Allan Jones: A map of the brain

164,817 views ・ 2011-11-10

TED


Dvaput kliknite na engleske titlove ispod za reprodukciju videozapisa.

Prevoditelj: Senzos Osijek Recezent: Tilen Pigac - EFZG
00:15
Humans have long held a fascination
0
15260
2000
Ljudi su već dugo vremena fascinirani
00:17
for the human brain.
1
17260
2000
mozgom.
00:19
We chart it, we've described it,
2
19260
3000
Napravili smo grafikone, opisali smo ga,
00:22
we've drawn it,
3
22260
2000
nacrtali smo ga,
00:24
we've mapped it.
4
24260
3000
mapirali smo ga.
00:27
Now just like the physical maps of our world
5
27260
3000
Baš kao karte svijeta
00:30
that have been highly influenced by technology --
6
30260
3000
koje su pod velikim utjecajem tehnologije --
00:33
think Google Maps,
7
33260
2000
sjetite se Google Map-a,
00:35
think GPS --
8
35260
2000
GPS-a --
00:37
the same thing is happening for brain mapping
9
37260
2000
ista se transformacija događa
00:39
through transformation.
10
39260
2000
kod mapiranja mozga.
00:41
So let's take a look at the brain.
11
41260
2000
Pogledajmo mozak.
00:43
Most people, when they first look at a fresh human brain,
12
43260
3000
Većina ljudi, kada prvi put ugledaju ljudski mozak,
00:46
they say, "It doesn't look what you're typically looking at
13
46260
3000
kaže: „ Ne izgleda kao ono što se tipično
00:49
when someone shows you a brain."
14
49260
2000
prikazuje kao mozak.“
00:51
Typically, what you're looking at is a fixed brain. It's gray.
15
51260
3000
Uobičajeno, ono što vidite je fiksirani mozak. On je siv.
00:54
And this outer layer, this is the vasculature,
16
54260
2000
A ovaj vanjski sloj, to je vaskulatura,
00:56
which is incredible, around a human brain.
17
56260
2000
koja je nevjerojatna, oko ljudskog mozga.
00:58
This is the blood vessels.
18
58260
2000
Ovo su krvne žile.
01:00
20 percent of the oxygen
19
60260
3000
20% kisika
01:03
coming from your lungs,
20
63260
2000
dolazi iz pluća,
01:05
20 percent of the blood pumped from your heart,
21
65260
2000
20% od krvi ispumpane iz vašeg srca
01:07
is servicing this one organ.
22
67260
2000
opskrbljuje ovaj organ.
01:09
That's basically, if you hold two fists together,
23
69260
2000
U principu, ako držite dvije šake stisnute zajedno,
01:11
it's just slightly larger than the two fists.
24
71260
2000
mozak je samo malo veći od te dvije šake.
01:13
Scientists, sort of at the end of the 20th century,
25
73260
3000
Znanstvenici su, negdje krajem 20. stoljeća,
01:16
learned that they could track blood flow
26
76260
2000
naučili da mogu, neinvazivno prateći protok krvi
01:18
to map non-invasively
27
78260
3000
na mapi,
01:21
where activity was going on in the human brain.
28
81260
3000
vidjeti gdje se odvija pojedina aktivnost u ljudskom mozgu.
01:24
So for example, they can see in the back part of the brain,
29
84260
3000
Na primjer, oni mogu vidjeti stražnji dio mozga,
01:27
which is just turning around there.
30
87260
2000
koji se nalazi ovdje.
01:29
There's the cerebellum; that's keeping you upright right now.
31
89260
2000
Tu je mali mozak, koji vas održava uspravnima u ovom trenutku.
01:31
It's keeping me standing. It's involved in coordinated movement.
32
91260
3000
On mi pomaže da stojim ovdje. Uključen je u koordinaciju pokreta.
01:34
On the side here, this is temporal cortex.
33
94260
3000
Na ovoj je strani temporalni korteks.
01:37
This is the area where primary auditory processing --
34
97260
3000
To je područje primarnog auditornog procesiranja --
01:40
so you're hearing my words,
35
100260
2000
znači, čujete moje riječi
01:42
you're sending it up into higher language processing centers.
36
102260
2000
i šaljete ih u druge centre za daljnju, višu obradu.
01:44
Towards the front of the brain
37
104260
2000
Idući prema prednjem dijelu mozga,
01:46
is the place in which all of the more complex thought, decision making --
38
106260
3000
nalazi se područje složenijih misli, donošenja odluka --
01:49
it's the last to mature in late adulthood.
39
109260
4000
ono zadnje sazrijeva, u kasnoj odrasloj dobi.
01:53
This is where all your decision-making processes are going on.
40
113260
3000
Ovdje se odvijaju svi procesi donošenja vaših odluka.
01:56
It's the place where you're deciding right now
41
116260
2000
To je mjesto gdje upravo odlučujete
01:58
you probably aren't going to order the steak for dinner.
42
118260
3000
kako vjerojatno nećete naručiti odrezak za večeru.
02:01
So if you take a deeper look at the brain,
43
121260
2000
Dakle, ako bolje pogledate mozak,
02:03
one of the things, if you look at it in cross-section,
44
123260
2000
jedna od stvari, ako ga gledate na presjeku,
02:05
what you can see
45
125260
2000
koju možete vidjeti
02:07
is that you can't really see a whole lot of structure there.
46
127260
3000
jest da zapravo i ne možete vidjeti mnogo struktura tamo.
02:10
But there's actually a lot of structure there.
47
130260
2000
Ali tu zapravo ima puno struktura.
02:12
It's cells and it's wires all wired together.
48
132260
2000
To su stanice i snopovi, svi međusobno povezani.
02:14
So about a hundred years ago,
49
134260
2000
Prije otprilike sto godina
02:16
some scientists invented a stain that would stain cells.
50
136260
2000
znanstvenici su izumili boju koja će obojati stanice.
02:18
And that's shown here in the the very light blue.
51
138260
3000
To je ovdje prikazano kao vrlo svijetlo plava.
02:21
You can see areas
52
141260
2000
Možete vidjeti područja
02:23
where neuronal cell bodies are being stained.
53
143260
2000
gdje su obojana normalna tijela stanica.
02:25
And what you can see is it's very non-uniform. You see a lot more structure there.
54
145260
3000
A ono što možete vidjeti je jako nejednoliko. Možete vidjeti mnoge strukture.
02:28
So the outer part of that brain
55
148260
2000
Vanjski je dio mozga
02:30
is the neocortex.
56
150260
2000
neokorteks.
02:32
It's one continuous processing unit, if you will.
57
152260
3000
To je jedna kontinuirana procesorska jedinica, moglo bi se reći.
02:35
But you can also see things underneath there as well.
58
155260
2000
Ali vi, također, možete vidjeti stvari ispod njega.
02:37
And all of these blank areas
59
157260
2000
I sva ova prazna područja
02:39
are the areas in which the wires are running through.
60
159260
2000
su područja kroz koja prolaze snopovi, poveznice.
02:41
They're probably less cell dense.
61
161260
2000
Vjerojatno su manje stanične gustoće.
02:43
So there's about 86 billion neurons in our brain.
62
163260
4000
Postoji otprilike 86 milijardi neurona u našem mozgu.
02:47
And as you can see, they're very non-uniformly distributed.
63
167260
3000
I kao što možete vidjeti, prilično su nejednoliko raspoređeni.
02:50
And how they're distributed really contributes
64
170260
2000
A način na koji su raspoređeni pridonosi
02:52
to their underlying function.
65
172260
2000
određivanju njihove temeljne funkcije.
02:54
And of course, as I mentioned before,
66
174260
2000
I, naravno, kao što sam već spomenuo,
02:56
since we can now start to map brain function,
67
176260
3000
s obzirom da sada možemo početi mapirati moždane aktivnosti,
02:59
we can start to tie these into the individual cells.
68
179260
3000
možemo početi povezivati te aktivnosti s pojedinim stanicama.
03:02
So let's take a deeper look.
69
182260
2000
Sada pogledajmo malo dublje.
03:04
Let's look at neurons.
70
184260
2000
Pogledajmo neurone.
03:06
So as I mentioned, there are 86 billion neurons.
71
186260
2000
Kao što sam već rekao, postoji 86 milijardi neurona.
03:08
There are also these smaller cells as you'll see.
72
188260
2000
Tu su i ove manje stanice, kao što vidite.
03:10
These are support cells -- astrocytes glia.
73
190260
2000
Ovo su potporne stanice -- astroglija stanice.
03:12
And the nerves themselves
74
192260
3000
Sami živci
03:15
are the ones who are receiving input.
75
195260
2000
su oni koji primaju signal.
03:17
They're storing it, they're processing it.
76
197260
2000
Oni ga pohranjuju, oni ga obrađuju.
03:19
Each neuron is connected via synapses
77
199260
4000
Svaki je neuron, preko sinapsi, spojen s
03:23
to up to 10,000 other neurons in your brain.
78
203260
3000
do 10.000 drugih neurona u našem mozgu.
03:26
And each neuron itself
79
206260
2000
I svaki je neuron, sam za sebe,
03:28
is largely unique.
80
208260
2000
prilično jedinstven.
03:30
The unique character of both individual neurons
81
210260
2000
Jedinstveni karakter, kako individualnih neurona,
03:32
and neurons within a collection of the brain
82
212260
2000
tako i neurona unutar područja u mozgu,
03:34
are driven by fundamental properties
83
214260
3000
određen je temeljnim značajkama
03:37
of their underlying biochemistry.
84
217260
2000
njihove biokemijske podloge.
03:39
These are proteins.
85
219260
2000
Ovo su proteini.
03:41
They're proteins that are controlling things like ion channel movement.
86
221260
3000
To su proteini koji kontroliraju stvari kao što je prolazak kroz ionske kanale.
03:44
They're controlling who nervous system cells partner up with.
87
224260
4000
Oni kontroliraju s kim se povezuju stanice živčanog sustava.
03:48
And they're controlling
88
228260
2000
I oni, u osnovi, kontroliraju
03:50
basically everything that the nervous system has to do.
89
230260
2000
sve što živčani sustav mora činiti.
03:52
So if we zoom in to an even deeper level,
90
232260
3000
Ako pogledamo sve to na još dubljoj razini,
03:55
all of those proteins
91
235260
2000
svi su ti proteini
03:57
are encoded by our genomes.
92
237260
2000
kodirani našim genomima.
03:59
We each have 23 pairs of chromosomes.
93
239260
3000
Svatko od nas ima 23 para kromosoma.
04:02
We get one from mom, one from dad.
94
242260
2000
Jedan dobijemo od majke, jedan od oca.
04:04
And on these chromosomes
95
244260
2000
Na ovim se kromosomima
04:06
are roughly 25,000 genes.
96
246260
2000
nalazi otprilike 25.000 gena.
04:08
They're encoded in the DNA.
97
248260
2000
Oni su kodirani u DNK.
04:10
And the nature of a given cell
98
250260
3000
I prirodu ovih stanica,
04:13
driving its underlying biochemistry
99
253260
2000
određujući njihovu biokemijsku podlogu,
04:15
is dictated by which of these 25,000 genes
100
255260
3000
diktira koji je od ovih 25.000 gena
04:18
are turned on
101
258260
2000
aktivan
04:20
and at what level they're turned on.
102
260260
2000
i na kojem je stupnju aktivan.
04:22
And so our project
103
262260
2000
Naš projekt
04:24
is seeking to look at this readout,
104
264260
3000
pokušava razumijeti ovo iščitavanje,
04:27
understanding which of these 25,000 genes is turned on.
105
267260
3000
shvatiti koji je od ovih 25.000 gena aktivan.
04:30
So in order to undertake such a project,
106
270260
3000
Znači, kako bismo proveli takav projekt,
04:33
we obviously need brains.
107
273260
3000
očito je da trebamo nekakve mozgove.
04:36
So we sent our lab technician out.
108
276260
3000
Zato smo poslali našeg laboratorijskog tehničara u potragu.
04:39
We were seeking normal human brains.
109
279260
2000
Tražili smo normalne ljudske mozgove.
04:41
What we actually start with
110
281260
2000
Počeli smo s
04:43
is a medical examiner's office.
111
283260
2000
uredom za medicinsko vještačenje.
04:45
This a place where the dead are brought in.
112
285260
2000
To je mjesto gdje dovode mrtve.
04:47
We are seeking normal human brains.
113
287260
2000
Mi tražimo normalne ljudske mozgove.
04:49
There's a lot of criteria by which we're selecting these brains.
114
289260
3000
Brojni su kriteriji po kojima izabiremo ove mozgove.
04:52
We want to make sure
115
292260
2000
Želimo biti sigurni
04:54
that we have normal humans between the ages of 20 to 60,
116
294260
3000
da imamo normalne ljudske mozgove starosti između 20 i 60 godina,
04:57
they died a somewhat natural death
117
297260
2000
da su ljudi umrli prirodnom smrću,
04:59
with no injury to the brain,
118
299260
2000
bez ozljeda mozga,
05:01
no history of psychiatric disease,
119
301260
2000
da nisu imali zabilježenih psihijatrijskih poremećaja,
05:03
no drugs on board --
120
303260
2000
prisutnosti droge --
05:05
we do a toxicology workup.
121
305260
2000
zato radimo toksikološki pregled.
05:07
And we're very careful
122
307260
2000
I jako smo pažljivi
05:09
about the brains that we do take.
123
309260
2000
u pogledu mozgova koje uzimamo.
05:11
We're also selecting for brains
124
311260
2000
Također, tražimo mozgove
05:13
in which we can get the tissue,
125
313260
2000
od kojih možemo uzeti uzorak,
05:15
we can get consent to take the tissue
126
315260
2000
one za koje u roku od 24 sata od trenutka smrti
05:17
within 24 hours of time of death.
127
317260
2000
dobijemo dozvolu da uzmemo uzorak.
05:19
Because what we're trying to measure, the RNA --
128
319260
3000
Ovo radimo zato što je ono što pokušavamo analizirati, RNK --
05:22
which is the readout from our genes --
129
322260
2000
koja je iščitanje naših gena --
05:24
is very labile,
130
324260
2000
vrlo labilno
05:26
and so we have to move very quickly.
131
326260
2000
pa moramo brzo djelovati.
05:28
One side note on the collection of brains:
132
328260
3000
Još jedna napomena o prikupljanju mozgova:
05:31
because of the way that we collect,
133
331260
2000
zbog načina na koji prikupljamo
05:33
and because we require consent,
134
333260
2000
i zato što tražimo suglasnost,
05:35
we actually have a lot more male brains than female brains.
135
335260
3000
imamo puno više muških, nego ženskih mozgova.
05:38
Males are much more likely to die an accidental death in the prime of their life.
136
338260
3000
Muškarci imaju veće šanse umrijeti slučajnom smrću u najboljim godinama svoga života.
05:41
And men are much more likely
137
341260
2000
I muškarci imaju veće šanse
05:43
to have their significant other, spouse, give consent
138
343260
3000
da će njihova bolja polovica, supruga, dati suglasnost
05:46
than the other way around.
139
346260
2000
za navedeno, nego obrnuto.
05:48
(Laughter)
140
348260
4000
(Smijeh)
05:52
So the first thing that we do at the site of collection
141
352260
2000
Prva stvar koju činimo na mjestu prikupljanja
05:54
is we collect what's called an MR.
142
354260
2000
je MR.
05:56
This is magnetic resonance imaging -- MRI.
143
356260
2000
To je magnetska rezonanca -- MRI.
05:58
It's a standard template by which we're going to hang the rest of this data.
144
358260
3000
To je standardni predložak prema kojemu ćemo određivati ostatak ovih podataka.
06:01
So we collect this MR.
145
361260
2000
Zato snimamo MR.
06:03
And you can think of this as our satellite view for our map.
146
363260
2000
Ovo možete smatrati satelitskim prikazom naše karte.
06:05
The next thing we do
147
365260
2000
Sljedeći je korak
06:07
is we collect what's called a diffusion tensor imaging.
148
367260
3000
skupljanje difuznog prikaza.
06:10
This maps the large cabling in the brain.
149
370260
2000
Ovo prikazuje velike poveznice u mozgu.
06:12
And again, you can think of this
150
372260
2000
I opet, na ovo možete gledati
06:14
as almost mapping our interstate highways, if you will.
151
374260
2000
kao na kartu naših državnih autocesta, ako hoćete.
06:16
The brain is removed from the skull,
152
376260
2000
Mozak je prvo odstranjen iz lubanje
06:18
and then it's sliced into one-centimeter slices.
153
378260
3000
i zatim je narezan na kriške debljine jednog centimetra.
06:21
And those are frozen solid,
154
381260
2000
One su čvrsto zamrznute
06:23
and they're shipped to Seattle.
155
383260
2000
i poslane u Seattle.
06:25
And in Seattle, we take these --
156
385260
2000
U Seattleu uzimamo ove --
06:27
this is a whole human hemisphere --
157
387260
2000
ovo je cijela hemisfera --
06:29
and we put them into what's basically a glorified meat slicer.
158
389260
2000
i stavljamo ih u nešto što je, u principu, slično rezaču za meso.
06:31
There's a blade here that's going to cut across
159
391260
2000
Ovdje je oštrica koja će prerezati
06:33
a section of the tissue
160
393260
2000
dio tkiva
06:35
and transfer it to a microscope slide.
161
395260
2000
i pretvoriti ga u mikroskopski preparat.
06:37
We're going to then apply one of those stains to it,
162
397260
2000
Tada ćemo nanijeti jednu od boja na njega
06:39
and we scan it.
163
399260
2000
i skenirati ga.
06:41
And then what we get is our first mapping.
164
401260
3000
I ono što dobijemo jest naša prva mapa.
06:44
So this is where experts come in
165
404260
2000
Ovo je trenutak kada dolaze stručnjaci
06:46
and they make basic anatomic assignments.
166
406260
2000
i obavljaju osnovne anatomske zadatke.
06:48
You could consider this state boundaries, if you will,
167
408260
3000
Možete ovo smatrati kao državne granice, ako hoćete,
06:51
those pretty broad outlines.
168
411260
2000
ove grube crte.
06:53
From this, we're able to then fragment that brain into further pieces,
169
413260
4000
Od ovoga možemo vršiti daljnu fragmentaciju mozga, na komadiće
06:57
which then we can put on a smaller cryostat.
170
417260
2000
koje možemo staviti na manji kriostat.
06:59
And this is just showing this here --
171
419260
2000
Ovdje to možete vidjeti --
07:01
this frozen tissue, and it's being cut.
172
421260
2000
ovo je zamrznuto tkivo i ono se reže.
07:03
This is 20 microns thin, so this is about a baby hair's width.
173
423260
3000
Ovo je tanko 20 mikrona, to je otprilike debljina bebine dlake kose.
07:06
And remember, it's frozen.
174
426260
2000
I zapamtite, ovo je smrznuto.
07:08
And so you can see here,
175
428260
2000
Ovdje možete vidjeti
07:10
old-fashioned technology of the paintbrush being applied.
176
430260
2000
tradicionalanu tehnologiju nanošenja boje kistom.
07:12
We take a microscope slide.
177
432260
2000
Uzimamo mikroskopski uzorak.
07:14
Then we very carefully melt onto the slide.
178
434260
3000
Zatim ga pažljivo otapamo.
07:17
This will then go onto a robot
179
437260
2000
Ovo će sada ići u uređaj
07:19
that's going to apply one of those stains to it.
180
439260
3000
koji će nanijeti neku od boja na njega.
07:26
And our anatomists are going to go in and take a deeper look at this.
181
446260
3000
I naši anatomi će zatim bolje proučiti uzorak.
07:29
So again this is what they can see under the microscope.
182
449260
2000
Ovo je ono što mogu vidjeti pod mikroskopom.
07:31
You can see collections and configurations
183
451260
2000
Možete vidjeti nakupine i strukture
07:33
of large and small cells
184
453260
2000
velikih i malih stanica
07:35
in clusters and various places.
185
455260
2000
u skupinama i različitim mjestima.
07:37
And from there it's routine. They understand where to make these assignments.
186
457260
2000
Dalje je sve rutinski. Anatomi znaju gdje obaviti koje poslove.
07:39
And they can make basically what's a reference atlas.
187
459260
3000
I mogu napraviti osnovni referentni atlas.
07:42
This is a more detailed map.
188
462260
2000
To je još malo detaljnija mapa.
07:44
Our scientists then use this
189
464260
2000
Naši znanstvenici, tada, koriste ovo
07:46
to go back to another piece of that tissue
190
466260
3000
kako bi se vratili na drugi komadić tkiva
07:49
and do what's called laser scanning microdissection.
191
469260
2000
i napravili ono što zovemo laserska mikrosekcija.
07:51
So the technician takes the instructions.
192
471260
3000
Tehničar daje upute.
07:54
They scribe along a place there.
193
474260
2000
On ih piše na jedno mjesto.
07:56
And then the laser actually cuts.
194
476260
2000
I tada laser reže.
07:58
You can see that blue dot there cutting. And that tissue falls off.
195
478260
3000
Možete vidjeti ovu plavu točku koja reže. I to tkivo otpada.
08:01
You can see on the microscope slide here,
196
481260
2000
Možete sve vidjeti na mikrosposkom uzorku ovdje,
08:03
that's what's happening in real time.
197
483260
2000
ovo se događa u istom vremenu.
08:05
There's a container underneath that's collecting that tissue.
198
485260
3000
Ispod je spremnik koji prikuplja tkivo.
08:08
We take that tissue,
199
488260
2000
Mi uzimamo to tkivo,
08:10
we purify the RNA out of it
200
490260
2000
vadimo RNK iz njega
08:12
using some basic technology,
201
492260
2000
koristeći jednostavnu tehnologiju
08:14
and then we put a florescent tag on it.
202
494260
2000
i tada stavljamo flourescentnu oznaku na njega.
08:16
We take that tagged material
203
496260
2000
Uzimamo označeni materijal
08:18
and we put it on to something called a microarray.
204
498260
3000
i stavljamo ga na neku vrstu mikropločice.
08:21
Now this may look like a bunch of dots to you,
205
501260
2000
Vama ovo sada možda izgleda kao hrpa točkica,
08:23
but each one of these individual dots
206
503260
2000
ali svaka je pojedina točkica
08:25
is actually a unique piece of the human genome
207
505260
2000
jedinstven komadić ljudskog genoma
08:27
that we spotted down on glass.
208
507260
2000
koji smo uočili na staklu.
08:29
This has roughly 60,000 elements on it,
209
509260
3000
Ovo ima, grubo rečeno, oko 60.000 elemenata na sebi --
08:32
so we repeatedly measure various genes
210
512260
3000
zato konstantno mjerimo različite verzije gena
08:35
of the 25,000 genes in the genome.
211
515260
2000
od ukupnih 25.000 gena u genomu.
08:37
And when we take a sample and we hybridize it to it,
212
517260
3000
I kada uzmemo uzorak i križamo ga s ovim,
08:40
we get a unique fingerprint, if you will,
213
520260
2000
dobivamo jedinstveni otisak prsta, ako ćete tako lakše shvatiti,
08:42
quantitatively of what genes are turned on in that sample.
214
522260
3000
kvantitet gena koji su aktivni u tom uzorku.
08:45
Now we do this over and over again,
215
525260
2000
Zatim to činimo ponovno i ponovno,
08:47
this process for any given brain.
216
527260
3000
ponavljamo ovaj proces za svaki dani mozak.
08:50
We're taking over a thousand samples for each brain.
217
530260
3000
Uzimamo preko tisuću uzoraka iz svakog mozga.
08:53
This area shown here is an area called the hippocampus.
218
533260
3000
Ovo područje ovdje naziva se hippokampus.
08:56
It's involved in learning and memory.
219
536260
2000
Uključen je u procese učenja i pamćenja.
08:58
And it contributes to about 70 samples
220
538260
3000
I on daje oko 70 uzoraka
09:01
of those thousand samples.
221
541260
2000
od ovih 1.000 uzoraka.
09:03
So each sample gets us about 50,000 data points
222
543260
4000
Svaki nam uzorak daje otprilike 50.000 podataka.
09:07
with repeat measurements, a thousand samples.
223
547260
3000
Ponavljamo postupke na 1.000 uzoraka.
09:10
So roughly, we have 50 million data points
224
550260
2000
Grubo rečeno, imamo 50 milijuna podataka
09:12
for a given human brain.
225
552260
2000
za dani ljudski mozak.
09:14
We've done right now
226
554260
2000
Dosada smo obradili
09:16
two human brains-worth of data.
227
556260
2000
količinu podataka koja odgovara količini za dva ljudska mozga.
09:18
We've put all of that together
228
558260
2000
Sve smo to spojili
09:20
into one thing,
229
560260
2000
u jedno
09:22
and I'll show you what that synthesis looks like.
230
562260
2000
i sada ću vam pokazati kako ta sinteza izgleda.
09:24
It's basically a large data set of information
231
564260
3000
To je, u principu, velika baza podataka i informacija
09:27
that's all freely available to any scientist around the world.
232
567260
3000
koja je besplatna i dostupna svakom znanstveniku na svijetu.
09:30
They don't even have to log in to come use this tool,
233
570260
3000
Ne moraju se čak niti prijaviti kako bi koristili ovaj program,
09:33
mine this data, find interesting things out with this.
234
573260
4000
ovu bazu, i otkrivali zanimljive stvari s nama.
09:37
So here's the modalities that we put together.
235
577260
3000
Ovo su modeli koje smo sklopili i postavili.
09:40
You'll start to recognize these things from what we've collected before.
236
580260
3000
Prepoznat ćete ove stvari prema onome što smo prethodno prikupljali.
09:43
Here's the MR. It provides the framework.
237
583260
2000
Evo MR-a. On pruža okvirnu sliku.
09:45
There's an operator side on the right that allows you to turn,
238
585260
3000
Desno je operativni sistem koji vam omogućava da okrećete,
09:48
it allows you to zoom in,
239
588260
2000
povećavate,
09:50
it allows you to highlight individual structures.
240
590260
3000
istaknete pojedine strukture.
09:53
But most importantly,
241
593260
2000
No, ono što je najvažnije,
09:55
we're now mapping into this anatomic framework,
242
595260
3000
jest to da mi sada pravimo mapu u ovom anatomskom okviru,
09:58
which is a common framework for people to understand where genes are turned on.
243
598260
3000
koji je jednostavan okvir preko kojeg ljudi mogu shvatiti koji su geni aktivni.
10:01
So the red levels
244
601260
2000
Crveni slojevi su
10:03
are where a gene is turned on to a great degree.
245
603260
2000
mjesta gdje je neki gen aktivan u velikoj mjeri.
10:05
Green is the sort of cool areas where it's not turned on.
246
605260
3000
Zeleno su mjesta gdje nije uključen.
10:08
And each gene gives us a fingerprint.
247
608260
2000
A svaki nam gen daje svoj otisak.
10:10
And remember that we've assayed all the 25,000 genes in the genome
248
610260
5000
I zapamtite da smo analizirali svih 25.000 gena u genomu
10:15
and have all of that data available.
249
615260
4000
i da su nam dostupni svi ti podaci.
10:19
So what can scientists learn about this data?
250
619260
2000
Dakle, što znanstvenici mogu naučiti iz ove baze?
10:21
We're just starting to look at this data ourselves.
251
621260
3000
Mi tek krećemo pregledavati te podatke osobno.
10:24
There's some basic things that you would want to understand.
252
624260
3000
Postoje neke osnovne stvari koje biste trebali razumijeti.
10:27
Two great examples are drugs,
253
627260
2000
Dva izvrsna primjera su lijekovi
10:29
Prozac and Wellbutrin.
254
629260
2000
Prozac i Wellbutrin.
10:31
These are commonly prescribed antidepressants.
255
631260
3000
To su najčešće propisivani antidepresivi.
10:34
Now remember, we're assaying genes.
256
634260
2000
Sad upamtite, mi analiziramo gene.
10:36
Genes send the instructions to make proteins.
257
636260
3000
Geni šalju upute za pravljenje proteina.
10:39
Proteins are targets for drugs.
258
639260
2000
A proteini su meta lijekova.
10:41
So drugs bind to proteins
259
641260
2000
Lijekovi se vežu na proteine
10:43
and either turn them off, etc.
260
643260
2000
i, ili ih inhibiraju ili rade nešto drugo ...
10:45
So if you want to understand the action of drugs,
261
645260
2000
Stoga, ako želite razumijeti djelovanje lijekova,
10:47
you want to understand how they're acting in the ways you want them to,
262
647260
3000
želite razumijeti način na koji djeluju kako biste vi to željeli
10:50
and also in the ways you don't want them to.
263
650260
2000
i, naravno, način na koji ne želite da djeluju.
10:52
In the side effect profile, etc.,
264
652260
2000
Pri nuspojavama, na primjer,
10:54
you want to see where those genes are turned on.
265
654260
2000
želite vidjeti gdje su ti geni uključeni.
10:56
And for the first time, we can actually do that.
266
656260
2000
I prvi put, mi to zapravo možemo učiniti.
10:58
We can do that in multiple individuals that we've assayed too.
267
658260
3000
Mi to možemo napraviti za više pojedinaca koje smo analizirali.
11:01
So now we can look throughout the brain.
268
661260
3000
Sada možemo gledati kroz mozak.
11:04
We can see this unique fingerprint.
269
664260
2000
Možemo vidjeti ovaj jedinstveni otisak prsta.
11:06
And we get confirmation.
270
666260
2000
I možemo dobiti potvrdu.
11:08
We get confirmation that, indeed, the gene is turned on --
271
668260
3000
Možemo potvrditi da, uistinu, gen jest uključen --
11:11
for something like Prozac,
272
671260
2000
za nešto poput Prozaca,
11:13
in serotonergic structures, things that are already known be affected --
273
673260
3000
u serotonergičkim strukturama, za koje se već zna da su pod utjecajem,
11:16
but we also get to see the whole thing.
274
676260
2000
ali sada, također, možemo vidjeti kompletan prikaz.
11:18
We also get to see areas that no one has ever looked at before,
275
678260
2000
Također, možemo vidjeti područja koja nitko nikada nije pregledavao
11:20
and we see these genes turned on there.
276
680260
2000
i koji su geni tamo aktivni.
11:22
It's as interesting a side effect as it could be.
277
682260
3000
To je zanimljiv nusprodukt.
11:25
One other thing you can do with such a thing
278
685260
2000
Još jedna zanimljiva stvar koju možete učiniti,
11:27
is you can, because it's a pattern matching exercise,
279
687260
3000
jer je ovo vježba uspoređivanja s uzorkom
11:30
because there's unique fingerprint,
280
690260
2000
i jer postoji jedinstveni otisak,
11:32
we can actually scan through the entire genome
281
692260
2000
možete proći kroz cijeli genom
11:34
and find other proteins
282
694260
2000
i vidjeti druge proteine
11:36
that show a similar fingerprint.
283
696260
2000
koji pokazuju sličnost ovima.
11:38
So if you're in drug discovery, for example,
284
698260
3000
Stoga, ako ste u procesu traženja lijeka, na primjer,
11:41
you can go through
285
701260
2000
možete proći kroz
11:43
an entire listing of what the genome has on offer
286
703260
2000
cijelo izlistanje onoga što genom ima za ponuditi
11:45
to find perhaps better drug targets and optimize.
287
705260
4000
kako biste, možda, našli bolje mete za lijek i na taj način optimizirali djelovanje lijeka.
11:49
Most of you are probably familiar
288
709260
2000
Većina vas je vjerojatno upoznata
11:51
with genome-wide association studies
289
711260
2000
s genomom -- širok spektar studija
11:53
in the form of people covering in the news
290
713260
3000
koji se tiče liječenja ljudi u vijestima
11:56
saying, "Scientists have recently discovered the gene or genes
291
716260
3000
govori : „Znanstvenici su nedavno pronašli gen ili gene
11:59
which affect X."
292
719260
2000
koji utječu na nešto ...“
12:01
And so these kinds of studies
293
721260
2000
Ovakve se studije
12:03
are routinely published by scientists
294
723260
2000
rutinski objavljuju od strane znanstevnika
12:05
and they're great. They analyze large populations.
295
725260
2000
i one su sjajne. One analiziraju velike populacije.
12:07
They look at their entire genomes,
296
727260
2000
One razmatraju cijele njihove genome
12:09
and they try to find hot spots of activity
297
729260
2000
i pokušavaju naći mjesta aktivnosti
12:11
that are linked causally to genes.
298
731260
3000
koja su uzročno povezana s genima.
12:14
But what you get out of such an exercise
299
734260
2000
Ali ono što dobijete od ovakve studije
12:16
is simply a list of genes.
300
736260
2000
jest obična lista gena.
12:18
It tells you the what, but it doesn't tell you the where.
301
738260
3000
Govori vam koji su, ali vam ne govori gdje.
12:21
And so it's very important for those researchers
302
741260
3000
I zato je od iznimne važnosti za ove istraživače
12:24
that we've created this resource.
303
744260
2000
to što smo kreirali ovakavu bazu.
12:26
Now they can come in
304
746260
2000
Sada mogu doći i
12:28
and they can start to get clues about activity.
305
748260
2000
dobiti neke naznake o aktivnosti gena.
12:30
They can start to look at common pathways --
306
750260
2000
Mogu početi tražiti zajedničke puteve --
12:32
other things that they simply haven't been able to do before.
307
752260
3000
sve druge stvari koje jednostavno nisu bili u mogućnosti činiti prije.
12:36
So I think this audience in particular
308
756260
3000
Smatram da ova publika posebno
12:39
can understand the importance of individuality.
309
759260
3000
može razumijeti važnost individualnosti.
12:42
And I think every human,
310
762260
2000
I smatram da to može svaki čovjek,
12:44
we all have different genetic backgrounds,
311
764260
4000
mi svi imamo drugačije genetičke pozadine,
12:48
we all have lived separate lives.
312
768260
2000
svi živimo različite, odvojene živote.
12:50
But the fact is
313
770260
2000
Ali činjenica je da
12:52
our genomes are greater than 99 percent similar.
314
772260
3000
naši genomi pokazuju više od 99% sličnosti.
12:55
We're similar at the genetic level.
315
775260
3000
Na genetičkoj smo razini slični.
12:58
And what we're finding
316
778260
2000
I ono što nalazimo,
13:00
is actually, even at the brain biochemical level,
317
780260
2000
zapravo, čak i na biokemijskoj razini mozga,
13:02
we are quite similar.
318
782260
2000
jest da smo prilično slični.
13:04
And so this shows it's not 99 percent,
319
784260
2000
Ovo pokazuje da nije baš 99%,
13:06
but it's roughly 90 percent correspondence
320
786260
2000
ali je otprilike 90% podudarnosti
13:08
at a reasonable cutoff,
321
788260
3000
na normalnom uzorku.
13:11
so everything in the cloud is roughly correlated.
322
791260
2000
Sve u oblaku je prilično povezano.
13:13
And then we find some outliers,
323
793260
2000
A tada nalazimo neka odstupanja,
13:15
some things that lie beyond the cloud.
324
795260
3000
neke stvari koje se nalaze izvan oblaka.
13:18
And those genes are interesting,
325
798260
2000
I ti su geni interesantni,
13:20
but they're very subtle.
326
800260
2000
ali su prilično nezamjetni.
13:22
So I think it's an important message
327
802260
3000
Stoga, smatram da je važna poruka
13:25
to take home today
328
805260
2000
koju trebamo ponijeti doma danas
13:27
that even though we celebrate all of our differences,
329
807260
3000
to da smo, iako slavimo svu našu različitost,
13:30
we are quite similar
330
810260
2000
zapravo prilično slični,
13:32
even at the brain level.
331
812260
2000
čak i na razini mozga.
13:34
Now what do those differences look like?
332
814260
2000
Sada, kako izgledaju te razlike?
13:36
This is an example of a study that we did
333
816260
2000
Ovo je primjer studije koju smo radili
13:38
to follow up and see what exactly those differences were --
334
818260
2000
kako bismo točno vidjeli koje su to razlike --
13:40
and they're quite subtle.
335
820260
2000
i bile su prilično nezamjetne.
13:42
These are things where genes are turned on in an individual cell type.
336
822260
4000
Ovdje su geni aktivni u individualnim stanicama.
13:46
These are two genes that we found as good examples.
337
826260
3000
Ovo su dva gena koja smo izdvojili kao dobar primjer.
13:49
One is called RELN -- it's involved in early developmental cues.
338
829260
3000
Jedan je nazvan RELN -- on je aktivan u ranim razvojnim fazama.
13:52
DISC1 is a gene
339
832260
2000
DISC1 je gen
13:54
that's deleted in schizophrenia.
340
834260
2000
koji je izbrisan kod šizofrenije.
13:56
These aren't schizophrenic individuals,
341
836260
2000
Ovo nisu uzorci od osoba koje boluju od šizofrenije,
13:58
but they do show some population variation.
342
838260
3000
ali pokazuju neke varijacije u populaciji.
14:01
And so what you're looking at here
343
841260
2000
Ovo što vidite ovdje
14:03
in donor one and donor four,
344
843260
2000
kod donora 1 i donora 4,
14:05
which are the exceptions to the other two,
345
845260
2000
koji su iznimke u odnosu na ostale,
14:07
that genes are being turned on
346
847260
2000
jest da su geni aktivni
14:09
in a very specific subset of cells.
347
849260
2000
u prilično specifičnim podskupinama u stanici.
14:11
It's this dark purple precipitate within the cell
348
851260
3000
Ovaj tamnoljubičasti talog unutar stanice
14:14
that's telling us a gene is turned on there.
349
854260
3000
nam govori da je gen tamo aktivan.
14:17
Whether or not that's due
350
857260
2000
Ovisi li to ili ne ovisi
14:19
to an individual's genetic background or their experiences,
351
859260
2000
o individualnoj genetičkoj podlozi ili njihovim prethodnim iskustvima,
14:21
we don't know.
352
861260
2000
ne znamo.
14:23
Those kinds of studies require much larger populations.
353
863260
3000
Ove vrste studija zahtijevaju mnogo veće populacije.
14:28
So I'm going to leave you with a final note
354
868260
2000
Ostavit ću vas s konačnom mišlju
14:30
about the complexity of the brain
355
870260
3000
o složenosti mozga
14:33
and how much more we have to go.
356
873260
2000
i koliko je još toga za istražiti pred nama.
14:35
I think these resources are incredibly valuable.
357
875260
2000
Smatram da su ovo podatci od iznimne važnosti.
14:37
They give researchers a handle
358
877260
2000
Oni daju istraživačima putokaz,
14:39
on where to go.
359
879260
2000
u kojem smjeru ići.
14:41
But we only looked at a handful of individuals at this point.
360
881260
3000
Ali u ovom trenutku gledamo samo na skupinu pojedinaca.
14:44
We're certainly going to be looking at more.
361
884260
2000
U budućnosti ćemo svakako gledati na više toga.
14:46
I'll just close by saying
362
886260
2000
Završit ću rekavši
14:48
that the tools are there,
363
888260
2000
da je tehnologija dostupna
14:50
and this is truly an unexplored, undiscovered continent.
364
890260
4000
i da je ovo uistinu neistraženo, neotkriveno područje.
14:54
This is the new frontier, if you will.
365
894260
4000
Ovo je nova granica.
14:58
And so for those who are undaunted,
366
898260
2000
I, stoga, za one koji su neustrašivi,
15:00
but humbled by the complexity of the brain,
367
900260
2000
ali ipak ponizni pred složenosti mozga,
15:02
the future awaits.
368
902260
2000
budućnost je pred vama.
15:04
Thanks.
369
904260
2000
Hvala.
15:06
(Applause)
370
906260
9000
(Pljesak)

Original video on YouTube.com
O ovoj web stranici

Ova stranica će vas upoznati s YouTube videozapisima koji su korisni za učenje engleskog jezika. Vidjet ćete lekcije engleskog koje vode vrhunski profesori iz cijelog svijeta. Dvaput kliknite na engleske titlove prikazane na svakoj video stranici da biste reproducirali video s tog mjesta. Titlovi se pomiču sinkronizirano s reprodukcijom videozapisa. Ako imate bilo kakvih komentara ili zahtjeva, obratite nam se putem ovog obrasca za kontakt.

https://forms.gle/WvT1wiN1qDtmnspy7