Susan Etlinger: What do we do with all this big data?

153,542 views ・ 2014-10-20

TED


請雙擊下方英文字幕播放視頻。

譯者: Yesbydefault 倪文娟 審譯者: Adrienne Lin
00:13
Technology has brought us so much:
0
13354
3135
科技帶給我們很多美好的事物:
00:16
the moon landing, the Internet,
1
16489
2019
登陸月球、網路、
00:18
the ability to sequence the human genome.
2
18508
2625
人類基因組定序。
00:21
But it also taps into a lot of our deepest fears,
3
21133
3724
但也挖掘出我們內心深處的許多恐懼。
00:24
and about 30 years ago,
4
24857
1856
大約 30 年前,
00:26
the culture critic Neil Postman wrote a book
5
26713
2553
文化評論家尼爾.波茲曼寫了一本書,
00:29
called "Amusing Ourselves to Death,"
6
29266
2115
叫做《娛樂至死》,
00:31
which lays this out really brilliantly.
7
31381
2759
書中把這個現象說得很妙。
00:34
And here's what he said,
8
34140
1650
他是這樣說的:
00:35
comparing the dystopian visions
9
35790
2263
比較歐威爾和赫胥黎的兩種反烏托邦,
00:38
of George Orwell and Aldous Huxley.
10
38053
3573
00:41
He said, Orwell feared we would become
11
41626
3126
他說,歐威爾擔心我們會成為
00:44
a captive culture.
12
44752
2248
圈養的文化。
00:47
Huxley feared we would become a trivial culture.
13
47000
3752
赫胥黎則擔心我們會成為庸俗的文化。
00:50
Orwell feared the truth would be
14
50752
2145
歐威爾擔心真相會被隱瞞,
00:52
concealed from us,
15
52897
1923
00:54
and Huxley feared we would be drowned
16
54820
2190
赫胥黎則擔心我們會被瑣碎的汪洋吞沒。
00:57
in a sea of irrelevance.
17
57010
2693
00:59
In a nutshell, it's a choice between
18
59703
2170
簡單點說,
我們可以選擇「老大哥監視你」
01:01
Big Brother watching you
19
61873
2600
01:04
and you watching Big Brother.
20
64473
2496
或是「你監視老大哥」
01:06
(Laughter)
21
66969
1931
(觀眾笑聲)
01:08
But it doesn't have to be this way.
22
68900
1734
其實不必這樣,
01:10
We are not passive consumers of data and technology.
23
70634
3336
我們不是被動地消費資料和科技,
01:13
We shape the role it plays in our lives
24
73970
2403
我們可以決定科技在生活中扮演的角色,
01:16
and the way we make meaning from it,
25
76373
2130
和它對我們的意義。
01:18
but to do that,
26
78503
1603
但是要這麼做,
01:20
we have to pay as much attention to how we think
27
80106
3513
我們必須重視思考的方式,
01:23
as how we code.
28
83619
2030
不只重視編碼的方式。
01:25
We have to ask questions, and hard questions,
29
85649
3098
我們必須問問題,難解的問題,
01:28
to move past counting things
30
88747
1869
超越單純的算術,
01:30
to understanding them.
31
90616
2602
試圖去了解。
01:33
We're constantly bombarded with stories
32
93218
2446
我們不斷聽到世界上有多少資料,
01:35
about how much data there is in the world,
33
95664
2476
01:38
but when it comes to big data
34
98140
1580
但是談到大數據,
01:39
and the challenges of interpreting it,
35
99720
2596
以及詮釋這些數據資料的挑戰,
01:42
size isn't everything.
36
102316
2088
光看數量是不夠的,
01:44
There's also the speed at which it moves,
37
104404
2903
還必須關注資料成長的速度,
01:47
and the many varieties of data types,
38
107307
1696
以及眾多不同的資料類型。
01:49
and here are just a few examples:
39
109003
2498
我略舉幾個例子:
01:51
images,
40
111501
2198
圖像、
01:53
text,
41
113699
4007
文字、 [請稍候,直到你有用處的時候,謝謝。]
01:57
video,
42
117706
2095
影片、
01:59
audio.
43
119801
1830
聲音。
02:01
And what unites this disparate types of data
44
121631
3042
這些不同資料類型的共通處在於
02:04
is that they're created by people
45
124673
2221
它們都是人建立的,
02:06
and they require context.
46
126894
2775
也都不能斷章取義來詮釋。
02:09
Now, there's a group of data scientists
47
129669
2445
舉例,有一個資料科學家小組,
02:12
out of the University of Illinois-Chicago,
48
132114
2305
成員來自伊利諾大學芝加哥分校,
02:14
and they're called the Health Media Collaboratory,
49
134419
2554
這小組叫做「衛生媒體合作實驗室」。
02:16
and they've been working with the Centers for Disease Control
50
136973
2587
他們和美國疾病管制中心合作,
02:19
to better understand
51
139560
1505
想要更了解
02:21
how people talk about quitting smoking,
52
141065
2848
人們怎樣談論戒菸、
02:23
how they talk about electronic cigarettes,
53
143913
2680
怎樣談論電子香煙,
02:26
and what they can do collectively
54
146593
1985
以及怎樣一起幫助吸菸者戒菸。
02:28
to help them quit.
55
148578
1984
02:30
The interesting thing is, if you want to understand
56
150562
2013
有趣的是,
若要了解人們如何談論抽菸 smoking,
02:32
how people talk about smoking,
57
152575
2216
02:34
first you have to understand
58
154791
1901
就要先了解人們說 smoking 是什麼意思。
02:36
what they mean when they say "smoking."
59
156692
2565
02:39
And on Twitter, there are four main categories:
60
159257
3926
在推特上大致分成四類:
02:43
number one, smoking cigarettes;
61
163183
2997
第一類,抽菸;
02:46
number two, smoking marijuana;
62
166180
2807
第二類,抽大麻;
02:48
number three, smoking ribs;
63
168987
2643
第三類,煙熏肋排;
02:51
and number four, smoking hot women.
64
171630
3553
第四類,嗆辣正妹;
02:55
(Laughter)
65
175183
2993
(觀眾笑聲)
02:58
So then you have to think about, well,
66
178176
2426
接著要思考,
03:00
how do people talk about electronic cigarettes?
67
180602
2140
人們怎麼談論電子香菸?
03:02
And there are so many different ways
68
182742
2025
講法五花八門,
03:04
that people do this, and you can see from the slide
69
184767
2599
就像這張投影片所列的,
03:07
it's a complex kind of a query.
70
187366
2610
這種檢索非常複雜。
03:09
And what it reminds us is that
71
189976
3224
這提醒我們,
03:13
language is created by people,
72
193200
2411
語言是人創造的,
03:15
and people are messy and we're complex
73
195611
2340
而人是複雜、亂無章法的,
03:17
and we use metaphors and slang and jargon
74
197951
2767
我們會用隱喻、俚語、行話,
03:20
and we do this 24/7 in many, many languages,
75
200718
3279
無時無刻的製造,各式各樣的語言,
03:23
and then as soon as we figure it out, we change it up.
76
203997
3224
好不容易破解語言,就立刻又改變了。
03:27
So did these ads that the CDC put on,
77
207221
5118
那麼,疾管中心拍的這些戒菸文宣,
03:32
these television ads that featured a woman
78
212339
2430
電視廣告裡,一名女子喉嚨破了大洞,
03:34
with a hole in her throat and that were very graphic
79
214769
2021
03:36
and very disturbing,
80
216790
1904
畫面驚悚嚇人,
03:38
did they actually have an impact
81
218694
1885
這些廣告真的有效嗎?
03:40
on whether people quit?
82
220579
2671
真的讓人戒菸了嗎?
03:43
And the Health Media Collaboratory respected the limits of their data,
83
223250
3307
衛生媒體合作實驗室尊重其數據的限制,
03:46
but they were able to conclude
84
226557
2005
但仍能做出結論,
03:48
that those advertisements — and you may have seen them —
85
228562
3312
認為這些廣告—也許你們看過,
03:51
that they had the effect of jolting people
86
231874
2591
成功地刺激人們開始反省,
03:54
into a thought process
87
234465
1822
03:56
that may have an impact on future behavior.
88
236287
3667
可能影響未來的行為。
03:59
And what I admire and appreciate about this project,
89
239954
3891
這個計畫讓我最欽佩、欣賞的地方是,
04:03
aside from the fact, including the fact
90
243845
1489
除了它是在解決人的實際需要以外,
04:05
that it's based on real human need,
91
245334
4057
04:09
is that it's a fantastic example of courage
92
249391
2846
同時它提供了絕佳的典範,
展現了人類面對瑣碎汪洋的勇氣。
04:12
in the face of a sea of irrelevance.
93
252237
4443
04:16
And so it's not just big data that causes
94
256680
3305
所以,詮釋的挑戰不只因為資料龐大,
04:19
challenges of interpretation, because let's face it,
95
259985
2601
因為,老實說,歷史上有很多的例子顯示,
04:22
we human beings have a very rich history
96
262586
2594
04:25
of taking any amount of data, no matter how small,
97
265180
2693
無論資料再少,我們向來很能把它搞砸。
04:27
and screwing it up.
98
267873
1617
04:29
So many years ago, you may remember
99
269490
3737
大家可能記得,很多年前,
04:33
that former President Ronald Reagan
100
273227
2273
前總統雷根曾被痛罵,
04:35
was very criticized for making a statement
101
275500
1991
因為他說,事實是愚笨的東西。
04:37
that facts are stupid things.
102
277491
3010
04:40
And it was a slip of the tongue, let's be fair.
103
280501
2794
憑良心說,他只是一時口誤,
04:43
He actually meant to quote John Adams' defense
104
283295
2430
他其實是想引用約翰.亞當斯在
04:45
of British soldiers in the Boston Massacre trials
105
285725
2751
為因波士頓慘案受審的英軍辯護時說的:
04:48
that facts are stubborn things.
106
288476
3150
事實是固執難拗、不容改變的。
04:51
But I actually think there's
107
291626
2624
但我其實認為,
04:54
a bit of accidental wisdom in what he said,
108
294250
3418
這口誤可能湊巧講出幾分智慧,
04:57
because facts are stubborn things,
109
297668
2776
因為事實確實很固執,
05:00
but sometimes they're stupid, too.
110
300444
2923
但是有時也真的很愚笨。
05:03
I want to tell you a personal story
111
303367
1888
我要講一個自己的故事,
05:05
about why this matters a lot to me.
112
305255
3548
解釋為什麼這對我這麼重要。
05:08
I need to take a breath.
113
308803
2437
我要先吸一口氣。
05:11
My son Isaac, when he was two,
114
311240
2754
我兒子艾薩克兩歲的時候,
05:13
was diagnosed with autism,
115
313994
2417
被診斷為自閉兒。
05:16
and he was this happy, hilarious,
116
316411
2161
但他是個快樂、搞笑、
05:18
loving, affectionate little guy,
117
318572
2035
有愛心、喜歡親密的孩子,
05:20
but the metrics on his developmental evaluations,
118
320607
2902
但是他的發展評估測驗數據
05:23
which looked at things like the number of words —
119
323509
2070
檢視的是:
他當時會說幾個字?零個。
05:25
at that point, none —
120
325579
3657
05:29
communicative gestures and minimal eye contact,
121
329236
3940
只靠手勢溝通,
眼神接觸也極少,
讓他的發展程度
05:33
put his developmental level
122
333176
2003
05:35
at that of a nine-month-old baby.
123
335179
3961
被評為九個月大的嬰兒。
05:39
And the diagnosis was factually correct,
124
339140
2960
按照數據,診斷並沒有錯,
05:42
but it didn't tell the whole story.
125
342100
3209
卻跟實際狀況有落差。
05:45
And about a year and a half later,
126
345309
1401
大概過了一年半,兒子快滿四歲,
05:46
when he was almost four,
127
346710
2102
05:48
I found him in front of the computer one day
128
348812
2363
有一天,我看到他坐在電腦前面,
05:51
running a Google image search on women,
129
351175
5453
在用 Google 搜尋女性的照片,
05:56
spelled "w-i-m-e-n."
130
356628
3616
他把女性 (women) 拼成 "w-i-m-e-n"。
06:00
And I did what any obsessed parent would do,
131
360244
2740
我的反應跟任何偏執妄想的父母一樣,
06:02
which is immediately started hitting the "back" button
132
362984
1901
立刻開始按瀏覽器的「返回」按鈕,
06:04
to see what else he'd been searching for.
133
364885
3363
看看他還搜尋過什麼。
06:08
And they were, in order: men,
134
368248
2171
結果發現他依序搜尋過:男性 (men)、
06:10
school, bus and computer.
135
370419
7267
學校 (school)、公車 (bus)、
和電腦(錯拼成 cpyutr)。
06:17
And I was stunned,
136
377686
2070
我很吃驚,
06:19
because we didn't know that he could spell,
137
379756
2002
因為我們根本不知道他會拼字,
06:21
much less read, and so I asked him,
138
381758
1766
更別說閱讀。
所以我問他: 「艾薩克,你怎麼辦到的?」
06:23
"Isaac, how did you do this?"
139
383524
2193
06:25
And he looked at me very seriously and said,
140
385717
2678
他認真的看著我,說:
06:28
"Typed in the box."
141
388395
3352
「在搜尋欄裡打字啊!」
06:31
He was teaching himself to communicate,
142
391747
3734
他在教自己溝通,
06:35
but we were looking in the wrong place,
143
395481
3004
只是我們都找錯方向了。
06:38
and this is what happens when assessments
144
398485
2295
會發生這種情況,
06:40
and analytics overvalue one metric —
145
400780
2396
是因為評量和分析太重視單一面向,
06:43
in this case, verbal communication —
146
403176
2609
就像他的自閉症評量, 單看口語表達,
06:45
and undervalue others, such as creative problem-solving.
147
405785
5703
而忽視其他要素,
例如,創造性地解決問題。
06:51
Communication was hard for Isaac,
148
411488
2307
溝通對艾薩克來說很困難,
06:53
and so he found a workaround
149
413795
1912
所以他找到了替代方法,
06:55
to find out what he needed to know.
150
415707
2857
來找解答。
06:58
And when you think about it, it makes a lot of sense,
151
418564
1890
想想很有道理,
07:00
because forming a question
152
420454
2081
因為問問題是很複雜的過程,
07:02
is a really complex process,
153
422535
2565
07:05
but he could get himself a lot of the way there
154
425100
2522
但他只要在搜尋欄輸入一個字,
07:07
by putting a word in a search box.
155
427622
4092
就成功了一大半。
07:11
And so this little moment
156
431714
2936
於是這個小小的時刻
07:14
had a really profound impact on me
157
434650
2836
對我影響深遠,
07:17
and our family
158
437486
1309
對我們全家都是。
07:18
because it helped us change our frame of reference
159
438795
3141
因為,這改變了我們的判斷標準,
07:21
for what was going on with him,
160
441936
2208
用全新的眼光看待兒子的狀況,
07:24
and worry a little bit less and appreciate
161
444144
2976
比較不那麼擔憂,
轉而欣賞他解決問題的能力。
07:27
his resourcefulness more.
162
447120
2182
07:29
Facts are stupid things.
163
449302
2861
事實,真的是愚笨的。
07:32
And they're vulnerable to misuse,
164
452163
2397
事實也很容易被誤用,
07:34
willful or otherwise.
165
454560
1653
不論是有心或無意。
07:36
I have a friend, Emily Willingham, who's a scientist,
166
456213
3026
我的朋友艾蜜莉.威靈漢是個科學家,
07:39
and she wrote a piece for Forbes not long ago
167
459239
2801
她不久前為《富比士》寫了一篇文章,
07:42
entitled "The 10 Weirdest Things
168
462040
1980
叫做〈 自閉症怪異印象十大排行榜〉,
07:44
Ever Linked to Autism."
169
464020
1810
07:45
It's quite a list.
170
465830
3005
內容挺可怕的:
07:48
The Internet, blamed for everything, right?
171
468835
3532
「網路」,萬惡淵藪,對吧?
07:52
And of course mothers, because.
172
472367
3757
當然「媽媽」也上榜,
不言自明。
07:56
And actually, wait, there's more,
173
476124
1587
等等,還有,
07:57
there's a whole bunch in the "mother" category here.
174
477711
3430
這裡有一大類,都跟「媽媽」有關係,
08:01
And you can see it's a pretty rich and interesting list.
175
481141
4815
你可以看到,原因很多、很有意思。
08:05
I'm a big fan of
176
485956
2193
我最喜歡的是
08:08
being pregnant near freeways, personally.
177
488149
3704
「在高速公路附近受孕」。
08:11
The final one is interesting,
178
491853
1539
最後一項很有趣,
08:13
because the term "refrigerator mother"
179
493392
3003
因為「冰箱母親」這個封號
08:16
was actually the original hypothesis
180
496395
2605
是自閉症原因最早的假說,
08:19
for the cause of autism,
181
499000
1431
08:20
and that meant somebody who was cold and unloving.
182
500431
2735
用來描述冷漠沒有愛心的母親。
08:23
And at this point, you might be thinking,
183
503166
1562
現在,你可能會想:
08:24
"Okay, Susan, we get it,
184
504728
1657
「好了,蘇珊,我們懂了,
08:26
you can take data, you can make it mean anything."
185
506385
1782
你可以對資料做任何詮釋。」
08:28
And this is true, it's absolutely true,
186
508167
4703
這也沒錯,
絕對正確。
08:32
but the challenge is that
187
512870
5610
但是挑戰在於,
08:38
we have this opportunity
188
518480
2448
我們自己有這個機會,
08:40
to try to make meaning out of it ourselves,
189
520928
2284
可以賦予資料意義,
08:43
because frankly, data doesn't create meaning. We do.
190
523212
5352
因為老實說,資料不會自己產生意義。
我們才可以。
08:48
So as businesspeople, as consumers,
191
528564
3256
所以,身為商人、消費者、
08:51
as patients, as citizens,
192
531820
2539
病人、公民等等,
08:54
we have a responsibility, I think,
193
534359
2396
我想我們有責任
08:56
to spend more time
194
536755
2194
多花點時間
08:58
focusing on our critical thinking skills.
195
538949
2870
提升我們的批判性思考能力。
09:01
Why?
196
541819
1078
為什麼?
09:02
Because at this point in our history, as we've heard
197
542897
3178
我們聽過很多次, 因為在歷史的這一刻,
09:06
many times over,
198
546075
1706
09:07
we can process exabytes of data
199
547781
1981
已經能用光速 處理數十億 GB 的資料量,
09:09
at lightning speed,
200
549762
2153
09:11
and we have the potential to make bad decisions
201
551915
3515
可能更快速、更有效地 做出錯誤的決定,
09:15
far more quickly, efficiently,
202
555430
1834
09:17
and with far greater impact than we did in the past.
203
557264
5028
影響之大可能更甚以往。
09:22
Great, right?
204
562292
1388
這下好了,對吧?
09:23
And so what we need to do instead
205
563680
3030
所以,我們反而必須
09:26
is spend a little bit more time
206
566710
2330
多花時間
09:29
on things like the humanities
207
569040
2746
發展人文、
09:31
and sociology, and the social sciences,
208
571786
3464
社會學和社會科學,
09:35
rhetoric, philosophy, ethics,
209
575250
2308
修辭、哲學、倫理,
09:37
because they give us context that is so important
210
577558
2856
因為這些知識 構成我們的背景涵養,
09:40
for big data, and because
211
580414
2576
對大數據非常重要,
09:42
they help us become better critical thinkers.
212
582990
2418
也因為這能幫助我們更會思辨,
09:45
Because after all, if I can spot
213
585408
4207
因為畢竟,
如果我能看出命題裡的問題,
09:49
a problem in an argument, it doesn't much matter
214
589615
2486
那麼無論是 用文字或數據表達都可以。
09:52
whether it's expressed in words or in numbers.
215
592101
2759
09:54
And this means
216
594860
2719
這表示,
09:57
teaching ourselves to find those confirmation biases
217
597579
4421
要教育我們自己
去發覺各種確認的偏見
和謬誤的關聯,
10:02
and false correlations
218
602000
1822
10:03
and being able to spot a naked emotional appeal
219
603822
2138
並且能對赤裸裸的情感訴求保持警覺。
10:05
from 30 yards,
220
605960
1662
10:07
because something that happens after something
221
607622
2522
因為甲事之後發生了乙事,
10:10
doesn't mean it happened because of it, necessarily,
222
610144
3082
並不代表 甲事必定是乙事的肇因。
10:13
and if you'll let me geek out on you for a second,
223
613226
2119
如果大家容我書呆一下,
10:15
the Romans called this "post hoc ergo propter hoc,"
224
615345
4297
羅馬人稱這現象為「後此謬誤」 "post hoc ergo propter hoc",
10:19
after which therefore because of which.
225
619642
3296
後此,故因此。
10:22
And it means questioning disciplines like demographics.
226
622938
3757
這表示要質疑像人口統計這樣的方法。
10:26
Why? Because they're based on assumptions
227
626695
2520
為什麼?
因為這些都假設 我們一定是某種人,
10:29
about who we all are based on our gender
228
629215
2306
只憑我們的性別、年齡、居住地,
10:31
and our age and where we live
229
631521
1462
10:32
as opposed to data on what we actually think and do.
230
632983
3478
而忽視我們實際的思考和行為資料。
現在有了這些資料,
10:36
And since we have this data,
231
636461
1663
我們必須做好隱私權控管,
10:38
we need to treat it with appropriate privacy controls
232
638124
3139
10:41
and consumer opt-in,
233
641263
3576
以及讓消費者自願參與。
10:44
and beyond that, we need to be clear
234
644839
2993
再來,
我們必須很清楚我們的假設、
10:47
about our hypotheses,
235
647832
2103
10:49
the methodologies that we use,
236
649935
2596
使用的方法,
10:52
and our confidence in the result.
237
652531
2804
以及我們對結果的信心。
10:55
As my high school algebra teacher used to say,
238
655335
2474
就像我高中代數老師常說的:
10:57
show your math,
239
657809
1531
「算給我看。
10:59
because if I don't know what steps you took,
240
659340
3441
因為如果我不知道 你做了哪些步驟,
11:02
I don't know what steps you didn't take,
241
662781
1991
就不知道哪些步驟你沒有做。
11:04
and if I don't know what questions you asked,
242
664772
2438
如果我不知道你問了哪些問題,
11:07
I don't know what questions you didn't ask.
243
667210
3197
就不知道哪些問題你沒有問。」
11:10
And it means asking ourselves, really,
244
670407
1523
這表示我們要問自己
11:11
the hardest question of all:
245
671930
1479
最難的一個問題:
11:13
Did the data really show us this,
246
673409
3500
「數據資料真的有這樣說嗎?
11:16
or does the result make us feel
247
676909
2311
還是這種結果讓我們覺得
11:19
more successful and more comfortable?
248
679220
3878
比較成功和自在?」
11:23
So the Health Media Collaboratory,
249
683098
2584
衛生媒體合作實驗室在計畫結束時,
11:25
at the end of their project, they were able
250
685682
1699
發現 87% 的推文
11:27
to find that 87 percent of tweets
251
687381
3408
11:30
about those very graphic and disturbing
252
690789
2144
回應那些令人不安的戒菸廣告時,
11:32
anti-smoking ads expressed fear,
253
692933
4038
表達了恐懼。
11:36
but did they conclude
254
696971
1856
但是,
他們有說那些廣告讓人成功戒菸嗎?
11:38
that they actually made people stop smoking?
255
698827
3161
11:41
No. It's science, not magic.
256
701988
2542
沒有。這是科學,不是魔術。
11:44
So if we are to unlock
257
704530
3190
所以,
如果想要釋放數據的力量,
11:47
the power of data,
258
707720
2862
11:50
we don't have to go blindly into
259
710582
3448
我們不必盲目地踏進
11:54
Orwell's vision of a totalitarian future,
260
714030
3436
歐威爾預見的極權主義未來,
11:57
or Huxley's vision of a trivial one,
261
717466
3117
或是赫胥黎的瑣碎世界,
12:00
or some horrible cocktail of both.
262
720583
3020
或是兩者的可怕綜合體。
12:03
What we have to do
263
723603
2379
我們必須做的是,
12:05
is treat critical thinking with respect
264
725982
2718
重視批判性思考,
12:08
and be inspired by examples
265
728700
2029
並且向衛生媒體合作室 這樣的典範學習。
12:10
like the Health Media Collaboratory,
266
730729
2610
12:13
and as they say in the superhero movies,
267
733339
2328
就像超級英雄電影常講的:
12:15
let's use our powers for good.
268
735667
1822
「讓我們把我們的力量用在正途。」
12:17
Thank you.
269
737489
2351
謝謝。
(觀眾掌聲)
12:19
(Applause)
270
739840
2334
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7