Susan Etlinger: What do we do with all this big data?

155,722 views ・ 2014-10-20

TED


請雙擊下方英文字幕播放視頻。

譯者: Yesbydefault 倪文娟 審譯者: Adrienne Lin
00:13
Technology has brought us so much:
0
13354
3135
科技帶給我們很多美好的事物:
00:16
the moon landing, the Internet,
1
16489
2019
登陸月球、網路、
00:18
the ability to sequence the human genome.
2
18508
2625
人類基因組定序。
00:21
But it also taps into a lot of our deepest fears,
3
21133
3724
但也挖掘出我們內心深處的許多恐懼。
00:24
and about 30 years ago,
4
24857
1856
大約 30 年前,
00:26
the culture critic Neil Postman wrote a book
5
26713
2553
文化評論家尼爾.波茲曼寫了一本書,
00:29
called "Amusing Ourselves to Death,"
6
29266
2115
叫做《娛樂至死》,
00:31
which lays this out really brilliantly.
7
31381
2759
書中把這個現象說得很妙。
00:34
And here's what he said,
8
34140
1650
他是這樣說的:
00:35
comparing the dystopian visions
9
35790
2263
比較歐威爾和赫胥黎的兩種反烏托邦,
00:38
of George Orwell and Aldous Huxley.
10
38053
3573
00:41
He said, Orwell feared we would become
11
41626
3126
他說,歐威爾擔心我們會成為
00:44
a captive culture.
12
44752
2248
圈養的文化。
00:47
Huxley feared we would become a trivial culture.
13
47000
3752
赫胥黎則擔心我們會成為庸俗的文化。
00:50
Orwell feared the truth would be
14
50752
2145
歐威爾擔心真相會被隱瞞,
00:52
concealed from us,
15
52897
1923
00:54
and Huxley feared we would be drowned
16
54820
2190
赫胥黎則擔心我們會被瑣碎的汪洋吞沒。
00:57
in a sea of irrelevance.
17
57010
2693
00:59
In a nutshell, it's a choice between
18
59703
2170
簡單點說,
我們可以選擇「老大哥監視你」
01:01
Big Brother watching you
19
61873
2600
01:04
and you watching Big Brother.
20
64473
2496
或是「你監視老大哥」
01:06
(Laughter)
21
66969
1931
(觀眾笑聲)
01:08
But it doesn't have to be this way.
22
68900
1734
其實不必這樣,
01:10
We are not passive consumers of data and technology.
23
70634
3336
我們不是被動地消費資料和科技,
01:13
We shape the role it plays in our lives
24
73970
2403
我們可以決定科技在生活中扮演的角色,
01:16
and the way we make meaning from it,
25
76373
2130
和它對我們的意義。
01:18
but to do that,
26
78503
1603
但是要這麼做,
01:20
we have to pay as much attention to how we think
27
80106
3513
我們必須重視思考的方式,
01:23
as how we code.
28
83619
2030
不只重視編碼的方式。
01:25
We have to ask questions, and hard questions,
29
85649
3098
我們必須問問題,難解的問題,
01:28
to move past counting things
30
88747
1869
超越單純的算術,
01:30
to understanding them.
31
90616
2602
試圖去了解。
01:33
We're constantly bombarded with stories
32
93218
2446
我們不斷聽到世界上有多少資料,
01:35
about how much data there is in the world,
33
95664
2476
01:38
but when it comes to big data
34
98140
1580
但是談到大數據,
01:39
and the challenges of interpreting it,
35
99720
2596
以及詮釋這些數據資料的挑戰,
01:42
size isn't everything.
36
102316
2088
光看數量是不夠的,
01:44
There's also the speed at which it moves,
37
104404
2903
還必須關注資料成長的速度,
01:47
and the many varieties of data types,
38
107307
1696
以及眾多不同的資料類型。
01:49
and here are just a few examples:
39
109003
2498
我略舉幾個例子:
01:51
images,
40
111501
2198
圖像、
01:53
text,
41
113699
4007
文字、 [請稍候,直到你有用處的時候,謝謝。]
01:57
video,
42
117706
2095
影片、
01:59
audio.
43
119801
1830
聲音。
02:01
And what unites this disparate types of data
44
121631
3042
這些不同資料類型的共通處在於
02:04
is that they're created by people
45
124673
2221
它們都是人建立的,
02:06
and they require context.
46
126894
2775
也都不能斷章取義來詮釋。
02:09
Now, there's a group of data scientists
47
129669
2445
舉例,有一個資料科學家小組,
02:12
out of the University of Illinois-Chicago,
48
132114
2305
成員來自伊利諾大學芝加哥分校,
02:14
and they're called the Health Media Collaboratory,
49
134419
2554
這小組叫做「衛生媒體合作實驗室」。
02:16
and they've been working with the Centers for Disease Control
50
136973
2587
他們和美國疾病管制中心合作,
02:19
to better understand
51
139560
1505
想要更了解
02:21
how people talk about quitting smoking,
52
141065
2848
人們怎樣談論戒菸、
02:23
how they talk about electronic cigarettes,
53
143913
2680
怎樣談論電子香煙,
02:26
and what they can do collectively
54
146593
1985
以及怎樣一起幫助吸菸者戒菸。
02:28
to help them quit.
55
148578
1984
02:30
The interesting thing is, if you want to understand
56
150562
2013
有趣的是,
若要了解人們如何談論抽菸 smoking,
02:32
how people talk about smoking,
57
152575
2216
02:34
first you have to understand
58
154791
1901
就要先了解人們說 smoking 是什麼意思。
02:36
what they mean when they say "smoking."
59
156692
2565
02:39
And on Twitter, there are four main categories:
60
159257
3926
在推特上大致分成四類:
02:43
number one, smoking cigarettes;
61
163183
2997
第一類,抽菸;
02:46
number two, smoking marijuana;
62
166180
2807
第二類,抽大麻;
02:48
number three, smoking ribs;
63
168987
2643
第三類,煙熏肋排;
02:51
and number four, smoking hot women.
64
171630
3553
第四類,嗆辣正妹;
02:55
(Laughter)
65
175183
2993
(觀眾笑聲)
02:58
So then you have to think about, well,
66
178176
2426
接著要思考,
03:00
how do people talk about electronic cigarettes?
67
180602
2140
人們怎麼談論電子香菸?
03:02
And there are so many different ways
68
182742
2025
講法五花八門,
03:04
that people do this, and you can see from the slide
69
184767
2599
就像這張投影片所列的,
03:07
it's a complex kind of a query.
70
187366
2610
這種檢索非常複雜。
03:09
And what it reminds us is that
71
189976
3224
這提醒我們,
03:13
language is created by people,
72
193200
2411
語言是人創造的,
03:15
and people are messy and we're complex
73
195611
2340
而人是複雜、亂無章法的,
03:17
and we use metaphors and slang and jargon
74
197951
2767
我們會用隱喻、俚語、行話,
03:20
and we do this 24/7 in many, many languages,
75
200718
3279
無時無刻的製造,各式各樣的語言,
03:23
and then as soon as we figure it out, we change it up.
76
203997
3224
好不容易破解語言,就立刻又改變了。
03:27
So did these ads that the CDC put on,
77
207221
5118
那麼,疾管中心拍的這些戒菸文宣,
03:32
these television ads that featured a woman
78
212339
2430
電視廣告裡,一名女子喉嚨破了大洞,
03:34
with a hole in her throat and that were very graphic
79
214769
2021
03:36
and very disturbing,
80
216790
1904
畫面驚悚嚇人,
03:38
did they actually have an impact
81
218694
1885
這些廣告真的有效嗎?
03:40
on whether people quit?
82
220579
2671
真的讓人戒菸了嗎?
03:43
And the Health Media Collaboratory respected the limits of their data,
83
223250
3307
衛生媒體合作實驗室尊重其數據的限制,
03:46
but they were able to conclude
84
226557
2005
但仍能做出結論,
03:48
that those advertisements — and you may have seen them —
85
228562
3312
認為這些廣告—也許你們看過,
03:51
that they had the effect of jolting people
86
231874
2591
成功地刺激人們開始反省,
03:54
into a thought process
87
234465
1822
03:56
that may have an impact on future behavior.
88
236287
3667
可能影響未來的行為。
03:59
And what I admire and appreciate about this project,
89
239954
3891
這個計畫讓我最欽佩、欣賞的地方是,
04:03
aside from the fact, including the fact
90
243845
1489
除了它是在解決人的實際需要以外,
04:05
that it's based on real human need,
91
245334
4057
04:09
is that it's a fantastic example of courage
92
249391
2846
同時它提供了絕佳的典範,
展現了人類面對瑣碎汪洋的勇氣。
04:12
in the face of a sea of irrelevance.
93
252237
4443
04:16
And so it's not just big data that causes
94
256680
3305
所以,詮釋的挑戰不只因為資料龐大,
04:19
challenges of interpretation, because let's face it,
95
259985
2601
因為,老實說,歷史上有很多的例子顯示,
04:22
we human beings have a very rich history
96
262586
2594
04:25
of taking any amount of data, no matter how small,
97
265180
2693
無論資料再少,我們向來很能把它搞砸。
04:27
and screwing it up.
98
267873
1617
04:29
So many years ago, you may remember
99
269490
3737
大家可能記得,很多年前,
04:33
that former President Ronald Reagan
100
273227
2273
前總統雷根曾被痛罵,
04:35
was very criticized for making a statement
101
275500
1991
因為他說,事實是愚笨的東西。
04:37
that facts are stupid things.
102
277491
3010
04:40
And it was a slip of the tongue, let's be fair.
103
280501
2794
憑良心說,他只是一時口誤,
04:43
He actually meant to quote John Adams' defense
104
283295
2430
他其實是想引用約翰.亞當斯在
04:45
of British soldiers in the Boston Massacre trials
105
285725
2751
為因波士頓慘案受審的英軍辯護時說的:
04:48
that facts are stubborn things.
106
288476
3150
事實是固執難拗、不容改變的。
04:51
But I actually think there's
107
291626
2624
但我其實認為,
04:54
a bit of accidental wisdom in what he said,
108
294250
3418
這口誤可能湊巧講出幾分智慧,
04:57
because facts are stubborn things,
109
297668
2776
因為事實確實很固執,
05:00
but sometimes they're stupid, too.
110
300444
2923
但是有時也真的很愚笨。
05:03
I want to tell you a personal story
111
303367
1888
我要講一個自己的故事,
05:05
about why this matters a lot to me.
112
305255
3548
解釋為什麼這對我這麼重要。
05:08
I need to take a breath.
113
308803
2437
我要先吸一口氣。
05:11
My son Isaac, when he was two,
114
311240
2754
我兒子艾薩克兩歲的時候,
05:13
was diagnosed with autism,
115
313994
2417
被診斷為自閉兒。
05:16
and he was this happy, hilarious,
116
316411
2161
但他是個快樂、搞笑、
05:18
loving, affectionate little guy,
117
318572
2035
有愛心、喜歡親密的孩子,
05:20
but the metrics on his developmental evaluations,
118
320607
2902
但是他的發展評估測驗數據
05:23
which looked at things like the number of words —
119
323509
2070
檢視的是:
他當時會說幾個字?零個。
05:25
at that point, none —
120
325579
3657
05:29
communicative gestures and minimal eye contact,
121
329236
3940
只靠手勢溝通,
眼神接觸也極少,
讓他的發展程度
05:33
put his developmental level
122
333176
2003
05:35
at that of a nine-month-old baby.
123
335179
3961
被評為九個月大的嬰兒。
05:39
And the diagnosis was factually correct,
124
339140
2960
按照數據,診斷並沒有錯,
05:42
but it didn't tell the whole story.
125
342100
3209
卻跟實際狀況有落差。
05:45
And about a year and a half later,
126
345309
1401
大概過了一年半,兒子快滿四歲,
05:46
when he was almost four,
127
346710
2102
05:48
I found him in front of the computer one day
128
348812
2363
有一天,我看到他坐在電腦前面,
05:51
running a Google image search on women,
129
351175
5453
在用 Google 搜尋女性的照片,
05:56
spelled "w-i-m-e-n."
130
356628
3616
他把女性 (women) 拼成 "w-i-m-e-n"。
06:00
And I did what any obsessed parent would do,
131
360244
2740
我的反應跟任何偏執妄想的父母一樣,
06:02
which is immediately started hitting the "back" button
132
362984
1901
立刻開始按瀏覽器的「返回」按鈕,
06:04
to see what else he'd been searching for.
133
364885
3363
看看他還搜尋過什麼。
06:08
And they were, in order: men,
134
368248
2171
結果發現他依序搜尋過:男性 (men)、
06:10
school, bus and computer.
135
370419
7267
學校 (school)、公車 (bus)、
和電腦(錯拼成 cpyutr)。
06:17
And I was stunned,
136
377686
2070
我很吃驚,
06:19
because we didn't know that he could spell,
137
379756
2002
因為我們根本不知道他會拼字,
06:21
much less read, and so I asked him,
138
381758
1766
更別說閱讀。
所以我問他: 「艾薩克,你怎麼辦到的?」
06:23
"Isaac, how did you do this?"
139
383524
2193
06:25
And he looked at me very seriously and said,
140
385717
2678
他認真的看著我,說:
06:28
"Typed in the box."
141
388395
3352
「在搜尋欄裡打字啊!」
06:31
He was teaching himself to communicate,
142
391747
3734
他在教自己溝通,
06:35
but we were looking in the wrong place,
143
395481
3004
只是我們都找錯方向了。
06:38
and this is what happens when assessments
144
398485
2295
會發生這種情況,
06:40
and analytics overvalue one metric —
145
400780
2396
是因為評量和分析太重視單一面向,
06:43
in this case, verbal communication —
146
403176
2609
就像他的自閉症評量, 單看口語表達,
06:45
and undervalue others, such as creative problem-solving.
147
405785
5703
而忽視其他要素,
例如,創造性地解決問題。
06:51
Communication was hard for Isaac,
148
411488
2307
溝通對艾薩克來說很困難,
06:53
and so he found a workaround
149
413795
1912
所以他找到了替代方法,
06:55
to find out what he needed to know.
150
415707
2857
來找解答。
06:58
And when you think about it, it makes a lot of sense,
151
418564
1890
想想很有道理,
07:00
because forming a question
152
420454
2081
因為問問題是很複雜的過程,
07:02
is a really complex process,
153
422535
2565
07:05
but he could get himself a lot of the way there
154
425100
2522
但他只要在搜尋欄輸入一個字,
07:07
by putting a word in a search box.
155
427622
4092
就成功了一大半。
07:11
And so this little moment
156
431714
2936
於是這個小小的時刻
07:14
had a really profound impact on me
157
434650
2836
對我影響深遠,
07:17
and our family
158
437486
1309
對我們全家都是。
07:18
because it helped us change our frame of reference
159
438795
3141
因為,這改變了我們的判斷標準,
07:21
for what was going on with him,
160
441936
2208
用全新的眼光看待兒子的狀況,
07:24
and worry a little bit less and appreciate
161
444144
2976
比較不那麼擔憂,
轉而欣賞他解決問題的能力。
07:27
his resourcefulness more.
162
447120
2182
07:29
Facts are stupid things.
163
449302
2861
事實,真的是愚笨的。
07:32
And they're vulnerable to misuse,
164
452163
2397
事實也很容易被誤用,
07:34
willful or otherwise.
165
454560
1653
不論是有心或無意。
07:36
I have a friend, Emily Willingham, who's a scientist,
166
456213
3026
我的朋友艾蜜莉.威靈漢是個科學家,
07:39
and she wrote a piece for Forbes not long ago
167
459239
2801
她不久前為《富比士》寫了一篇文章,
07:42
entitled "The 10 Weirdest Things
168
462040
1980
叫做〈 自閉症怪異印象十大排行榜〉,
07:44
Ever Linked to Autism."
169
464020
1810
07:45
It's quite a list.
170
465830
3005
內容挺可怕的:
07:48
The Internet, blamed for everything, right?
171
468835
3532
「網路」,萬惡淵藪,對吧?
07:52
And of course mothers, because.
172
472367
3757
當然「媽媽」也上榜,
不言自明。
07:56
And actually, wait, there's more,
173
476124
1587
等等,還有,
07:57
there's a whole bunch in the "mother" category here.
174
477711
3430
這裡有一大類,都跟「媽媽」有關係,
08:01
And you can see it's a pretty rich and interesting list.
175
481141
4815
你可以看到,原因很多、很有意思。
08:05
I'm a big fan of
176
485956
2193
我最喜歡的是
08:08
being pregnant near freeways, personally.
177
488149
3704
「在高速公路附近受孕」。
08:11
The final one is interesting,
178
491853
1539
最後一項很有趣,
08:13
because the term "refrigerator mother"
179
493392
3003
因為「冰箱母親」這個封號
08:16
was actually the original hypothesis
180
496395
2605
是自閉症原因最早的假說,
08:19
for the cause of autism,
181
499000
1431
08:20
and that meant somebody who was cold and unloving.
182
500431
2735
用來描述冷漠沒有愛心的母親。
08:23
And at this point, you might be thinking,
183
503166
1562
現在,你可能會想:
08:24
"Okay, Susan, we get it,
184
504728
1657
「好了,蘇珊,我們懂了,
08:26
you can take data, you can make it mean anything."
185
506385
1782
你可以對資料做任何詮釋。」
08:28
And this is true, it's absolutely true,
186
508167
4703
這也沒錯,
絕對正確。
08:32
but the challenge is that
187
512870
5610
但是挑戰在於,
08:38
we have this opportunity
188
518480
2448
我們自己有這個機會,
08:40
to try to make meaning out of it ourselves,
189
520928
2284
可以賦予資料意義,
08:43
because frankly, data doesn't create meaning. We do.
190
523212
5352
因為老實說,資料不會自己產生意義。
我們才可以。
08:48
So as businesspeople, as consumers,
191
528564
3256
所以,身為商人、消費者、
08:51
as patients, as citizens,
192
531820
2539
病人、公民等等,
08:54
we have a responsibility, I think,
193
534359
2396
我想我們有責任
08:56
to spend more time
194
536755
2194
多花點時間
08:58
focusing on our critical thinking skills.
195
538949
2870
提升我們的批判性思考能力。
09:01
Why?
196
541819
1078
為什麼?
09:02
Because at this point in our history, as we've heard
197
542897
3178
我們聽過很多次, 因為在歷史的這一刻,
09:06
many times over,
198
546075
1706
09:07
we can process exabytes of data
199
547781
1981
已經能用光速 處理數十億 GB 的資料量,
09:09
at lightning speed,
200
549762
2153
09:11
and we have the potential to make bad decisions
201
551915
3515
可能更快速、更有效地 做出錯誤的決定,
09:15
far more quickly, efficiently,
202
555430
1834
09:17
and with far greater impact than we did in the past.
203
557264
5028
影響之大可能更甚以往。
09:22
Great, right?
204
562292
1388
這下好了,對吧?
09:23
And so what we need to do instead
205
563680
3030
所以,我們反而必須
09:26
is spend a little bit more time
206
566710
2330
多花時間
09:29
on things like the humanities
207
569040
2746
發展人文、
09:31
and sociology, and the social sciences,
208
571786
3464
社會學和社會科學,
09:35
rhetoric, philosophy, ethics,
209
575250
2308
修辭、哲學、倫理,
09:37
because they give us context that is so important
210
577558
2856
因為這些知識 構成我們的背景涵養,
09:40
for big data, and because
211
580414
2576
對大數據非常重要,
09:42
they help us become better critical thinkers.
212
582990
2418
也因為這能幫助我們更會思辨,
09:45
Because after all, if I can spot
213
585408
4207
因為畢竟,
如果我能看出命題裡的問題,
09:49
a problem in an argument, it doesn't much matter
214
589615
2486
那麼無論是 用文字或數據表達都可以。
09:52
whether it's expressed in words or in numbers.
215
592101
2759
09:54
And this means
216
594860
2719
這表示,
09:57
teaching ourselves to find those confirmation biases
217
597579
4421
要教育我們自己
去發覺各種確認的偏見
和謬誤的關聯,
10:02
and false correlations
218
602000
1822
10:03
and being able to spot a naked emotional appeal
219
603822
2138
並且能對赤裸裸的情感訴求保持警覺。
10:05
from 30 yards,
220
605960
1662
10:07
because something that happens after something
221
607622
2522
因為甲事之後發生了乙事,
10:10
doesn't mean it happened because of it, necessarily,
222
610144
3082
並不代表 甲事必定是乙事的肇因。
10:13
and if you'll let me geek out on you for a second,
223
613226
2119
如果大家容我書呆一下,
10:15
the Romans called this "post hoc ergo propter hoc,"
224
615345
4297
羅馬人稱這現象為「後此謬誤」 "post hoc ergo propter hoc",
10:19
after which therefore because of which.
225
619642
3296
後此,故因此。
10:22
And it means questioning disciplines like demographics.
226
622938
3757
這表示要質疑像人口統計這樣的方法。
10:26
Why? Because they're based on assumptions
227
626695
2520
為什麼?
因為這些都假設 我們一定是某種人,
10:29
about who we all are based on our gender
228
629215
2306
只憑我們的性別、年齡、居住地,
10:31
and our age and where we live
229
631521
1462
10:32
as opposed to data on what we actually think and do.
230
632983
3478
而忽視我們實際的思考和行為資料。
現在有了這些資料,
10:36
And since we have this data,
231
636461
1663
我們必須做好隱私權控管,
10:38
we need to treat it with appropriate privacy controls
232
638124
3139
10:41
and consumer opt-in,
233
641263
3576
以及讓消費者自願參與。
10:44
and beyond that, we need to be clear
234
644839
2993
再來,
我們必須很清楚我們的假設、
10:47
about our hypotheses,
235
647832
2103
10:49
the methodologies that we use,
236
649935
2596
使用的方法,
10:52
and our confidence in the result.
237
652531
2804
以及我們對結果的信心。
10:55
As my high school algebra teacher used to say,
238
655335
2474
就像我高中代數老師常說的:
10:57
show your math,
239
657809
1531
「算給我看。
10:59
because if I don't know what steps you took,
240
659340
3441
因為如果我不知道 你做了哪些步驟,
11:02
I don't know what steps you didn't take,
241
662781
1991
就不知道哪些步驟你沒有做。
11:04
and if I don't know what questions you asked,
242
664772
2438
如果我不知道你問了哪些問題,
11:07
I don't know what questions you didn't ask.
243
667210
3197
就不知道哪些問題你沒有問。」
11:10
And it means asking ourselves, really,
244
670407
1523
這表示我們要問自己
11:11
the hardest question of all:
245
671930
1479
最難的一個問題:
11:13
Did the data really show us this,
246
673409
3500
「數據資料真的有這樣說嗎?
11:16
or does the result make us feel
247
676909
2311
還是這種結果讓我們覺得
11:19
more successful and more comfortable?
248
679220
3878
比較成功和自在?」
11:23
So the Health Media Collaboratory,
249
683098
2584
衛生媒體合作實驗室在計畫結束時,
11:25
at the end of their project, they were able
250
685682
1699
發現 87% 的推文
11:27
to find that 87 percent of tweets
251
687381
3408
11:30
about those very graphic and disturbing
252
690789
2144
回應那些令人不安的戒菸廣告時,
11:32
anti-smoking ads expressed fear,
253
692933
4038
表達了恐懼。
11:36
but did they conclude
254
696971
1856
但是,
他們有說那些廣告讓人成功戒菸嗎?
11:38
that they actually made people stop smoking?
255
698827
3161
11:41
No. It's science, not magic.
256
701988
2542
沒有。這是科學,不是魔術。
11:44
So if we are to unlock
257
704530
3190
所以,
如果想要釋放數據的力量,
11:47
the power of data,
258
707720
2862
11:50
we don't have to go blindly into
259
710582
3448
我們不必盲目地踏進
11:54
Orwell's vision of a totalitarian future,
260
714030
3436
歐威爾預見的極權主義未來,
11:57
or Huxley's vision of a trivial one,
261
717466
3117
或是赫胥黎的瑣碎世界,
12:00
or some horrible cocktail of both.
262
720583
3020
或是兩者的可怕綜合體。
12:03
What we have to do
263
723603
2379
我們必須做的是,
12:05
is treat critical thinking with respect
264
725982
2718
重視批判性思考,
12:08
and be inspired by examples
265
728700
2029
並且向衛生媒體合作室 這樣的典範學習。
12:10
like the Health Media Collaboratory,
266
730729
2610
12:13
and as they say in the superhero movies,
267
733339
2328
就像超級英雄電影常講的:
12:15
let's use our powers for good.
268
735667
1822
「讓我們把我們的力量用在正途。」
12:17
Thank you.
269
737489
2351
謝謝。
(觀眾掌聲)
12:19
(Applause)
270
739840
2334
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog