืžืกืคืจ ืื—ืช, ืขื™ืฉื•ืŸ ืกื™ื’ืจื™ื•ืช;
02:46
number two, smoking marijuana;
62
166180
2807
ืžืกืคืจ ืฉืชื™ื™ื, ืขื™ืฉื•ืŸ ืžืจื™ื—ื•ืื ื”;
02:48
number three, smoking ribs;
63
168987
2643
ืžืกืคืจ ืฉืœื•ืฉ, ืขื™ืฉื•ืŸ ืฆืœืขื•ืช;
02:51
and number four, smoking hot women.
64
171630
3553
ื•ืžืกืคืจ ืืจื‘ืข: ื ืฉื™ื ื—ืชื™ื›ื•ืช.
02:55
(Laughter)
65
175183
2993
(ืฆื—ื•ืง)
02:58
So then you have to think about, well,
66
178176
2426
ืื– ืืชื ืฆืจื™ื›ื™ื ืœื—ืฉื•ื‘, ื•ื‘ื›ืŸ,
03:00
how do people talk about electronic cigarettes?
67
180602
2140
ืื™ืš ืื ืฉื™ื ืžื“ื‘ืจื™ื ืขืœ ืกื™ื’ืจื™ื•ืช ืืœืงื˜ืจื•ื ื™ื•ืช?
03:02
And there are so many different ways
68
182742
2025
ื•ื™ืฉ ื›ืœ ื›ืš ื”ืจื‘ื” ื“ืจื›ื™ื ืฉื•ื ื•ืช
03:04
that people do this, and you can see from the slide
69
184767
2599
ืฉืื ืฉื™ื ืขื•ืฉื™ื ืืช ื–ื”, ื•ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืžื”ืฉืงื•ืคื™ืช ื”ื–ื•
03:07
it's a complex kind of a query.
70
187366
2610
ืฉื–ื” ืกื•ื’ ืžื•ืจื›ื‘ ืฉืœ ืฉืื™ืœืชื”.
03:09
And what it reminds us is that
71
189976
3224
ื•ืžื” ืฉื–ื” ืžื–ื›ื™ืจ ืœื ื• ื–ื”
03:13
language is created by people,
72
193200
2411
ืฉืฉืคื” ื ื•ืฆืจืช ืขืœ ื™ื“ื™ ืื ืฉื™ื,
03:15
and people are messy and we're complex
73
195611
2340
ื•ืื ืฉื™ื ื”ื ื‘ืœื’ื ื™ืกื˜ื™ื ื•ืื ื—ื ื• ืžื•ืจื›ื‘ื™ื
03:17
and we use metaphors and slang and jargon
74
197951
2767
ื•ืื ื—ื ื• ืžืฉืชืžืฉื™ื ื‘ืžื˜ืืคื•ืจื•ืช ื•ืกืœืื ื’ ื•ื’'ืืจื’ื•ืŸ
03:20
and we do this 24/7 in many, many languages,
75
200718
3279
ื•ืื ื—ื ื• ืขื•ืฉื™ื ืืช ื–ื” 24/7 ื‘ื”ืจื‘ื”, ื”ืจื‘ื” ืฉืคื•ืช,
03:23
and then as soon as we figure it out, we change it up.
76
203997
3224
ื•ืื– ืžื™ื™ื“ ื›ืฉื ื‘ื™ืŸ ืืช ื–ื”, ื ืฉื ื” ืืช ื–ื”.
03:27
So did these ads that the CDC put on,
77
207221
5118
ืื– ื”ืื ื”ืคืจืกื•ืžื•ืช ื”ืืœื• ื–ื” ืฉื”ืขืœื• ื” CDC,
03:32
these television ads that featured a woman
78
212339
2430
ืคืจืกื•ืžื•ืช ื”ื˜ืœื•ื™ื–ื™ื” ืฉื”ืจืื• ืื™ืฉื”
03:34
with a hole in her throat and that were very graphic
79
214769
2021
ืขื ื—ื•ืจ ื‘ื’ืจื•ืŸ ื•ืฉื”ื™ื• ืžืื•ื“ ื’ืจืคื™ื•ืช
03:36
and very disturbing,
80
216790
1904
ื•ืžืื•ื“ ืžื˜ืจื™ื“ื•ืช,
03:38
did they actually have an impact
81
218694
1885
ื”ืื ืœืžืขืฉื” ื”ื™ืชื” ืœื”ืŸ ื”ืฉืคืขื”
03:40
on whether people quit?
82
220579
2671
ืขืœ ื”ืื ืื ืฉื™ื ื”ืคืกื™ืงื•?
03:43
And the Health Media Collaboratory respected the limits of their data,
83
223250
3307
ื•ืฉื•ืชืคื•ืช ืžื“ื™ื™ืช ื”ื‘ืจื™ืื•ืช ื›ื™ื‘ื“ื• ืืช ื’ื‘ื•ืœื•ืช ื”ืžื™ื“ืข,
03:46
but they were able to conclude
84
226557
2005
ืื‘ืœ ื”ื ื”ื™ื• ืžืกื•ื’ืœื™ื ืœืกื›ื
03:48
that those advertisements โ€” and you may have seen them โ€”
85
228562
3312
ืฉื”ืคืจืกื•ืžื•ืช ื”ืืœื• -- ื•ืื•ืœื™ ืจืื™ืชื ืื•ืชืŸ --
03:51
that they had the effect of jolting people
86
231874
2591
ืฉื”ื™ื” ืœื”ื ืืช ื”ืืคืงื˜ ืฉืœ ื–ืขื–ื•ืข ืื ืฉื™ื
03:54
into a thought process
87
234465
1822
ืœืชื•ืš ืชื”ืœื™ืš ื—ืฉื™ื‘ื”
03:56
that may have an impact on future behavior.
88
236287
3667
ืฉืื•ืœื™ ื™ื”ื™ื” ืœื• ื”ืฉืคืขื” ืขืœ ื”ืชื ื”ื’ื•ืช ืขืชื™ื“ื™ืช.
03:59
And what I admire and appreciate about this project,
89
239954
3891
ื•ืžื” ืฉืื ื™ ืžืขืจื™ืฆื” ื•ืžืขืจื™ื›ื” ื‘ื ื•ื’ืข ืœืคืจื•ื™ื™ืงื˜ ื”ื–ื”,
04:03
aside from the fact, including the fact
90
243845
1489
ื—ื•ืฅ ื”ืขื•ื‘ื“ื”, ื›ื•ืœืœ ื”ืขื•ื‘ื“ื”
04:05
that it's based on real human need,
91
245334
4057
ืฉื–ื” ืžื‘ื•ืกืก ืขืœ ืฆื•ืจืš ืื ื•ืฉื™ ืืžื™ืชื™,
04:09
is that it's a fantastic example of courage
92
249391
2846
ื–ื” ืฉื–ื• ื“ื•ื’ืžื” ื ืคืœืื” ืœืื•ืžืฅ
04:12
in the face of a sea of irrelevance.
93
252237
4443
ืœืžื•ืœ ื™ื ืฉืœ ื—ื•ืกืจ ืจืœื•ื•ื ื˜ื™ื•ืช.
04:16
And so it's not just big data that causes
94
256680
3305
ื•ื›ืš ื–ื” ืœื ืจืง ืžื™ื“ืข ื’ื“ื•ืœ ืฉื’ื•ืจื
04:19
challenges of interpretation, because let's face it,
95
259985
2601
ืœืืชื’ืจื™ื ืฉืœ ืคื™ืจื•ืฉ, ืžืคื ื™ ืฉื‘ื•ืื• ื ืกื›ื™ื,
04:22
we human beings have a very rich history
96
262586
2594
ืœื ื• ื”ืื ืฉื™ื ื™ืฉ ื”ืกื˜ื•ืจื™ื” ืืจื•ื›ื”
04:25
of taking any amount of data, no matter how small,
97
265180
2693
ืฉืœ ืœืงื—ืช ื›ืœ ื›ืžื•ืช ืฉืœ ืžื™ื“ืข, ืœื ืžืฉื ื” ื›ืžื” ืงื˜ื ื”,
04:27
and screwing it up.
98
267873
1617
ื•ืœื“ืคื•ืง ืืช ื–ื”.
04:29
So many years ago, you may remember
99
269490
3737
ืื– ืœืคื ื™ ื”ืจื‘ื” ืฉื ื™ื, ืืชื ืื•ืœื™ ื–ื•ื›ืจื™ื
04:33
that former President Ronald Reagan
100
273227
2273
ืฉื”ื ืฉื™ื ืœืฉืขื‘ืจ ืจื•ื ืืœื“ ืจื™ื™ื’ืŸ
04:35
was very criticized for making a statement
101
275500
1991
ื”ื™ื” ืชื—ืช ื‘ื™ืงื•ืจืช ืขืœ ื”ื”ืฆื”ืจื”
04:37
that facts are stupid things.
102
277491
3010
ืฉืขื•ื‘ื“ื•ืช ื”ืŸ ื“ื‘ืจ ืžื˜ื•ืคืฉ.
04:40
And it was a slip of the tongue, let's be fair.
103
280501
2794
ื•ื–ืืช ื”ื™ืชื” ืคืœื™ื˜ืช ืคื”, ื‘ื•ืื• ื ื”ื™ื” ื›ื ื™ื.
04:43
He actually meant to quote John Adams' defense
104
283295
2430
ื”ื•ื ืœืžืขืฉื” ื”ืชื›ื•ื•ืŸ ืœืฆื˜ื˜ ืืช ื”ื”ื’ื ื” ืฉืœ ื’'ื•ืŸ ืื“ืžืก
04:45
of British soldiers in the Boston Massacre trials
105
285725
2751
ืขืœ ื—ื™ื™ืœื™ื ื‘ืจื™ื˜ื™ื ื‘ืžืฉืคื˜ื™ ื”ื˜ื‘ื— ื‘ื‘ื•ืกื˜ื•ืŸ
04:48
that facts are stubborn things.
106
288476
3150
ืฉืขื•ื‘ื“ื•ืช ื”ืŸ ื“ื‘ืจ ืขื™ืงืฉ.
04:51
But I actually think there's
107
291626
2624
ืื‘ืœ ืื ื™ ืœืžืขืฉื” ื—ื•ืฉื‘ืช ืฉื™ืฉ
04:54
a bit of accidental wisdom in what he said,
108
294250
3418
ืžืขื˜ ื—ื•ื›ืžื” ืžืงืจื™ืช ื‘ืžื” ืฉื”ื•ื ืืžืจ,
04:57
because facts are stubborn things,
109
297668
2776
ืžืคื ื™ ืฉืขื•ื‘ื“ื•ืช ื”ืŸ ื“ื‘ืจื™ื ืขืงืฉื ื™ื™ื,
05:00
but sometimes they're stupid, too.
110
300444
2923
ืื‘ืœ ืœืคืขืžื™ื ื”ืŸ ื’ื ื˜ืคืฉื™ื•ืช.
05:03
I want to tell you a personal story
111
303367
1888
ืื ื™ ืจื•ืฆื” ืœืกืคืจ ืœื›ื ืกื™ืคื•ืจ ืื™ืฉื™
05:05
about why this matters a lot to me.
112
305255
3548
ืขืœ ืœืžื” ื–ื” ืžืžืฉ ืžืฉื ื” ืœื™.
05:08
I need to take a breath.
113
308803
2437
ืื ื™ ืฆืจื™ื›ื” ืœืงื—ืช ื ืฉื™ืžื”.
05:11
My son Isaac, when he was two,
114
311240
2754
ื‘ื ื™ ืื™ื™ื–ืง, ื›ืฉื”ื•ื ื”ื™ื” ื‘ืŸ ืฉื ืชื™ื,
05:13
was diagnosed with autism,
115
313994
2417
ืื•ื‘ื—ืŸ ืขื ืื•ื˜ื™ื–ื,
05:16
and he was this happy, hilarious,
116
316411
2161
ื•ื”ื•ื ื”ื™ื” ื‘ื—ื•ืจ ืงื˜ืŸ ื•ืฉืžื—, ืงื•ืจืข ืžืฆื—ื•ืง,
05:18
loving, affectionate little guy,
117
318572
2035
ืื•ื”ื‘, ืžืœื ื—ื™ื‘ื”,
05:20
but the metrics on his developmental evaluations,
118
320607
2902
ืื‘ืœ ื”ืžื“ื™ื“ื•ืช ืฉืœ ื”ื”ืชืคืชื—ื•ืช ืฉืœื•,
05:23
which looked at things like the number of words โ€”
119
323509
2070
ืฉื‘ื—ื ื• ื“ื‘ืจื™ื ื›ืžื• ืžืกืคืจ ื”ืžื™ืœื™ื --
05:25
at that point, none โ€”
120
325579
3657
ื‘ืื•ืชื” ื ืงื•ื“ื”, ืืคืก --
05:29
communicative gestures and minimal eye contact,
121
329236
3940
ืžื—ื•ื•ืช ืชื™ืงืฉื•ืจืชื™ื•ืช ื•ืงืฉืจ ืขื™ืŸ ืžื™ื ื™ืžืœื™,
05:33
put his developmental level
122
333176
2003
ืฉืžื• ืื•ืชื• ื‘ืจืžื” ื”ืชืคืชื—ื•ืชื™ืช
05:35
at that of a nine-month-old baby.
123
335179
3961
ืฉืœ ืชื™ื ื•ืง ื‘ืŸ ืชืฉืขื” ื—ื•ื“ืฉื™ื.
05:39
And the diagnosis was factually correct,
124
339140
2960
ื•ื”ืื‘ื—ื ื” ื”ื™ืชื” ื ื›ื•ื ื” ืขื•ื‘ื“ืชื™ืช,
05:42
but it didn't tell the whole story.
125
342100
3209
ืื‘ืœ ื”ื™ื ืœื ืกื™ืคืจื” ืืช ื›ืœ ื”ืกื™ืคื•ืจ.
05:45
And about a year and a half later,
126
345309
1401
ื•ื‘ืขืจืš ืฉื ื” ื•ื—ืฆื™ ืžืื•ื—ืจ ื™ื•ืชืจ,
05:46
when he was almost four,
127
346710
2102
ื›ืฉื”ื•ื ื”ื™ื” ื›ืžืขื˜ ื‘ืŸ ืืจื‘ืข,
05:48
I found him in front of the computer one day
128
348812
2363
ืžืฆืืชื™ ืื•ืชื• ืžื•ืœ ื”ืžื—ืฉื‘ ื™ื•ื ืื—ื“
05:51
running a Google image search on women,
129
351175
5453
ืžืจื™ืฅ ื—ื™ืคื•ืฉ ืชืžื•ื ื•ืช ื‘ื’ื•ื’ืœ ืขืœ ื ืฉื™ื,
05:56
spelled "w-i-m-e-n."
130
356628
3616
ื•ืžืื•ื™ื™ืช "w-i-m-e-n."
06:00
And I did what any obsessed parent would do,
131
360244
2740
ื•ืขืฉื™ืชื™ ืžื” ืฉื›ืœ ื”ื•ืจื” ืื•ื‘ืกืกื™ื‘ื™ ื”ื™ื” ืขื•ืฉื”,
06:02
which is immediately started hitting the "back" button
132
362984
1901
ืฉื–ื” ืžื™ื™ื“ ืœืœื—ื•ืฅ ืขืœ ื›ืคืชื•ืจ ืื—ื•ืจื”
06:04
to see what else he'd been searching for.
133
364885
3363
ื›ื“ื™ ืœืจืื•ืช ืžื” ืขื•ื“ ื”ื•ื ื—ื™ืคืฉ.
06:08
And they were, in order: men,
134
368248
2171
ื•ื–ื” ื”ื™ื” ืœืคื™ ื”ืกื“ืจ: ื’ื‘ืจื™ื,
06:10
school, bus and computer.
135
370419
7267
ื‘ื™ืช ืกืคืจ, ืื•ื˜ื•ื‘ื•ืก ื•ืžื—ืฉื‘.
06:17
And I was stunned,
136
377686
2070
ื•ื”ื™ื™ืชื™ ื”ืžื•ืžื”,
06:19
because we didn't know that he could spell,
137
379756
2002
ืžืคื ื™ ืฉืœื ื™ื“ืขื ื• ืฉื”ื•ื ื™ื•ื“ืข ืœืื™ื™ืช,
06:21
much less read, and so I asked him,
138
381758
1766
ืฉืœื ืœื“ื‘ืจ ืขืœ ืœืงืจื•ื, ืื– ืฉืืœืชื™ ืื•ืชื•,
06:23
"Isaac, how did you do this?"
139
383524
2193
"ืื™ื™ื–ืง, ืื™ืš ืขืฉื™ืช ืืช ื–ื”?"
06:25
And he looked at me very seriously and said,
140
385717
2678
ื•ื”ื•ื ื”ืกืชื›ืœ ืขืœื™ ืžืื•ื“ ื‘ืจืฆื™ื ื•ืช ื•ืืžืจ,
06:28
"Typed in the box."
141
388395
3352
"ื”ืงืœื“ืชื™ ื‘ืชื™ื‘ื”."
06:31
He was teaching himself to communicate,
142
391747
3734
ื”ื•ื ืœื™ืžื“ ืืช ืขืฆืžื• ืœืชืงืฉืจ,
06:35
but we were looking in the wrong place,
143
395481
3004
ืื‘ืœ ื—ื™ืคืฉื ื• ื‘ืžืงื•ื ื”ืœื ื ื›ื•ืŸ,
06:38
and this is what happens when assessments
144
398485
2295
ื•ื–ื” ืžื” ืฉืงื•ืจื” ื›ืฉื”ืขืจื›ื•ืช
06:40
and analytics overvalue one metric โ€”
145
400780
2396
ื•ืื ืœื™ื–ื” ื ื•ืชื ื•ืช ืขืจืš ื’ื‘ื•ื” ืžื“ื™ ืœืžื™ื“ื” ืื—ืช --
06:43
in this case, verbal communication โ€”
146
403176
2609
ื‘ืžืงืจื” ื”ื–ื”, ืชืงืฉื•ืจืช ืžื™ืœื•ืœื™ืช --
06:45
and undervalue others, such as creative problem-solving.
147
405785
5703
ื•ืขืจืš ื—ืกืจ ืœืื—ืจื•ืช, ื›ืžื• ืคืชืจื•ืŸ ื‘ืขื™ื•ืช ื™ืฆื™ืจืชื™.
06:51
Communication was hard for Isaac,
148
411488
2307
ืชืงืฉื•ืจืช ื”ื™ืชื” ืงืฉื” ืœืื™ื™ื–ืง,
06:53
and so he found a workaround
149
413795
1912
ืื– ื”ื•ื ืžืฆื ื“ืจืš ืขื•ืงืคืช
06:55
to find out what he needed to know.
150
415707
2857
ื›ื“ื™ ืœืžืฆื•ื ืžื” ืฉื”ื•ื ื”ื™ื” ืฆืจื™ืš ืœื“ืขืช.
06:58
And when you think about it, it makes a lot of sense,
151
418564
1890
ื•ื›ืฉืื ื™ ื—ื•ืฉื‘ืช ืขืœ ื–ื”, ื–ื” ืžืื•ื“ ื”ื’ื™ื•ื ื™,
07:00
because forming a question
152
420454
2081
ืžืคื ื™ ืฉืœื™ืฆื•ืจ ืฉืืœื”
07:02
is a really complex process,
153
422535
2565
ื–ื” ืชื”ืœื™ืš ืžืžืฉ ืžื•ืจื›ื‘,
07:05
but he could get himself a lot of the way there
154
425100
2522
ืื‘ืœ ื”ื•ื ื”ื™ื” ื™ื›ื•ืœ ืœื”ื‘ื™ื ืืช ืขืฆืžื• ืืช ืจื•ื‘ ื”ื“ืจืš ืœืฉื
07:07
by putting a word in a search box.
155
427622
4092
ืขืœ ื™ื“ื™ ื”ืงืœื“ืช ืžื™ืœื™ื ืœืชื™ื‘ืช ื—ื™ืคื•ืฉ.
07:11
And so this little moment
156
431714
2936
ืื– ืœืจื’ืข ื”ืงื˜ืŸ ื”ื–ื”
07:14
had a really profound impact on me
157
434650
2836
ื”ื™ืชื” ื”ืฉืคืขื” ืžืฉืžืขื•ืชื™ืช ืขืœื™
07:17
and our family
158
437486
1309
ื•ื”ืžืฉืคื—ื” ืฉืœื ื•
07:18
because it helped us change our frame of reference
159
438795
3141
ืžืคื ื™ ืฉื–ื” ืขื–ืจ ืœื ื• ืœืฉื ื•ืช ืืช ืžืกื’ืจืช ื”ื”ืชื™ื—ืกื•ืช ืฉืœื ื•
07:21
for what was going on with him,
160
441936
2208
ืœืžื” ืฉืงื•ืจื” ืื™ืชื•,
07:24
and worry a little bit less and appreciate
161
444144
2976
ื•ืœื“ืื•ื’ ืžืขื˜ ืคื—ื•ืช ื•ืœื”ืขืจื™ืš
07:27
his resourcefulness more.
162
447120
2182
ืืช ื”ืชื•ืฉื™ื” ืฉืœื• ื™ื•ืชืจ.
07:29
Facts are stupid things.
163
449302
2861
ืขื•ื‘ื“ื•ืช ื”ืŸ ื“ื‘ืจ ืžื˜ื•ืคืฉ.
07:32
And they're vulnerable to misuse,
164
452163
2397
ื•ื”ืŸ ืคื’ื™ืขื•ืช ืœืฉื™ืžื•ืฉ ืœื ื ื›ื•ืŸ,
07:34
willful or otherwise.
165
454560
1653
ื–ื“ื•ื ื™ ืื• ืœื.
07:36
I have a friend, Emily Willingham, who's a scientist,
166
456213
3026
ื™ืฉ ืœื™ ื—ื‘ืจื”, ืืžื™ืœื™ ื•ื•ื™ืœื™ื ื’ื”ืื, ืฉื”ื™ื ืžื“ืขื ื™ืช,
07:39
and she wrote a piece for Forbes not long ago
167
459239
2801
ื•ื”ื™ื ื›ืชื‘ื” ืžืืžืจ ืœืคื•ืจื‘ืก ืœื ืžื–ืžืŸ
07:42
entitled "The 10 Weirdest Things
168
462040
1980
ืฉื ืงืจื "10 ื”ื“ื‘ืจื™ื ื”ืžื•ื–ืจื™ื
07:44
Ever Linked to Autism."
169
464020
1810
ืฉืงื•ืฉืจื• ืื™ ืคืขื ืœืื•ื˜ื™ื–ื."
07:45
It's quite a list.
170
465830
3005
ื–ื• ื—ืชื™ื›ืช ืจืฉื™ืžื”.
07:48
The Internet, blamed for everything, right?
171
468835
3532
ื”ืื™ื ื˜ืจื ื˜, ืžื•ืืฉื ื‘ื”ื›ืœ, ื ื›ื•ืŸ?
07:52
And of course mothers, because.
172
472367
3757
ื•ื›ืžื•ื‘ืŸ ืืžื”ื•ืช, ืžืคื ื™ ืฉ.
07:56
And actually, wait, there's more,
173
476124
1587
ื•ืœืžืขืฉื”, ื—ื›ื•, ื™ืฉ ืขื•ื“,
07:57
there's a whole bunch in the "mother" category here.
174
477711
3430
ื™ืฉ ืงื‘ื•ืฆื” ืฉืœืžื” ื‘ืงื˜ื’ื•ืจื™ื” ืฉืœ "ืืžื" ืคื”.
08:01
And you can see it's a pretty rich and interesting list.
175
481141
4815
ื•ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืฉื–ื• ืจืฉื™ืžื” ืžืžืฉ ืขืฉื™ืจื” ื•ืžืขื ื™ื™ื ืช.
08:05
I'm a big fan of
176
485956
2193
ืื ื™ ืื•ื”ื“ืช ื’ื“ื•ืœื” ืฉืœ
08:08
being pregnant near freeways, personally.
177
488149
3704
ืœื”ื™ื•ืช ื‘ื”ืจื™ื•ืŸ ืœื™ื“ ื›ื‘ื™ืฉื™ื ืžื”ื™ืจื™ื , ืื™ืฉื™ืช.
08:11
The final one is interesting,
178
491853
1539
ื”ืื—ืจื•ืŸ ื”ื•ื ืžืขื ื™ื™ืŸ,
08:13
because the term "refrigerator mother"
179
493392
3003
ืžืคื ื™ ืฉื”ืžื•ื ื— "ืืžื ืžืงืจืจ"
08:16
was actually the original hypothesis
180
496395
2605
ื”ื™ื” ืœืžืขืฉื” ื”ื”ื™ืคื•ืชื–ื” ื”ืžืงื•ืจื™ืช
08:19
for the cause of autism,
181
499000
1431
ืœืกื™ื‘ื” ืœืื•ื˜ื™ื–ื,
08:20
and that meant somebody who was cold and unloving.
182
500431
2735
ื•ื”ื›ื•ื•ื ื” ืœืžื™ืฉื”ื™ ืฉื”ื™ื ืงืจื” ื•ืœื ืื•ื”ื‘ืช.
08:23
And at this point, you might be thinking,
183
503166
1562
ื•ื‘ื ืงื•ื“ื” ื”ื–ื•, ืืชื ืื•ืœื™ ื—ื•ืฉื‘ื™ื,
08:24
"Okay, Susan, we get it,
184
504728
1657
"ืื•ืงื™ื™, ืกื•ื–ืŸ, ืื ื—ื ื• ืžื‘ื™ื ื™ื,
08:26
you can take data, you can make it mean anything."
185
506385
1782
ืืคืฉืจ ืœืงื—ืช ืžื™ื“ืข, ืืคืฉืจ ืœืชืช ืœื• ืžืฉืžืขื•ืช ืื—ืจืช ืœื’ืžืจื™."
08:28
And this is true, it's absolutely true,
186
508167
4703
ื•ื–ื” ื ื›ื•ืŸ, ื–ื” ืœื’ืžืจื™ ื ื›ื•ืŸ,
08:32
but the challenge is that
187
512870
5610
ืื‘ืœ ื”ืืชื’ืจ ื”ื•ื
08:38
we have this opportunity
188
518480
2448
ืฉื™ืฉ ืœื ื• ื”ื–ื“ืžื ื•ืช
08:40
to try to make meaning out of it ourselves,
189
520928
2284
ืœื ืกื•ืช ืœืชืช ืžืฉืžืขื•ืช ืžืชื•ื›ื ื•,
08:43
because frankly, data doesn't create meaning. We do.
190
523212
5352
ืžืคื ื™ ืฉืœืžืขืŸ ื”ืืžืช, ืžื™ื“ืข ืœื ื™ื•ืฆืจ ืžืฉืžืขื•ืช, ืื ื—ื ื• ื™ื•ืฆืจื™ื ืื•ืชื”.
08:48
So as businesspeople, as consumers,
191
528564
3256
ืื– ื›ืื ืฉื™ ืขืกืงื™ื, ื›ืฆืจื›ื ื™ื,
08:51
as patients, as citizens,
192
531820
2539
ื›ืคืฆื™ื™ื ื˜ื™ื, ื›ืื–ืจื—ื™ื,
08:54
we have a responsibility, I think,
193
534359
2396
ื™ืฉ ืœื ื• ืืช ื”ืื—ืจื™ื•ืช, ืื ื™ ื—ื•ืฉื‘ืช,
08:56
to spend more time
194
536755
2194
ืœื‘ืœื•ืช ื™ื•ืชืจ ื–ืžืŸ
08:58
focusing on our critical thinking skills.
195
538949
2870
ื‘ืœื”ืชืžืงื“ ื‘ื›ื™ืฉื•ืจื™ ื”ื—ืฉื™ื‘ื” ื”ื‘ื™ืงื•ืจืชื™ืช ืฉืœื ื•,
09:01
Why?
196
541819
1078
ืœืžื”?
09:02
Because at this point in our history, as we've heard
197
542897
3178
ืžืคื ื™ ืฉื‘ื ืงื•ื“ื” ื”ื–ื• ื‘ื”ืกื˜ื•ืจื™ื” ืฉืœื ื•, ื›ืžื• ืฉืฉืžืขื ื•
09:06
many times over,
198
546075
1706
ื”ืจื‘ื” ืคืขืžื™ื ื‘ืขื‘ืจ,
09:07
we can process exabytes of data
199
547781
1981
ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืขื‘ื“ ืืงืกื‘ื™ื™ื˜ื™ื ืฉืœ ืžื™ื“ืข
09:09
at lightning speed,
200
549762
2153
ื‘ืžื”ื™ืจื•ืช ื”ืื•ืจ,
09:11
and we have the potential to make bad decisions
201
551915
3515
ื•ื™ืฉ ืœื ื• ืืช ื”ืคื•ื˜ื ืฆื™ืืœ ืœืขืฉื•ืช ื”ื—ืœื˜ื•ืช ื’ืจื•ืขื•ืช
09:15
far more quickly, efficiently,
202
555430
1834
ื”ืจื‘ื” ื™ื•ืชืจ ื‘ืžื”ื™ืจื•ืช, ื‘ื™ืขื™ืœื•ืช,
09:17
and with far greater impact than we did in the past.
203
557264
5028
ื•ืขื ื”ืจื‘ื” ื™ื•ืชืจ ื”ืฉืคืขื” ืžืฉื”ื™ื” ืœื ื• ื‘ืขื‘ืจ.
09:22
Great, right?
204
562292
1388
ื ืคืœื, ื ื›ื•ืŸ?
09:23
And so what we need to do instead
205
563680
3030
ื•ื›ืš ืžื” ืฉืื ื—ื ื• ืฆืจื™ื›ื™ื ืœืขืฉื•ืช ื‘ืžืงื•ื
09:26
is spend a little bit more time
206
566710
2330
ื–ื” ืœื‘ืœื•ืช ืžืขื˜ ื™ื•ืชืจ ื–ืžืŸ
09:29
on things like the humanities
207
569040
2746
ืขืœ ื“ื‘ืจื™ื ื›ืžื• ื”ื•ืžื ื™ื•ืช
09:31
and sociology, and the social sciences,
208
571786
3464
ื•ืกื•ืฆื™ื•ืœื•ื’ื™ื”, ื•ืžื“ืขื™ ื”ื—ื‘ืจื”,
09:35
rhetoric, philosophy, ethics,
209
575250
2308
ืจื˜ื•ืจื™ืงื”, ืคื™ืœื•ืกื•ืคื™ื”, ืืชื™ืงื”,
09:37
because they give us context that is so important
210
577558
2856
ืžืคื ื™ ืฉื”ื ื ื•ืชื ื™ื ืœื ื• ื”ืงืฉืจ ืฉื”ื•ื ื›ืœ ื›ืš ื—ืฉื•ื‘
09:40
for big data, and because
211
580414
2576
ืœืžื™ื“ืข ื’ื“ื•ืœ, ื•ื‘ื’ืœืœ
09:42
they help us become better critical thinkers.
212
582990
2418
ืฉื”ื ืขื•ื–ืจื™ื ืœื ื• ืœื”ืคื•ืš ืœื”ื•ื’ื™ื ื‘ื™ืงื•ืจืชื™ื™ื ื˜ื•ื‘ื™ื ื™ื•ืชืจ.
09:45
Because after all, if I can spot
213
585408
4207
ืžืคื ื™ ืฉืื—ืจื™ ื”ื›ืœ, ืื ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื–ื”ื•ืช
09:49
a problem in an argument, it doesn't much matter
214
589615
2486
ื‘ืขื™ื” ื‘ื˜ื™ืขื•ืŸ, ื–ื” ืœื ืžืฉื ื” ืžืžืฉ
09:52
whether it's expressed in words or in numbers.
215
592101
2759
ืื ื–ื” ืžืชื‘ื˜ื ื‘ืžื™ืœื™ื ืื• ืžืกืคืจื™ื.
09:54
And this means
216
594860
2719
ื•ื–ื” ืื•ืžืจ
09:57
teaching ourselves to find those confirmation biases
217
597579
4421
ืœืœืžื“ ืืช ืขืฆืžื ื• ืœืžืฆื•ื ืืช ื”ื˜ื™ื•ืช ื”ืื™ืฉื•ืจ
10:02
and false correlations
218
602000
1822
ื•ืงื™ืฉื•ืจื™ื ืฉื’ื•ื™ื™ื
10:03
and being able to spot a naked emotional appeal
219
603822
2138
ื•ืœื”ื™ื•ืช ืžืกื•ื’ืœื™ื ืœื–ื”ื•ืช ืžืฉื™ื›ื” ืจื’ืฉื™ืช ืขืจื•ืžื”
10:05
from 30 yards,
220
605960
1662
ืžืžืจื—ืง 30 ืžื˜ืจ,
10:07
because something that happens after something
221
607622
2522
ืžืคื ื™ ืฉืžืฉื”ื• ืฉืงื•ืจื” ืื—ืจื™ ืžืฉื”ื•
10:10
doesn't mean it happened because of it, necessarily,
222
610144
3082
ืœื ืื•ืžืจ ืฉื–ื” ืงืจื” ื‘ื’ืœืœื•, ื‘ื”ื›ืจื—,
10:13
and if you'll let me geek out on you for a second,
223
613226
2119
ื•ืื ืืชื ืชืชื ื• ืœื™ ืœื”ื™ื•ืช ื’ื™ืงื™ืช ืœื’ืžืจื™ ืœืฉื ื™ื”,
10:15
the Romans called this "post hoc ergo propter hoc,"
224
615345
4297
ื”ืจื•ืžืื™ื ืงืจืื• ืœื–ื” "ืคื•ืกื˜ ื”ื•ืง ืืจื’ื• ืคืจื•ืคื˜ืจ ื”ื•ืง,"
10:19
after which therefore because of which.
225
619642
3296
ืื—ืจื™ ื›ืŸ ืœื›ืŸ ื‘ื’ืœืœ ืฉ.
10:22
And it means questioning disciplines like demographics.
226
622938
3757
ื•ื–ื” ืื•ืžืจ ืคืงืคื•ืง ื‘ืชื•ืจื•ืช ื›ืžื• ื“ืžื•ื’ืจืคื™ื”.
10:26
Why? Because they're based on assumptions
227
626695
2520
ืœืžื”? ืžืคื ื™ ืฉื”ืŸ ืžื‘ื•ืกืกื•ืช ืขืœ ื”ื ื—ื•ืช
10:29
about who we all are based on our gender
228
629215
2306
ืขืœ ืžื™ ืื ื—ื ื• ืฉืžื‘ื•ืกืกื•ืช ืขืœ ืžื’ื“ืจ
10:31
and our age and where we live
229
631521
1462
ื•ื”ื’ื™ืœ ืฉืœื ื• ื•ืื™ืคื” ืื ื—ื ื• ื—ื™ื™ื
10:32
as opposed to data on what we actually think and do.
230
632983
3478
ื‘ื ื™ื’ื•ื“ ืœืžื™ื“ืข ืขืœ ืžื” ืื ื—ื ื• ื‘ืืžืช ื—ื•ืฉื‘ื™ื ืื• ืขื•ืฉื™ื.
10:36
And since we have this data,
231
636461
1663
ื•ืžืื—ืจ ื•ื™ืฉ ืœื ื• ืืช ื”ืžื™ื“ืข ื”ื–ื”,
10:38
we need to treat it with appropriate privacy controls
232
638124
3139
ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœื”ืชื™ื™ื—ืก ืืœื™ื• ืขื ืฉืœื™ื˜ื•ืช ืžืชืื™ืžื•ืช ืขืœ ื”ืคืจื˜ื™ื•ืช
10:41
and consumer opt-in,
233
641263
3576
ื•ืฆืจื›ื ื™ื ืฉืžืฆื˜ืจืคื™ื,
10:44
and beyond that, we need to be clear
234
644839
2993
ื•ืžืขื‘ืจ ืœื–ื”, ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœื”ื™ื•ืช ื‘ืจื•ืจื™ื
10:47
about our hypotheses,
235
647832
2103
ื‘ื ื•ื’ืข ืœื”ื™ืคื•ืชื–ื•ืช,
10:49
the methodologies that we use,
236
649935
2596
ื”ืžืชื•ื“ื•ืœื•ื’ื™ื•ืช ื‘ื”ืŸ ืื ื—ื ื• ืžืฉืชืžืฉื™ื,
10:52
and our confidence in the result.
237
652531
2804
ื•ื”ื‘ื™ื˜ื—ื•ืŸ ืฉืœื ื• ื‘ืชื•ืฆืื•ืช.
10:55
As my high school algebra teacher used to say,
238
655335
2474
ื›ืžื• ืฉื”ืžื•ืจื” ืฉืœื™ ืœืืœื’ื‘ืจื” ื‘ืชื™ื›ื•ืŸ ื ื”ื’ื” ืœื”ื’ื™ื“,
10:57
show your math,
239
657809
1531
ืชืจืื• ืืช ื”ืžืชืžื˜ื™ืงื” ืฉืœื›ื,
10:59
because if I don't know what steps you took,
240
659340
3441
ืžืคื ื™ ืฉืื ืืชื ืœื ื™ื•ื“ืขื™ื ืื™ื–ื” ืฆืขื“ื™ื ืœืงื—ืชื,
11:02
I don't know what steps you didn't take,
241
662781
1991
ืื ื™ ืœื ื™ื•ื“ืขืช ืื™ื–ื” ืฆืขื“ื™ื ืœื ืœืงื—ืชื,
11:04
and if I don't know what questions you asked,
242
664772
2438
ื•ืื ืื ื™ ืœื ื™ื•ื“ืขืช ืื™ื–ื” ืฉืืœื•ืช ืฉืืœืชื,
11:07
I don't know what questions you didn't ask.
243
667210
3197
ืื ื™ ืœื ื™ื•ื“ืขืช ืื™ื–ื” ืฉืืœื•ืช ืœื ืฉืืœืชื.
11:10
And it means asking ourselves, really,
244
670407
1523
ื•ื–ื” ืื•ืžืจ ืœืฉืื•ืœ ืืช ืขืฆืžื ื•, ื‘ืืžืช,
11:11
the hardest question of all:
245
671930
1479
ืืช ื”ืฉืืœื” ื”ืงืฉื” ืžื›ืœ:
11:13
Did the data really show us this,
246
673409
3500
ื”ืื ื”ืžื™ื“ืข ื‘ืืžืช ื”ืจืื” ืœื ื• ืืช ื–ื”,
11:16
or does the result make us feel
247
676909
2311
ืื• ืฉื”ืชื•ืฆืื” ื’ื•ืจืžืช ืœื ื• ืœื”ืจื’ื™ืฉ
11:19
more successful and more comfortable?
248
679220
3878
ื™ื•ืชืจ ืžืฆืœื™ื—ื™ื ื•ื™ื•ืชืจ ื‘ื ื•ื—?
11:23
So the Health Media Collaboratory,
249
683098
2584
ืื– ืฉื•ืชืคื•ืช ืžื“ื™ื™ืช ื”ื‘ืจื™ืื•ืช,
11:25
at the end of their project, they were able
250
685682
1699
ื‘ืกื•ืคื• ืฉืœ ื”ืคืจื•ื™ื™ืงื˜, ื”ื ื”ื™ื• ืžืกื•ื’ืœื™ื
11:27
to find that 87 percent of tweets
251
687381
3408
ืœืžืฆื•ื ืฉ 87 ืื—ื•ื– ืฉืœ ื”ืฆื™ื•ืฆื™ื
11:30
about those very graphic and disturbing
252
690789
2144
ื‘ื ื•ื’ืข ืœืคืจืกื•ืžื•ืช ื”ืžืื•ื“ ื’ืจืคื™ื•ืช
11:32
anti-smoking ads expressed fear,
253
692933
4038
ื•ืžื˜ืจื™ื“ื•ืช ื ื’ื“ ืขื™ืฉื•ืŸ ื”ื‘ื™ืขื• ืคื—ื“,
11:36
but did they conclude
254
696971
1856
ืื‘ืœ ื”ืื ื”ื ื”ืกื™ืงื•
11:38
that they actually made people stop smoking?
255
698827
3161
ืฉื”ืŸ ืœืžืขืฉื” ื’ืจืžื• ืœืื ืฉื™ื ืœื”ืคืกื™ืง ืœืขืฉืŸ?
11:41
No. It's science, not magic.
256
701988
2542
ืœื. ื–ื” ืžื“ืข, ืœื ืงืกื.
11:44
So if we are to unlock
257
704530
3190
ืื– ืื ืื ื—ื ื• ืจื•ืฆื™ื ืœืฉื—ืจืจ
11:47
the power of data,
258
707720
2862
ืืช ื”ื›ื•ื— ืฉืœ ื”ืžื™ื“ืข,
11:50
we don't have to go blindly into
259
710582
3448
ืื ื—ื ื• ืœื ืฆืจื™ื›ื™ื ืœืœื›ืช ืขื™ื•ื•ืจื™ื
11:54
Orwell's vision of a totalitarian future,
260
714030
3436
ืœืชื•ืš ื”ื—ื–ื•ืŸ ื”ื˜ื•ื˜ืœื™ื˜ืจื™ ืฉืœ ื”ืขืชื™ื“ ืฉืœ ืื•ืจื•ื•ืœ,
11:57
or Huxley's vision of a trivial one,
261
717466
3117
ืื• ื”ืขืชื™ื“ ื”ื˜ืจื™ื•ื•ื™ืืœื™ ืฉืœ ื”ืืงืกืœื™,
12:00
or some horrible cocktail of both.
262
720583
3020
ืื• ืงื•ืงื˜ื™ื™ืœ ื ื•ืจืื™ ืฉืœ ืฉื ื™ื”ื.
12:03
What we have to do
263
723603
2379
ืžื” ืฉืื ื—ื ื• ืฆืจื™ื›ื™ื ืœืขืฉื•ืช
12:05
is treat critical thinking with respect
264
725982
2718
ื–ื” ืœื”ืชื™ื™ื—ืก ืœื—ืฉื™ื‘ื” ื‘ื™ืงื•ืจืชื™ืช ื‘ื›ื‘ื•ื“
12:08
and be inspired by examples
265
728700
2029
ื•ืœืงื‘ืœ ื”ืฉืจืื” ืžื“ื•ื’ืžืื•ืช
12:10
like the Health Media Collaboratory,
266
730729
2610
ื›ืžื• ืฉื•ืชืคื•ืช ืžื“ื™ื™ืช ื”ื‘ืจื™ืื•ืช,
12:13
and as they say in the superhero movies,
267
733339
2328
ื•ื›ืžื• ืฉื”ื ืื•ืžืจื™ื ื‘ืกืจื˜ื™ื ืฉืœ ื’ื™ื‘ื•ืจื™ ืขืœ,
12:15
let's use our powers for good.
268
735667
1822
ื‘ื•ืื• ื ืฉืชืžืฉ ื‘ื›ื•ื— ืฉืœื ื• ืœื˜ื•ื‘ื”.
12:17
Thank you.
269
737489
2351
ืชื•ื“ื” ืœื›ื.
12:19
(Applause)
270
739840
2334
(ืžื—ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7