Allan Jones: A map of the brain

164,817 views ・ 2011-11-10

TED


Please double-click on the English subtitles below to play the video.

Prevodilac: Jelena Nedjic Lektor: Ivana Gadjanski
00:15
Humans have long held a fascination
0
15260
2000
Ljudi su već dugo očarani
00:17
for the human brain.
1
17260
2000
ljudskim mozgom.
00:19
We chart it, we've described it,
2
19260
3000
Istražujemo ga, opisujemo ga,
00:22
we've drawn it,
3
22260
2000
crtamo ga,
00:24
we've mapped it.
4
24260
3000
pravimo mapu ljudskog mozga.
00:27
Now just like the physical maps of our world
5
27260
3000
Tehnologija je značajno uticala
00:30
that have been highly influenced by technology --
6
30260
3000
na izgled mapa našeg sveta --
00:33
think Google Maps,
7
33260
2000
pomislite na Gugl mape,
00:35
think GPS --
8
35260
2000
pomislite na GPS -
00:37
the same thing is happening for brain mapping
9
37260
2000
isti preobražaj se dešava
00:39
through transformation.
10
39260
2000
i u oblasti mapiranja mozga.
00:41
So let's take a look at the brain.
11
41260
2000
Bacimo pogled na mozak.
00:43
Most people, when they first look at a fresh human brain,
12
43260
3000
Većina ljudi, kada prvi put vidi svež ljudski mozak,
00:46
they say, "It doesn't look what you're typically looking at
13
46260
3000
kaže: "Ne podseća na ono što obično vidite
00:49
when someone shows you a brain."
14
49260
2000
kada vam neko pokaže mozak."
00:51
Typically, what you're looking at is a fixed brain. It's gray.
15
51260
3000
Ono što vam je uglavnom pokazivano je prepariran mozak. Siv je.
00:54
And this outer layer, this is the vasculature,
16
54260
2000
Ovaj spoljašnji sloj, to je vaskulatura ,
00:56
which is incredible, around a human brain.
17
56260
2000
neverovatno je da se nalazi oko ljudskog mozga.
00:58
This is the blood vessels.
18
58260
2000
To su krvni sudovi.
01:00
20 percent of the oxygen
19
60260
3000
20 procenata kiseonika
01:03
coming from your lungs,
20
63260
2000
iz vaših pluća,
01:05
20 percent of the blood pumped from your heart,
21
65260
2000
20 procenata krvi ispumpane iz vašeg srca,
01:07
is servicing this one organ.
22
67260
2000
opslužuje ovaj jedan organ.
01:09
That's basically, if you hold two fists together,
23
69260
2000
Praktično, ako spojite dve pesnice,
01:11
it's just slightly larger than the two fists.
24
71260
2000
mozak je jedva malo veći od toga.
01:13
Scientists, sort of at the end of the 20th century,
25
73260
3000
Naučnici su negde krajem dvadesetog veka
01:16
learned that they could track blood flow
26
76260
2000
otkrili da prateći krvotok mogu
01:18
to map non-invasively
27
78260
3000
neinvazivnim putem da mapiraju
01:21
where activity was going on in the human brain.
28
81260
3000
mesta aktivnosti u ljudskom mozgu.
01:24
So for example, they can see in the back part of the brain,
29
84260
3000
Na primer, mogu da pogledaju potiljačni deo mozga
01:27
which is just turning around there.
30
87260
2000
koji se nalazi otprilike ovde.
01:29
There's the cerebellum; that's keeping you upright right now.
31
89260
2000
Tu se nalazi mali mozak; održava vas u ovom momentu u uspravnom položaju.
01:31
It's keeping me standing. It's involved in coordinated movement.
32
91260
3000
Meni omogućava da stojim. On je zadužen za održavanje ravnoteže.
01:34
On the side here, this is temporal cortex.
33
94260
3000
Sa strane se nalazi slepoočni režanj.
01:37
This is the area where primary auditory processing --
34
97260
3000
Ovaj deo je zadužen za primarnu obradu zvuka --
01:40
so you're hearing my words,
35
100260
2000
tako da možete da čujete moje reči,
01:42
you're sending it up into higher language processing centers.
36
102260
2000
i šaljete ih dalje u više centre za obradu govornih informacija
01:44
Towards the front of the brain
37
104260
2000
Na prednjem delu mozga
01:46
is the place in which all of the more complex thought, decision making --
38
106260
3000
nalazi se centar za razmišljanje, donošenje odluka --
01:49
it's the last to mature in late adulthood.
39
109260
4000
taj deo se poslednji formira, u odraslom dobu.
01:53
This is where all your decision-making processes are going on.
40
113260
3000
Tu se odvijaju svi procesi vezani za donošenje odluka.
01:56
It's the place where you're deciding right now
41
116260
2000
To je mesto koje upravo sada odlučuje
01:58
you probably aren't going to order the steak for dinner.
42
118260
3000
da verovatno nećete naručiti biftek za večeru.
02:01
So if you take a deeper look at the brain,
43
121260
2000
Ako pažljivije pogledate unutar mozga.
02:03
one of the things, if you look at it in cross-section,
44
123260
2000
ako posmatrate poprečni presek,
02:05
what you can see
45
125260
2000
možete uočiti da
02:07
is that you can't really see a whole lot of structure there.
46
127260
3000
tu i nema baš mnogo struktura.
02:10
But there's actually a lot of structure there.
47
130260
2000
Ali zapravo, postoji tu mnogo struktura.
02:12
It's cells and it's wires all wired together.
48
132260
2000
To su međusobno povezane ćelije i provodnici.
02:14
So about a hundred years ago,
49
134260
2000
Pre nekih sto godina,
02:16
some scientists invented a stain that would stain cells.
50
136260
2000
naučnici su izumeli način da oboje ćelije.
02:18
And that's shown here in the the very light blue.
51
138260
3000
To je prikazano ovde veoma svetlom plavom bojom.
02:21
You can see areas
52
141260
2000
Možete uočiti zone
02:23
where neuronal cell bodies are being stained.
53
143260
2000
koje predstavljaju obojena ćelijska tela neurona.
02:25
And what you can see is it's very non-uniform. You see a lot more structure there.
54
145260
3000
Uočavate da nije jednolično. Primećujete mnogo više struktura.
02:28
So the outer part of that brain
55
148260
2000
Spoljašnji deo ovog mozga
02:30
is the neocortex.
56
150260
2000
je neokorteks.
02:32
It's one continuous processing unit, if you will.
57
152260
3000
To je, moglo bi se reći, neprekidna jedinica za obradu informacija.
02:35
But you can also see things underneath there as well.
58
155260
2000
Takođe možete uočiti i ono što leži ispod toga.
02:37
And all of these blank areas
59
157260
2000
Neobojeni regioni su
02:39
are the areas in which the wires are running through.
60
159260
2000
delovi gde prolaze provodnici.
02:41
They're probably less cell dense.
61
161260
2000
Gustina ćelija je tu verovatno manja.
02:43
So there's about 86 billion neurons in our brain.
62
163260
4000
U našem mozgu se nalazi oko 86 milijardi neurona.
02:47
And as you can see, they're very non-uniformly distributed.
63
167260
3000
Kao što možete da vidite, nisu uniformno raspoređeni.
02:50
And how they're distributed really contributes
64
170260
2000
Raspored neurona značajno određuje
02:52
to their underlying function.
65
172260
2000
njihovu ulogu u mozgu.
02:54
And of course, as I mentioned before,
66
174260
2000
Naravno, kao što sam već spomenuo,
02:56
since we can now start to map brain function,
67
176260
3000
s obzirom da smo počeli da mapiramo funkcije mozga
02:59
we can start to tie these into the individual cells.
68
179260
3000
sada možemo da ih povezujemo sa pojedinačnim ćelijama.
03:02
So let's take a deeper look.
69
182260
2000
Pogledajmo to detaljnije.
03:04
Let's look at neurons.
70
184260
2000
Pogledajmo neurone.
03:06
So as I mentioned, there are 86 billion neurons.
71
186260
2000
Kao što rekoh, imamo 86 milijardi neurona.
03:08
There are also these smaller cells as you'll see.
72
188260
2000
Tu se nalaze i ove manje ćelije koje ćete videti.
03:10
These are support cells -- astrocytes glia.
73
190260
2000
To su pomoćne ćelije - to je glija, to su astrociti.
03:12
And the nerves themselves
74
192260
3000
Sami neuroni su
03:15
are the ones who are receiving input.
75
195260
2000
prijemnici informacija.
03:17
They're storing it, they're processing it.
76
197260
2000
Oni ih skladište i obrađuju.
03:19
Each neuron is connected via synapses
77
199260
4000
Svaki neuron je putem sinapsi povezan
03:23
to up to 10,000 other neurons in your brain.
78
203260
3000
sa do 10 000 drugih neurona u vašem mozgu.
03:26
And each neuron itself
79
206260
2000
Svaki neuron je sam po sebi
03:28
is largely unique.
80
208260
2000
poprilično jedinstven.
03:30
The unique character of both individual neurons
81
210260
2000
Jedinstvene osobine i izdvojenih neurona
03:32
and neurons within a collection of the brain
82
212260
2000
i grupe neurona jedne strukture mozga
03:34
are driven by fundamental properties
83
214260
3000
su određene biohemijskim
03:37
of their underlying biochemistry.
84
217260
2000
procesima koji se tu odvijaju.
03:39
These are proteins.
85
219260
2000
Proteini su za to zaduženi.
03:41
They're proteins that are controlling things like ion channel movement.
86
221260
3000
Proteini koji upravljaju kretanjem jonskih kanala.
03:44
They're controlling who nervous system cells partner up with.
87
224260
4000
Oni određuju sa kojim strukturama sarađuju ćelije nervnog sistema
03:48
And they're controlling
88
228260
2000
Upravljaju u principu svime
03:50
basically everything that the nervous system has to do.
89
230260
2000
što nervni sistem treba da uradi.
03:52
So if we zoom in to an even deeper level,
90
232260
3000
Uveličanjem do sledećeg nivoa vidimo da
03:55
all of those proteins
91
235260
2000
su svi ovi proteini
03:57
are encoded by our genomes.
92
237260
2000
kodirani u našem genomu.
03:59
We each have 23 pairs of chromosomes.
93
239260
3000
Svako od nas ima 23 para hromozoma.
04:02
We get one from mom, one from dad.
94
242260
2000
Dobijemo jednu kopiju od majke, jednu od oca.
04:04
And on these chromosomes
95
244260
2000
Na ovim hromozomima se
04:06
are roughly 25,000 genes.
96
246260
2000
nalazi oko 25 000 gena.
04:08
They're encoded in the DNA.
97
248260
2000
Geni su zapisani u našoj DNK.
04:10
And the nature of a given cell
98
250260
3000
Priroda svake ćelije
04:13
driving its underlying biochemistry
99
253260
2000
uslovljava određene biohemijske procese,
04:15
is dictated by which of these 25,000 genes
100
255260
3000
a određena je podskupom uključenih gena
04:18
are turned on
101
258260
2000
od ukupno 25 000 prisutnih u genomu
04:20
and at what level they're turned on.
102
260260
2000
i merom njihove eksprimiranosti.
04:22
And so our project
103
262260
2000
Naš projekat ima za cilj
04:24
is seeking to look at this readout,
104
264260
3000
da odgonetne ove parametre,
04:27
understanding which of these 25,000 genes is turned on.
105
267260
3000
da razume koji od ovih 25 000 gena su uključeni.
04:30
So in order to undertake such a project,
106
270260
3000
Da bismo uradili takav projekat,
04:33
we obviously need brains.
107
273260
3000
očigledno je da su nam neophodni mozgovi.
04:36
So we sent our lab technician out.
108
276260
3000
Tako da mi šaljemo laboratorijske tehničare na teren.
04:39
We were seeking normal human brains.
109
279260
2000
Tražimo zdrave ljudske mozgove.
04:41
What we actually start with
110
281260
2000
Mi počinjemo u principu
04:43
is a medical examiner's office.
111
283260
2000
kod lekara-patologa, u mrtvačnici.
04:45
This a place where the dead are brought in.
112
285260
2000
Tu se donose mrtvi ljudi.
04:47
We are seeking normal human brains.
113
287260
2000
Mi tražimo zdrave ljudske mozgove.
04:49
There's a lot of criteria by which we're selecting these brains.
114
289260
3000
Imamo puno kriterijuma po kojima biramo te mozgove.
04:52
We want to make sure
115
292260
2000
Zasigurno proverimo da
04:54
that we have normal humans between the ages of 20 to 60,
116
294260
3000
su to bili zdravi ljudi stari između 20 i 60 godina,
04:57
they died a somewhat natural death
117
297260
2000
da su umrli prirodnom smrću
04:59
with no injury to the brain,
118
299260
2000
bez povreda mozga,
05:01
no history of psychiatric disease,
119
301260
2000
bez istorije psihijatrijskih bolesti,
05:03
no drugs on board --
120
303260
2000
da nisu koristili droge -
05:05
we do a toxicology workup.
121
305260
2000
i proverimo toksikologiju.
05:07
And we're very careful
122
307260
2000
Pažljiivo se ophodimo prema mozgovima
05:09
about the brains that we do take.
123
309260
2000
koje prihvatimo.
05:11
We're also selecting for brains
124
311260
2000
Biramo one mozgove
05:13
in which we can get the tissue,
125
313260
2000
iz kojih možemo da izolujemo tkivo,
05:15
we can get consent to take the tissue
126
315260
2000
gde možemo da dobijemo pristanak za preuzimanje tkiva
05:17
within 24 hours of time of death.
127
317260
2000
u prva 24 sata posle smrti
05:19
Because what we're trying to measure, the RNA --
128
319260
3000
Moramo da budemo brzi u proceduri
05:22
which is the readout from our genes --
129
322260
2000
jer radimo sa RNK molekulima
05:24
is very labile,
130
324260
2000
koji prenose informacije sa DNK do proteina,
05:26
and so we have to move very quickly.
131
326260
2000
a veoma su nestabilni.
05:28
One side note on the collection of brains:
132
328260
3000
Jedna napomena o prikupljanju mozgova:
05:31
because of the way that we collect,
133
331260
2000
zbog načina na koji do organa dolazimo
05:33
and because we require consent,
134
333260
2000
i budući da je neophodan pristanak,
05:35
we actually have a lot more male brains than female brains.
135
335260
3000
imamo mnogo više muških od ženskih mozgova.
05:38
Males are much more likely to die an accidental death in the prime of their life.
136
338260
3000
Veća je verovatnoća za muškarce da umru iznenadnom smrću u najboljim godinama
05:41
And men are much more likely
137
341260
2000
Mnogo je veća verovatnoća da
05:43
to have their significant other, spouse, give consent
138
343260
3000
njihov životni partner da odobrenje za proceduru
05:46
than the other way around.
139
346260
2000
nego obrnuto.
05:48
(Laughter)
140
348260
4000
(smeh)
05:52
So the first thing that we do at the site of collection
141
352260
2000
Kada preuzmemo organ, na licu mesta
05:54
is we collect what's called an MR.
142
354260
2000
napravimo nešto što se zove MR snimak.
05:56
This is magnetic resonance imaging -- MRI.
143
356260
2000
To je slikanje magnetnom rezonancom - MRI.
05:58
It's a standard template by which we're going to hang the rest of this data.
144
358260
3000
To je standradni uzorak na osnovu kojeg ćemo analizirati ostatak podataka.
06:01
So we collect this MR.
145
361260
2000
Napravimo taj MR snimak.
06:03
And you can think of this as our satellite view for our map.
146
363260
2000
To je nešto kao satelitski snimak za našu mapu
06:05
The next thing we do
147
365260
2000
Sledeći korak je dobijanje
06:07
is we collect what's called a diffusion tensor imaging.
148
367260
3000
nečega što nazivamo slikanje difuznom magnetnom rezonancom.
06:10
This maps the large cabling in the brain.
149
370260
2000
To mapira velike provodnike u mozgu.
06:12
And again, you can think of this
150
372260
2000
To pak možete zamisliti kao
06:14
as almost mapping our interstate highways, if you will.
151
374260
2000
mapiranje autoputeva među državama, ako želite.
06:16
The brain is removed from the skull,
152
376260
2000
Potom izvadimo mozak iz lobanje
06:18
and then it's sliced into one-centimeter slices.
153
378260
3000
i isečemo ga na deliće debljine jednog centimetra.
06:21
And those are frozen solid,
154
381260
2000
Te uzorke potom zamrznemo,
06:23
and they're shipped to Seattle.
155
383260
2000
i pošaljemo ih u Sijetl.
06:25
And in Seattle, we take these --
156
385260
2000
U Sijetlu preuzmemo uzorke,
06:27
this is a whole human hemisphere --
157
387260
2000
ovo je čitava jedna hemisfera ljudskog mozga,
06:29
and we put them into what's basically a glorified meat slicer.
158
389260
2000
i postavimo uzorke u proslavljeni sekač mesa.
06:31
There's a blade here that's going to cut across
159
391260
2000
Ovaj žilet pravi preseke
06:33
a section of the tissue
160
393260
2000
kroz postavljeno tkivo
06:35
and transfer it to a microscope slide.
161
395260
2000
i potom prebaci uzorak na mikroskopsku pločicu .
06:37
We're going to then apply one of those stains to it,
162
397260
2000
Potom nanesemo na te uzorke određene boje
06:39
and we scan it.
163
399260
2000
i snimamo ih.
06:41
And then what we get is our first mapping.
164
401260
3000
Tada dobijamo našu prvu mapu.
06:44
So this is where experts come in
165
404260
2000
Stručnjaci potom dolaze na scenu
06:46
and they make basic anatomic assignments.
166
406260
2000
i određuju anatomske odrednice uzoraka.
06:48
You could consider this state boundaries, if you will,
167
408260
3000
Na to možete gledati kao na granice među državama,
06:51
those pretty broad outlines.
168
411260
2000
to su poprilično široki obrisi.
06:53
From this, we're able to then fragment that brain into further pieces,
169
413260
4000
Od ove tačke možemo dalje podeliti mozak na manje delove,
06:57
which then we can put on a smaller cryostat.
170
417260
2000
koje potom postavimo na manji kriostat.
06:59
And this is just showing this here --
171
419260
2000
To je prikazano ovde -
07:01
this frozen tissue, and it's being cut.
172
421260
2000
zamrznuto tkivo koje sečemo.
07:03
This is 20 microns thin, so this is about a baby hair's width.
173
423260
3000
Uzorci su tanki 20 mikrona, debljine paperjaste dlake.
07:06
And remember, it's frozen.
174
426260
2000
Zapamtite da je tkivo zamrznuto.
07:08
And so you can see here,
175
428260
2000
Možete ovde primetiti
07:10
old-fashioned technology of the paintbrush being applied.
176
430260
2000
da koristimo staromodnu tehniku slikarske četkice.
07:12
We take a microscope slide.
177
432260
2000
Dobijemo preparat za mikroskopiranje.
07:14
Then we very carefully melt onto the slide.
178
434260
3000
Tada pažljivo otopimo uzorak na samoj pločici
07:17
This will then go onto a robot
179
437260
2000
Posle toga će robot premazati
07:19
that's going to apply one of those stains to it.
180
439260
3000
uzorke jednom od ovih boja.
07:26
And our anatomists are going to go in and take a deeper look at this.
181
446260
3000
Stručnjaci za anatomiju će zatim analizirati uzorak.
07:29
So again this is what they can see under the microscope.
182
449260
2000
Ovo je ono što mogu videti pod mikroskopom.
07:31
You can see collections and configurations
183
451260
2000
Možete videti grupacije i oblike
07:33
of large and small cells
184
453260
2000
velikih i malih ćelija,
07:35
in clusters and various places.
185
455260
2000
i grupacija ćelija na raznim mestima.
07:37
And from there it's routine. They understand where to make these assignments.
186
457260
2000
Od tog momenta, procedura je rutinska.
07:39
And they can make basically what's a reference atlas.
187
459260
3000
Oni tada naprave referentni atlas.
07:42
This is a more detailed map.
188
462260
2000
Ovo je detaljnija mapa.
07:44
Our scientists then use this
189
464260
2000
Naši naučnici na osnovu toga
07:46
to go back to another piece of that tissue
190
466260
3000
analiziraju drugi delić tog tkiva
07:49
and do what's called laser scanning microdissection.
191
469260
2000
uz pomoć laserske mikrodisekcije.
07:51
So the technician takes the instructions.
192
471260
3000
Tehničar dobije uputstva.
07:54
They scribe along a place there.
193
474260
2000
Obeleži region na uzorku.
07:56
And then the laser actually cuts.
194
476260
2000
Zatim se u principu laserom napravi rez.
07:58
You can see that blue dot there cutting. And that tissue falls off.
195
478260
3000
Uočićete ovu plavu tačku koju laser iseca. Tkivo se odvoji od uzorka.
08:01
You can see on the microscope slide here,
196
481260
2000
To možete sada videti na pločici,
08:03
that's what's happening in real time.
197
483260
2000
to se dešava istovremeno.
08:05
There's a container underneath that's collecting that tissue.
198
485260
3000
Ispod svega se nalazi posuda u kojoj sakupljamo tkivo.
08:08
We take that tissue,
199
488260
2000
Mi uzmemo to tkivo,
08:10
we purify the RNA out of it
200
490260
2000
izolujemo iz njega RNK
08:12
using some basic technology,
201
492260
2000
koristeći osnovnu tehnologiju,
08:14
and then we put a florescent tag on it.
202
494260
2000
i onda to obeležimo fluorescentnom bojom.
08:16
We take that tagged material
203
496260
2000
Uzmemo taj obeleženi materijal
08:18
and we put it on to something called a microarray.
204
498260
3000
i prebacimo ga na nešto što zovemo mikroniz (microarray).
08:21
Now this may look like a bunch of dots to you,
205
501260
2000
Ovo se vama može učiniti da je samo
08:23
but each one of these individual dots
206
503260
2000
skup tačkica, ali u principu svaka tačka
08:25
is actually a unique piece of the human genome
207
505260
2000
predstavlja jedinstveni deo humanog genoma
08:27
that we spotted down on glass.
208
507260
2000
koji smo mi preneli na staklo.
08:29
This has roughly 60,000 elements on it,
209
509260
3000
Tu se nalazi oko 60 000 elemenata,
08:32
so we repeatedly measure various genes
210
512260
3000
tako da je svaki od 25 000 gena u genomu
08:35
of the 25,000 genes in the genome.
211
515260
2000
predstavljen nekoliko puta.
08:37
And when we take a sample and we hybridize it to it,
212
517260
3000
Kada prebacimo i vežemo naš uzorak za tu platformu,
08:40
we get a unique fingerprint, if you will,
213
520260
2000
dobijemo jedinstveni otisak, možemo ga tako nazvati,
08:42
quantitatively of what genes are turned on in that sample.
214
522260
3000
koji pokazuje koji geni su eksprimirani, i u kom stepenu u tom uzorku
08:45
Now we do this over and over again,
215
525260
2000
Ovo ponavljamo nekoliko puta
08:47
this process for any given brain.
216
527260
3000
za svaki mozak koji dobijemo.
08:50
We're taking over a thousand samples for each brain.
217
530260
3000
Za svaki mozak radimo analizu hiljadu uzoraka.
08:53
This area shown here is an area called the hippocampus.
218
533260
3000
Deo mozga koji je ovde pokazan se naziva hipokampus.
08:56
It's involved in learning and memory.
219
536260
2000
Zadužen je za učenje i pamćenje.
08:58
And it contributes to about 70 samples
220
538260
3000
Uzorci hipokampalnog regiona mozga čine 70 uzoraka
09:01
of those thousand samples.
221
541260
2000
od tih hiljadu uzoraka koje analiziramo.
09:03
So each sample gets us about 50,000 data points
222
543260
4000
Analiza svakog uzorka nam da oko 50 000 nalaza,
09:07
with repeat measurements, a thousand samples.
223
547260
3000
imamo ponovljena merenja i radimo sa hiljadu uzoraka.
09:10
So roughly, we have 50 million data points
224
550260
2000
Otprilike, govorimo o setu od 50 miliona nalaza
09:12
for a given human brain.
225
552260
2000
za svaki mozak koji analiziramo.
09:14
We've done right now
226
554260
2000
Do sada smo obradili nalaze iz
09:16
two human brains-worth of data.
227
556260
2000
dva ljudska mozga.
09:18
We've put all of that together
228
558260
2000
Sve te podatke smo integrisali
09:20
into one thing,
229
560260
2000
u jednu celinu
09:22
and I'll show you what that synthesis looks like.
230
562260
2000
i pokazaću vam kako ta sinteza podataka izgleda.
09:24
It's basically a large data set of information
231
564260
3000
To je jedna ogromna baza podataka
09:27
that's all freely available to any scientist around the world.
232
567260
3000
koja je besplatna i dostupna svim naučnicima na svetu.
09:30
They don't even have to log in to come use this tool,
233
570260
3000
Čak ne moraju ni da se registruju da bi je koristili,
09:33
mine this data, find interesting things out with this.
234
573260
4000
istraživali ove podatke i došli do interesantnih informacija.
09:37
So here's the modalities that we put together.
235
577260
3000
Ovo su moduli koje smo uspostavili.
09:40
You'll start to recognize these things from what we've collected before.
236
580260
3000
Prepoznaćete sada strukture sa kojima smo započeli proceduru.
09:43
Here's the MR. It provides the framework.
237
583260
2000
Ove je MR snimak. To nam daje okvir rada.
09:45
There's an operator side on the right that allows you to turn,
238
585260
3000
Ovde, sa desne strane, imamo operatorske funkcije koje omogućavaju
09:48
it allows you to zoom in,
239
588260
2000
da uveličate određeni deo,
09:50
it allows you to highlight individual structures.
240
590260
3000
da označite pojedinačne strukture.
09:53
But most importantly,
241
593260
2000
Najvažnije je to što
09:55
we're now mapping into this anatomic framework,
242
595260
3000
sada prevodimo naše nalaze u anatomsku mrežu mozga,
09:58
which is a common framework for people to understand where genes are turned on.
243
598260
3000
to je opšta mreža koja omogućava ljudima da shvate gde su geni eksprimirani.
10:01
So the red levels
244
601260
2000
Crvena boja predstavlja
10:03
are where a gene is turned on to a great degree.
245
603260
2000
strukture u kojima je gen snažno eksprimiran.
10:05
Green is the sort of cool areas where it's not turned on.
246
605260
3000
Zelenom bojom je označen "hladni" region gde gen nije uključen
10:08
And each gene gives us a fingerprint.
247
608260
2000
Za svaki gen imamo jedinstvenu šemu.
10:10
And remember that we've assayed all the 25,000 genes in the genome
248
610260
5000
Zapamtite da smo analizirali svih 25 000 gena u genomu
10:15
and have all of that data available.
249
615260
4000
i svi ti podaci su dostupni.
10:19
So what can scientists learn about this data?
250
619260
2000
Šta naučnici mogu iz svega toga da nauče?
10:21
We're just starting to look at this data ourselves.
251
621260
3000
Mi sada počinjemo da analiziramo ove podatke.
10:24
There's some basic things that you would want to understand.
252
624260
3000
Trebalo bi da razumete određene osnovne principe.
10:27
Two great examples are drugs,
253
627260
2000
Navešću dva divna primera lekova,
10:29
Prozac and Wellbutrin.
254
629260
2000
a to su "Prozak" i "Wellbutrin".
10:31
These are commonly prescribed antidepressants.
255
631260
3000
To su uobičajeni antidepresivi koje lekari prepisuju
10:34
Now remember, we're assaying genes.
256
634260
2000
Zapamtite da mi analiziramo gene.
10:36
Genes send the instructions to make proteins.
257
636260
3000
Oni su recepti za sintezu proteina.
10:39
Proteins are targets for drugs.
258
639260
2000
Proteini su meta lekova.
10:41
So drugs bind to proteins
259
641260
2000
Lekovi se vezuju za proteine
10:43
and either turn them off, etc.
260
643260
2000
i mogu da ih uključe ili isključe, itd.
10:45
So if you want to understand the action of drugs,
261
645260
2000
Ako želite da razumete mehanizam delovanja leka,
10:47
you want to understand how they're acting in the ways you want them to,
262
647260
3000
treba da shvatite kako oni rade na način koji vi želite
10:50
and also in the ways you don't want them to.
263
650260
2000
i kako čine ono što ne želite da čine.
10:52
In the side effect profile, etc.,
264
652260
2000
U analizi sporednih efekata lekova, itd.,
10:54
you want to see where those genes are turned on.
265
654260
2000
želite da znate gde su ti geni uključeni.
10:56
And for the first time, we can actually do that.
266
656260
2000
Po prvi put smo u principu u stanju to da uradimo.
10:58
We can do that in multiple individuals that we've assayed too.
267
658260
3000
Možemo analizirati istu stvar kod velikog broja ljudi.
11:01
So now we can look throughout the brain.
268
661260
3000
Sada možemo da pregledamo ceo mozak.
11:04
We can see this unique fingerprint.
269
664260
2000
Uočićemo taj jedinstveni otisak gena.
11:06
And we get confirmation.
270
666260
2000
Tako dobijamo potvrdu.
11:08
We get confirmation that, indeed, the gene is turned on --
271
668260
3000
Dobijamo potvrdu da je gen zaista uključen
11:11
for something like Prozac,
272
671260
2000
za delovanje "Prozaca"
11:13
in serotonergic structures, things that are already known be affected --
273
673260
3000
u delovima koji proizvode serotonin, što smo svakako već znali,
11:16
but we also get to see the whole thing.
274
676260
2000
ali sada možemo analizirati sve.
11:18
We also get to see areas that no one has ever looked at before,
275
678260
2000
Sada možemo da analiziramo delove mozga koje niko pre nas nije analizirao,
11:20
and we see these genes turned on there.
276
680260
2000
možemo uočiti eksprimiranje tih gena.
11:22
It's as interesting a side effect as it could be.
277
682260
3000
Interesantno je onoliko koliko neželjeni efekti mogu biti interesantni.
11:25
One other thing you can do with such a thing
278
685260
2000
Druga primena ovih podataka je
11:27
is you can, because it's a pattern matching exercise,
279
687260
3000
u vežbama za pronalaženje šema,
11:30
because there's unique fingerprint,
280
690260
2000
usled toga što je to jedinstveni potpis gena,
11:32
we can actually scan through the entire genome
281
692260
2000
možete na osnovu ovoga analizirati čitav genom
11:34
and find other proteins
282
694260
2000
i naći i druge proteine
11:36
that show a similar fingerprint.
283
696260
2000
koji imaju sličan potpis.
11:38
So if you're in drug discovery, for example,
284
698260
3000
Ukoliko se bavite otkrivanjem novih aktivnih supstanci,
11:41
you can go through
285
701260
2000
onda možete da analizirate
11:43
an entire listing of what the genome has on offer
286
703260
2000
celu listu proteina koji genom nudi
11:45
to find perhaps better drug targets and optimize.
287
705260
4000
i možda pronađete bolje mete za lekove i usavršite lek.
11:49
Most of you are probably familiar
288
709260
2000
Verovatno su vam poznate studije
11:51
with genome-wide association studies
289
711260
2000
koje se bave analizom čitavog genoma
11:53
in the form of people covering in the news
290
713260
3000
koje su dobro medijski propraćene, pa nalećete
11:56
saying, "Scientists have recently discovered the gene or genes
291
716260
3000
na izjave: "Naučnici su nedavno otkrili da je ovaj gen ili geni
11:59
which affect X."
292
719260
2000
povezan sa osobinom X."
12:01
And so these kinds of studies
293
721260
2000
Naučnici rutinski objavljuju
12:03
are routinely published by scientists
294
723260
2000
studije ovog tipa
12:05
and they're great. They analyze large populations.
295
725260
2000
i one su odlične. Analiziraju velike populacije ljudi.
12:07
They look at their entire genomes,
296
727260
2000
Analiziraju čitave genome,
12:09
and they try to find hot spots of activity
297
729260
2000
i pokušavaju da dođu do ključne osobine
12:11
that are linked causally to genes.
298
731260
3000
koja je uzročno povezana sa genima.
12:14
But what you get out of such an exercise
299
734260
2000
Ovakvim vežbicama dolazite samo
12:16
is simply a list of genes.
300
736260
2000
do liste gena.
12:18
It tells you the what, but it doesn't tell you the where.
301
738260
3000
To vam govori o "šta", ali vam ne kaže ništa o "gde".
12:21
And so it's very important for those researchers
302
741260
3000
Tako da je veoma važno za ove istraživače
12:24
that we've created this resource.
303
744260
2000
da smo stvorili ovu bazu podataka.
12:26
Now they can come in
304
746260
2000
Sada mogu uz pomoć baze podataka
12:28
and they can start to get clues about activity.
305
748260
2000
i da razumeju aktivnost gena.
12:30
They can start to look at common pathways --
306
750260
2000
Mogu se baviti istraživanjem zajedničkih mehanizama,
12:32
other things that they simply haven't been able to do before.
307
752260
3000
i drugih fenomena koje prosto ranije nisu mogli da rade.
12:36
So I think this audience in particular
308
756260
3000
Smatram da publika ovde shvata
12:39
can understand the importance of individuality.
309
759260
3000
važnost posebnosti.
12:42
And I think every human,
310
762260
2000
Smatram da svaki čovek,
12:44
we all have different genetic backgrounds,
311
764260
4000
svi imamo drukčiju genetičku pozadinu,
12:48
we all have lived separate lives.
312
768260
2000
svi smo živeli drukčije živote.
12:50
But the fact is
313
770260
2000
Ali činjenica je da su
12:52
our genomes are greater than 99 percent similar.
314
772260
3000
naši genomi međusobno više od 99 odsto slični.
12:55
We're similar at the genetic level.
315
775260
3000
Na genetičkom nivou mi smo slični.
12:58
And what we're finding
316
778260
2000
Pronašli smo da smo
13:00
is actually, even at the brain biochemical level,
317
780260
2000
čak i na nivou biohemijskih procesa u mozgu
13:02
we are quite similar.
318
782260
2000
veoma slični.
13:04
And so this shows it's not 99 percent,
319
784260
2000
Vidimo ovde da sličnost nije 99 odsto,
13:06
but it's roughly 90 percent correspondence
320
786260
2000
već postoji oko 90 odsto sličnosti
13:08
at a reasonable cutoff,
321
788260
3000
kada postavite razumne parametre
13:11
so everything in the cloud is roughly correlated.
322
791260
2000
i time je sve u ovom oblaku delimično povezano.
13:13
And then we find some outliers,
323
793260
2000
Potom pronađemo neke izuzetke,
13:15
some things that lie beyond the cloud.
324
795260
3000
ono što se nalazi izvan ovog oblaka.
13:18
And those genes are interesting,
325
798260
2000
Ovi geni su interesantni,
13:20
but they're very subtle.
326
800260
2000
ali imaju blage efekte.
13:22
So I think it's an important message
327
802260
3000
Mislim da je najznačajnija poruka
13:25
to take home today
328
805260
2000
koju treba da ponesete sa ovog predavanja
13:27
that even though we celebrate all of our differences,
329
807260
3000
ta da iako slavimo razlike među nama,
13:30
we are quite similar
330
810260
2000
mi smo veoma slični,
13:32
even at the brain level.
331
812260
2000
čak i na nivou mozga.
13:34
Now what do those differences look like?
332
814260
2000
Kako izgledaju te razlike?
13:36
This is an example of a study that we did
333
816260
2000
Ovo je primer studije koja prati
13:38
to follow up and see what exactly those differences were --
334
818260
2000
i nadovezuje se na priču gde smo tačno odredili te razlike --
13:40
and they're quite subtle.
335
820260
2000
razlike su veoma suptilne.
13:42
These are things where genes are turned on in an individual cell type.
336
822260
4000
Ovo su primeri gena koji su eksprimirani u određenom tipu ćelija.
13:46
These are two genes that we found as good examples.
337
826260
3000
Ova dva gena su zaista dobri primeri.
13:49
One is called RELN -- it's involved in early developmental cues.
338
829260
3000
Jedan je nazvan RELN -- bitan je za rano razviće.
13:52
DISC1 is a gene
339
832260
2000
A DISC1 je gen
13:54
that's deleted in schizophrenia.
340
834260
2000
koji je mutiran u šizofreniji.
13:56
These aren't schizophrenic individuals,
341
836260
2000
Ovo nisu šizofreni ljudi,
13:58
but they do show some population variation.
342
838260
3000
ali pokazuju određeni stepen varijabilnosti u populaciji.
14:01
And so what you're looking at here
343
841260
2000
Ovde možete videti
14:03
in donor one and donor four,
344
843260
2000
donora broj jedan i broj četiri,
14:05
which are the exceptions to the other two,
345
845260
2000
koji se razlikuju u odnosu na ostala dva,
14:07
that genes are being turned on
346
847260
2000
jer su geni eksprimirani
14:09
in a very specific subset of cells.
347
849260
2000
u veoma određenoj grupi ćelija.
14:11
It's this dark purple precipitate within the cell
348
851260
3000
Ovaj tamno ljubičasti talog u ćeliji
14:14
that's telling us a gene is turned on there.
349
854260
3000
nam govori da je gen eksprimiran.
14:17
Whether or not that's due
350
857260
2000
Ne znamo da li je to uslovljeno
14:19
to an individual's genetic background or their experiences,
351
859260
2000
razlikama u ličnoj genetičkoj pozadini
14:21
we don't know.
352
861260
2000
ili je uslovljeno iskustvom.
14:23
Those kinds of studies require much larger populations.
353
863260
3000
Ovakav tip studija zahteva analizu znatno većih populacija.
14:28
So I'm going to leave you with a final note
354
868260
2000
Završiću izlaganje komentarom
14:30
about the complexity of the brain
355
870260
3000
o složenosti mozga i tome
14:33
and how much more we have to go.
356
873260
2000
koliko još treba naučimo.
14:35
I think these resources are incredibly valuable.
357
875260
2000
Smatram da su ovakve baze podataka neopisivo korisne.
14:37
They give researchers a handle
358
877260
2000
Pružaju istraživačima smernice
14:39
on where to go.
359
879260
2000
u kom pravcu treba da razmišljaju.
14:41
But we only looked at a handful of individuals at this point.
360
881260
3000
Analizirali smo mali broj osoba do sada.
14:44
We're certainly going to be looking at more.
361
884260
2000
Sigurno ćemo analizirati više ljudi.
14:46
I'll just close by saying
362
886260
2000
Završiću komentarom
14:48
that the tools are there,
363
888260
2000
da sada imamo oruđe,
14:50
and this is truly an unexplored, undiscovered continent.
364
890260
4000
a ovo je zaista neistraženi, neotkriveni kontinent.
14:54
This is the new frontier, if you will.
365
894260
4000
Ovo je, moglo bi se reći, naš novi horizont.
14:58
And so for those who are undaunted,
366
898260
2000
One koji nisu obeshrabreni,
15:00
but humbled by the complexity of the brain,
367
900260
2000
već očarani složenošću mozga,
15:02
the future awaits.
368
902260
2000
čeka budućnost.
15:04
Thanks.
369
904260
2000
Hvala.
15:06
(Applause)
370
906260
9000
(aplauz)

Original video on YouTube.com
About this website

This site will introduce you to YouTube videos that are useful for learning English. You will see English lessons taught by top-notch teachers from around the world. Double-click on the English subtitles displayed on each video page to play the video from there. The subtitles scroll in sync with the video playback. If you have any comments or requests, please contact us using this contact form.

https://forms.gle/WvT1wiN1qDtmnspy7