Jennifer Golbeck: The curly fry conundrum: Why social media "likes" say more than you might think

376,856 views ・ 2014-04-03

TED


Please double-click on the English subtitles below to play the video.

Prevodilac: Ivana Korom Lektor: Mile Živković
00:12
If you remember that first decade of the web,
0
12738
1997
Ako se sećate prve decenije mreže,
00:14
it was really a static place.
1
14735
2255
bilo je to prilično statično mesto.
00:16
You could go online, you could look at pages,
2
16990
2245
Mogli ste da se umrežite, da gledate stranice,
00:19
and they were put up either by organizations
3
19235
2513
njih su postavljale ili organizacije
00:21
who had teams to do it
4
21748
1521
koje su imale timove koji su to radili
00:23
or by individuals who were really tech-savvy
5
23269
2229
ili pojedinci koji su bili prilično tehnološki napredni
00:25
for the time.
6
25498
1737
za to vreme.
00:27
And with the rise of social media
7
27235
1575
Sa usponom društvenih medija
00:28
and social networks in the early 2000s,
8
28810
2399
i društvenih mreža početkom 2000-ih,
00:31
the web was completely changed
9
31209
2149
internet mreža se potpuno transformisala
00:33
to a place where now the vast majority of content
10
33358
3608
u mesto gde većinu sadržaja
00:36
we interact with is put up by average users,
11
36966
3312
sa kojim komuniciramo postavlja prosečan korisnik,
00:40
either in YouTube videos or blog posts
12
40278
2697
bilo preko video snimaka na Jutjubu ili blog unosa
00:42
or product reviews or social media postings.
13
42975
3315
ili recenzija proizvoda ili poruka na društvenim mrežama.
00:46
And it's also become a much more interactive place,
14
46290
2347
Mreža je postala mesto sa mnogo više komunikacije
00:48
where people are interacting with others,
15
48637
2637
gde se ljudi povezuju jedni sa drugima,
00:51
they're commenting, they're sharing,
16
51274
1696
komentarišu i dele,
00:52
they're not just reading.
17
52970
1614
a ne samo čitaju.
00:54
So Facebook is not the only place you can do this,
18
54584
1866
Fejsbuk nije jedino mesto gde je ovo moguće,
00:56
but it's the biggest,
19
56450
1098
ali svakako jeste najveće
00:57
and it serves to illustrate the numbers.
20
57548
1784
i služi kao ilustracija stvarnih cifara.
00:59
Facebook has 1.2 billion users per month.
21
59332
3477
Fejsbuk broji 1,2 milijarde korisnika mesečno.
01:02
So half the Earth's Internet population
22
62809
1930
Dakle, gotovo polovina internet korisnika na planeti
01:04
is using Facebook.
23
64739
1653
koristi Fejsbuk.
01:06
They are a site, along with others,
24
66392
1932
To je internet stranica, koja je, kao i mnoge druge,
01:08
that has allowed people to create an online persona
25
68324
3219
omogućila ljudima da stvore virtualne ličnosti
01:11
with very little technical skill,
26
71543
1782
sa jako malo tehničkih sposobnosti,
01:13
and people responded by putting huge amounts
27
73325
2476
i ljudi su odreagovali postavljajući ogromne količine
01:15
of personal data online.
28
75801
1983
ličnih podataka na mrežu.
01:17
So the result is that we have behavioral,
29
77784
2543
Rezultat toga je da postoje podaci
o ponašanju, izborima, demografiji
01:20
preference, demographic data
30
80327
1986
01:22
for hundreds of millions of people,
31
82313
2101
stotina miliona ljudi,
01:24
which is unprecedented in history.
32
84414
2026
što je neviđeno u istoriji.
01:26
And as a computer scientist, what this means is that
33
86440
2560
Za mene, kao informatičara,
to znači da sam u mogućnosti da stvorim modele
01:29
I've been able to build models
34
89000
1664
01:30
that can predict all sorts of hidden attributes
35
90664
2322
koji mogu prognozirati svakakve vrste skrivenih osobina
01:32
for all of you that you don't even know
36
92986
2284
svih vas, za koje ni ne znate
01:35
you're sharing information about.
37
95270
2202
da ih zapravo delite.
Kao naučnici, mi to koristimo da pomognemo ljudima
01:37
As scientists, we use that to help
38
97472
2382
01:39
the way people interact online,
39
99854
2114
da komuniciraju na mreži,
01:41
but there's less altruistic applications,
40
101968
2499
ali postoje i manje altruistične koristi,
01:44
and there's a problem in that users don't really
41
104467
2381
i problem je da korisnici zapravo
01:46
understand these techniques and how they work,
42
106848
2470
ne razumeju ove metode i kako one funkcionišu,
01:49
and even if they did, they don't have a lot of control over it.
43
109318
3128
a sve i da razumeju, ne mogu mnogo da ih kontrolišu.
01:52
So what I want to talk to you about today
44
112446
1490
Dakle, danas želim da govorim
01:53
is some of these things that we're able to do,
45
113936
2702
o nekim od stvari koje smo mi u mogućnosti da uradimo
01:56
and then give us some ideas of how we might go forward
46
116638
2763
i da dam neke ideje o tome
kako da vratimo kontrolu korisnicima.
01:59
to move some control back into the hands of users.
47
119401
2769
Ovo je kompanija Target.
02:02
So this is Target, the company.
48
122170
1586
02:03
I didn't just put that logo
49
123756
1324
Nisam samo stavila taj logo
02:05
on this poor, pregnant woman's belly.
50
125080
2170
na stomak ove sirote trudnice.
02:07
You may have seen this anecdote that was printed
51
127250
1840
Možda ste pročitali anegdotu u Forbs magazinu
02:09
in Forbes magazine where Target
52
129090
2061
gde je Target poslao flajer
02:11
sent a flyer to this 15-year-old girl
53
131151
2361
jednoj petnaestogodišnjakinji
02:13
with advertisements and coupons
54
133512
1710
sa reklamama i kuponima
02:15
for baby bottles and diapers and cribs
55
135222
2554
za pelene, cucle i krevetiće,
02:17
two weeks before she told her parents
56
137776
1684
dve nedelje pre nego što je ona rekla svojim roditeljima
02:19
that she was pregnant.
57
139460
1864
da je trudna.
02:21
Yeah, the dad was really upset.
58
141324
2704
O da, otac je bio zaista uznemiren.
02:24
He said, "How did Target figure out
59
144028
1716
Rekao je: "Kako je Target znao
02:25
that this high school girl was pregnant
60
145744
1824
da je ova srednjoškolka trudna, pre njenih roditelja?"
02:27
before she told her parents?"
61
147568
1960
02:29
It turns out that they have the purchase history
62
149528
2621
Oni zapravo imaju istoriju kupovine
02:32
for hundreds of thousands of customers
63
152149
2301
za stotine hiljada korisnika
02:34
and they compute what they call a pregnancy score,
64
154450
2730
i izračunavaju ono što nazivaju trudničkim rezultatom,
02:37
which is not just whether or not a woman's pregnant,
65
157180
2332
što nije samo da li je neka žena trudna,
02:39
but what her due date is.
66
159512
1730
nego i kada treba da se porodi.
02:41
And they compute that
67
161242
1304
Oni to izračunaju
02:42
not by looking at the obvious things,
68
162546
1768
ne samo gledajući očigledne stvari,
02:44
like, she's buying a crib or baby clothes,
69
164314
2512
kao što je kupovina krevetića, dečije odeće,
02:46
but things like, she bought more vitamins
70
166826
2943
nego i to da je kupovala vitamine više nego inače,
02:49
than she normally had,
71
169769
1717
02:51
or she bought a handbag
72
171486
1464
ili da je kupila torbu, dovoljno veliku za pelene.
02:52
that's big enough to hold diapers.
73
172950
1711
02:54
And by themselves, those purchases don't seem
74
174661
1910
Same po sebi ove kupovine
02:56
like they might reveal a lot,
75
176571
2469
ne izgledaju kao da mnogo otkrivaju,
ali predstavljaju obrazac ponašanja koji,
02:59
but it's a pattern of behavior that,
76
179040
1978
kada se stavi u kontekst hiljada drugih ljudi
03:01
when you take it in the context of thousands of other people,
77
181018
3117
03:04
starts to actually reveal some insights.
78
184135
2757
počinje da otkriva neke skrivene činjenice.
03:06
So that's the kind of thing that we do
79
186892
1793
To je ono što mi radimo
03:08
when we're predicting stuff about you on social media.
80
188685
2567
kada pokušavamo da predvidimo stvari o vama na društvenim mrežama.
03:11
We're looking for little patterns of behavior that,
81
191252
2796
Tražimo male obrasce u ponašanju koji,
kada ih spazite među milionima ljudi,
03:14
when you detect them among millions of people,
82
194048
2682
03:16
lets us find out all kinds of things.
83
196730
2706
dozvoljavaju da saznamo svakakve stvari.
03:19
So in my lab and with colleagues,
84
199436
1747
Moje kolege i ja smo u laboratoriji
03:21
we've developed mechanisms where we can
85
201183
1777
razradili mehanizme gde smo u mogućnosti
03:22
quite accurately predict things
86
202960
1560
da sasvim tačno predvidimo
03:24
like your political preference,
87
204520
1725
vašu političku opredeljenost,
03:26
your personality score, gender, sexual orientation,
88
206245
3752
rezultat testa ličnosti, rod, seksualnu orijentaciju,
03:29
religion, age, intelligence,
89
209997
2873
versku opredeljenost, godište, nivo inteligencije,
03:32
along with things like
90
212870
1394
kao i koliko imate poverenja u ljude koje poznajete.
03:34
how much you trust the people you know
91
214264
1937
03:36
and how strong those relationships are.
92
216201
1804
i koliko su te veze jake.
Sve ovo mi radimo veoma dobro.
03:38
We can do all of this really well.
93
218005
1785
03:39
And again, it doesn't come from what you might
94
219790
2197
Opet, to ne dolazi iz očiglednih informacija,
03:41
think of as obvious information.
95
221987
2102
kao što bi bilo za očekivati.
03:44
So my favorite example is from this study
96
224089
2281
Moj omiljeni primer je iz ove studije
03:46
that was published this year
97
226370
1240
koja je izdata ove godine
03:47
in the Proceedings of the National Academies.
98
227610
1795
u Zborniku Nacionalnih akademija.
03:49
If you Google this, you'll find it.
99
229405
1285
Ako pretražite internet moći ćete da nađete.
03:50
It's four pages, easy to read.
100
230690
1872
Ima četiri strane, lako je za čitanje.
03:52
And they looked at just people's Facebook likes,
101
232562
3003
Oni su pregledali samo lajkove ljudi na Fejsbuku,
03:55
so just the things you like on Facebook,
102
235565
1920
dakle samo stvari koje ste lajkovali na Fejsbuku,
03:57
and used that to predict all these attributes,
103
237485
2138
i iskoristili su ih da predvide sve ove atribute,
03:59
along with some other ones.
104
239623
1645
zajedno sa nekim drugim.
04:01
And in their paper they listed the five likes
105
241268
2961
U svom izveštaju su nabrojali 5 lajkova
04:04
that were most indicative of high intelligence.
106
244229
2787
koji predstavljaju nagoveštaje visoke inteligencije.
04:07
And among those was liking a page
107
247016
2324
Jedan od lajkova je
04:09
for curly fries. (Laughter)
108
249340
1905
stranica uvijenih prženih krompirića. (Smeh)
04:11
Curly fries are delicious,
109
251245
2093
Uvijeni prženi krompirići su ukusni,
04:13
but liking them does not necessarily mean
110
253338
2530
ali to što vam se dopadaju ne znači nužno
04:15
that you're smarter than the average person.
111
255868
2080
da ste pametniji od prosečne osobe.
04:17
So how is it that one of the strongest indicators
112
257948
3207
Kako je onda jedan od bitnijih indikatora vaše inteligencije
04:21
of your intelligence
113
261155
1570
04:22
is liking this page
114
262725
1447
lajkovanje ove stranice,
04:24
when the content is totally irrelevant
115
264172
2252
kada je sadržaj potpuno nebitan
04:26
to the attribute that's being predicted?
116
266424
2527
u odnosu na atribut koji se predviđa?
04:28
And it turns out that we have to look at
117
268951
1584
Ispostavlja se da moramo da uzmemo u obzir
04:30
a whole bunch of underlying theories
118
270535
1618
gomilu drugih teorija,
04:32
to see why we're able to do this.
119
272153
2569
da bismo saznali kako dolazimo do ovog rezultata.
04:34
One of them is a sociological theory called homophily,
120
274722
2913
Jedna od teorija je sociološka, zvana homofilija,
04:37
which basically says people are friends with people like them.
121
277635
3092
koja kaže da prijatelji imaju zajednička interesovanja.
04:40
So if you're smart, you tend to be friends with smart people,
122
280727
2014
Ako ste pametni, često su to i vaši prijatelji,
04:42
and if you're young, you tend to be friends with young people,
123
282741
2630
ako ste mladi, sprijateljićete se sa drugim mladim osobama
04:45
and this is well established
124
285371
1627
04:46
for hundreds of years.
125
286998
1745
i ovo je već davno ustanovljeno.
04:48
We also know a lot
126
288743
1232
04:49
about how information spreads through networks.
127
289975
2550
Mi takođe znamo mnogo tome
kako se informacije prenose kroz mreže.
04:52
It turns out things like viral videos
128
292525
1754
Ispostavlja se da se popularni video
04:54
or Facebook likes or other information
129
294279
2406
ili lajkovi na Fejsbuku i druge informacije,
04:56
spreads in exactly the same way
130
296685
1888
prenose identično kao i bolesti kroz društvene mreže.
04:58
that diseases spread through social networks.
131
298573
2454
05:01
So this is something we've studied for a long time.
132
301027
1791
Ovo izučavamo već duže vreme.
05:02
We have good models of it.
133
302818
1576
Imamo dobre modele za to.
05:04
And so you can put those things together
134
304394
2157
Kada sve to saberete
05:06
and start seeing why things like this happen.
135
306551
3088
uvidećete zašto se tako nešto uopšte dešava.
05:09
So if I were to give you a hypothesis,
136
309639
1814
Ako bih vam ponudila hipotezu
05:11
it would be that a smart guy started this page,
137
311453
3227
ona bi glasila da je neki bistar momak napravio ovu stranicu,
05:14
or maybe one of the first people who liked it
138
314680
1939
ili da je jedna od prvih osoba koja je lajkovala stranicu
05:16
would have scored high on that test.
139
316619
1736
imala visoke rezultate na testu inteligencije.
05:18
And they liked it, and their friends saw it,
140
318355
2288
05:20
and by homophily, we know that he probably had smart friends,
141
320643
3122
Njihovi prijatelji su to videli
i na osnovu homofilije, pretpostavljamo da je imao pametne prijatelje,
05:23
and so it spread to them, and some of them liked it,
142
323765
3056
pa se sve prenelo na njih, pa su i oni lajkovali,
05:26
and they had smart friends,
143
326821
1189
a i oni su imali pametne prijatelje
05:28
and so it spread to them,
144
328010
807
05:28
and so it propagated through the network
145
328817
1973
pa se sve takođe prenelo na njih,
05:30
to a host of smart people,
146
330790
2569
pa se sve proširilo kroz mrežu
na veliki broj pametnih ljudi,
05:33
so that by the end, the action
147
333359
2056
i do kraja je postupak
05:35
of liking the curly fries page
148
335415
2544
lajkovanja stranice uvijenih krompirića
05:37
is indicative of high intelligence,
149
337959
1615
postao indikativan za visoku inteligenciju,
05:39
not because of the content,
150
339574
1803
ne zbog svog sadržaja,
05:41
but because the actual action of liking
151
341377
2522
nego zbog toga što čin lajkovanja
05:43
reflects back the common attributes
152
343899
1900
odražava zajedničke osobine
05:45
of other people who have done it.
153
345799
2468
drugih ljudi koji su učinili isto.
05:48
So this is pretty complicated stuff, right?
154
348267
2897
Ovo je prilično komplikovano, zar ne?
05:51
It's a hard thing to sit down and explain
155
351164
2199
Nije lako objasniti prosečnom korisniku,
05:53
to an average user, and even if you do,
156
353363
2848
a čak iako uspete,
05:56
what can the average user do about it?
157
356211
2188
šta prosečan korisnik može da uradi povodom toga?
05:58
How do you know that you've liked something
158
358399
2048
Kako da znate da ste lajkovali nešto
06:00
that indicates a trait for you
159
360447
1492
što odaje neku vašu osobinu,
06:01
that's totally irrelevant to the content of what you've liked?
160
361939
3545
a koja nema nikakve veze sa sadržajem koji ste lajkovali?
06:05
There's a lot of power that users don't have
161
365484
2546
Korisnici nemaju mnogo moći
da kontrolišu kako se ovi podaci koriste.
06:08
to control how this data is used.
162
368030
2230
06:10
And I see that as a real problem going forward.
163
370260
3112
Ja to vidim kao pravi problem.
06:13
So I think there's a couple paths
164
373372
1977
Mislim da postoje dva puta
06:15
that we want to look at
165
375349
1001
koja želimo da razmatramo
06:16
if we want to give users some control
166
376350
1910
ako želimo da korisnicima damo kontrolu
06:18
over how this data is used,
167
378260
1740
nad korišćenjem podataka,
06:20
because it's not always going to be used
168
380000
1940
jer oni neće uvek biti korišćeni
06:21
for their benefit.
169
381940
1381
u njihovu korist.
06:23
An example I often give is that,
170
383321
1422
Jedan primer koji često dajem je da,
06:24
if I ever get bored being a professor,
171
384743
1646
ako mi ikada dosadi da budem profesor,
06:26
I'm going to go start a company
172
386389
1653
osnovaću kompaniju
06:28
that predicts all of these attributes
173
388042
1454
koja predviđa sve ove osobine,
06:29
and things like how well you work in teams
174
389496
1602
npr. koliko dobro radite u timovima,
06:31
and if you're a drug user, if you're an alcoholic.
175
391098
2671
da li koristite droge, da li ste alkoholičar.
06:33
We know how to predict all that.
176
393769
1440
Znamo kako sve to da predvidimo.
06:35
And I'm going to sell reports
177
395209
1761
I prodavaću izveštaje
06:36
to H.R. companies and big businesses
178
396970
2100
HR kompanijama i velikim firmama
06:39
that want to hire you.
179
399070
2273
koje žele da vas zaposle.
06:41
We totally can do that now.
180
401343
1177
To apsolutno možemo sada da uradimo.
06:42
I could start that business tomorrow,
181
402520
1788
Mogla bih sutra da otvorim tu kompaniju,
06:44
and you would have absolutely no control
182
404308
2052
a vi uopšte ne biste imali kontrolu
06:46
over me using your data like that.
183
406360
2138
nad tim kako ja koristim vaše podatke.
06:48
That seems to me to be a problem.
184
408498
2292
Po mom mišljenju, ovo je problem.
06:50
So one of the paths we can go down
185
410790
1910
Jedan od puteva kojim možemo da pođemo
06:52
is the policy and law path.
186
412700
2032
je put pravila i zakona.
06:54
And in some respects, I think that that would be most effective,
187
414732
3046
Donekle, mislim da bi to bilo i najefikasnije,
06:57
but the problem is we'd actually have to do it.
188
417778
2756
ali problem je u tome što bi to trebalo i uradimo.
07:00
Observing our political process in action
189
420534
2780
Gledajući kako naš politički proces funkcioniše,
07:03
makes me think it's highly unlikely
190
423314
2379
izgleda mi malo verovatno
07:05
that we're going to get a bunch of representatives
191
425693
1597
da će gomila političara
07:07
to sit down, learn about this,
192
427290
1986
da sedne i nauči nešto o ovome,
07:09
and then enact sweeping changes
193
429276
2106
a onda sprovede korenite promene
07:11
to intellectual property law in the U.S.
194
431382
2157
u zakonu o intelektualnoj svojini u SAD-u,
07:13
so users control their data.
195
433539
2461
kako bi korisnici kontrolisali svoje podatke.
07:16
We could go the policy route,
196
436000
1304
Mogli bismo da idemo putem politike,
07:17
where social media companies say,
197
437304
1479
gde kompanije društvenih medija kažu:
07:18
you know what? You own your data.
198
438783
1402
"Vi posedujete svoje podatke.
07:20
You have total control over how it's used.
199
440185
2489
Imate potpunu kontrolu nad njihovim korišćenjem."
07:22
The problem is that the revenue models
200
442674
1848
Problem je u tome što se modeli poslovanja
07:24
for most social media companies
201
444522
1724
većine kompanija društvenih medija
07:26
rely on sharing or exploiting users' data in some way.
202
446246
4031
oslanjaju na deljenje i iskorišćavanje podataka korisnika na neki način.
07:30
It's sometimes said of Facebook that the users
203
450277
1833
Za Fejsbuk se nekada kaže
07:32
aren't the customer, they're the product.
204
452110
2528
da korisnici nisu klijenti, nego su proizvod.
07:34
And so how do you get a company
205
454638
2714
I kako da navedete neku kompaniju
07:37
to cede control of their main asset
206
457352
2558
da kontrolu nad svojim glavnim resursom
07:39
back to the users?
207
459910
1249
vrati korisnicima?
07:41
It's possible, but I don't think it's something
208
461159
1701
Moguće je, ali mislim da nije nešto
07:42
that we're going to see change quickly.
209
462860
2320
što će se brzo promeniti.
07:45
So I think the other path
210
465180
1500
Mislim da je drugi put
07:46
that we can go down that's going to be more effective
211
466680
2288
kojim možemo da krenemo, i koji je efektniji,
07:48
is one of more science.
212
468968
1508
je onaj sa više nauke.
07:50
It's doing science that allowed us to develop
213
470476
2510
Primena nauke nam je omogućila
07:52
all these mechanisms for computing
214
472986
1750
da uopšte razvijemo sve ove mehanizme izračunavanja
07:54
this personal data in the first place.
215
474736
2052
ovih ličnih podataka.
07:56
And it's actually very similar research
216
476788
2106
To istraživanje je veoma slično onom
07:58
that we'd have to do
217
478894
1438
koje bismo morali da sprovedemo
08:00
if we want to develop mechanisms
218
480332
2386
ako bismo želeli da razvijemo mehanizme
08:02
that can say to a user,
219
482718
1421
koji bi korisniku rekli:
08:04
"Here's the risk of that action you just took."
220
484139
2229
"Ovo je rizik akcije koju ste upravo sproveli".
08:06
By liking that Facebook page,
221
486368
2080
Lajkovanjem te Fejsbuk stranice
08:08
or by sharing this piece of personal information,
222
488448
2535
ili deljenjem te lične informacije
08:10
you've now improved my ability
223
490983
1502
poboljšali ste moju sposobnost
08:12
to predict whether or not you're using drugs
224
492485
2086
da predvidim da li koristite droge
08:14
or whether or not you get along well in the workplace.
225
494571
2862
ili da li se dobro slažete sa kolegama na poslu.
08:17
And that, I think, can affect whether or not
226
497433
1848
I mislim da će to uticati na odluku ljudi da podele nešto,
08:19
people want to share something,
227
499281
1510
08:20
keep it private, or just keep it offline altogether.
228
500791
3239
da zadrže u privatnosti ili uopšte ne postave na internet.
08:24
We can also look at things like
229
504030
1563
Možemo posmatrati
08:25
allowing people to encrypt data that they upload,
230
505593
2728
i dozvoljavanje ljudima da šifrom zaštite podatke koje postavljaju,
08:28
so it's kind of invisible and worthless
231
508321
1855
da bi bili nevidljivi i beskorisni sajtovima kao što je Fejsbuk
08:30
to sites like Facebook
232
510176
1431
08:31
or third party services that access it,
233
511607
2629
ili servisima trećeg lica koji im pristupaju,
08:34
but that select users who the person who posted it
234
514236
3247
ali da mogu da vide samo odabrani korisnici,
08:37
want to see it have access to see it.
235
517483
2670
za koje osoba koja postavlja sadržaj, želi da vide.
08:40
This is all super exciting research
236
520153
2166
Ovo je veoma uzbudljivo istraživanje,
08:42
from an intellectual perspective,
237
522319
1620
sa intelektualnog stanovišta,
08:43
and so scientists are going to be willing to do it.
238
523939
1859
i naučnici će želeti time da se bave.
08:45
So that gives us an advantage over the law side.
239
525798
3610
To nam daje prednost u odnosu na zakon.
08:49
One of the problems that people bring up
240
529408
1725
Jedan od problema koji ljudi iznose
08:51
when I talk about this is, they say,
241
531133
1595
kada govorim o ovome je,
08:52
you know, if people start keeping all this data private,
242
532728
2646
da ako ljudi počnu da podatke drže u tajnosti,
08:55
all those methods that you've been developing
243
535374
2113
sve metode koje sam ja razvijala
08:57
to predict their traits are going to fail.
244
537487
2653
za predviđanje njihovih osobina će propasti.
09:00
And I say, absolutely, and for me, that's success,
245
540140
3520
Ja se apsolutno slažem, za mene je to uspeh,
09:03
because as a scientist,
246
543660
1786
jer kao naučniku,
09:05
my goal is not to infer information about users,
247
545446
3688
meni nije cilj da nagađam o podacima korisnika,
09:09
it's to improve the way people interact online.
248
549134
2767
nego da poboljšam način na koji komuniciraju na internetu.
09:11
And sometimes that involves inferring things about them,
249
551901
3218
Ponekad to uključuje zaključivanje,
ali ako korisnici ne žele da koristim njihove podatke,
09:15
but if users don't want me to use that data,
250
555119
3022
09:18
I think they should have the right to do that.
251
558141
2038
mislim da bi trebalo da imaju pravo na to.
09:20
I want users to be informed and consenting
252
560179
2651
Želim da korisnici budu informisani i da pristanu
09:22
users of the tools that we develop.
253
562830
2112
da koriste alate koje razvijamo.
09:24
And so I think encouraging this kind of science
254
564942
2952
Mislim da podsticanje ovakve nauke
09:27
and supporting researchers
255
567894
1346
i podržavanje istraživača
09:29
who want to cede some of that control back to users
256
569240
3023
koji žele da deo te kontrole vrate korisnicima
09:32
and away from the social media companies
257
572263
2311
i oduzmu od kompanija društvenih medija,
09:34
means that going forward, as these tools evolve
258
574574
2671
znači napredovanje, kako se ti alati razvijaju
09:37
and advance,
259
577245
1476
i napreduju,
09:38
means that we're going to have an educated
260
578721
1414
znači da ćemo imati obrazovanu i osnaženu bazu korisnika,
09:40
and empowered user base,
261
580135
1694
09:41
and I think all of us can agree
262
581829
1100
i mislim da se slažemo
09:42
that that's a pretty ideal way to go forward.
263
582929
2564
da je to idealan način za napredovanje.
09:45
Thank you.
264
585493
2184
Hvala vam.
(Aplauz)
09:47
(Applause)
265
587677
3080
About this website

This site will introduce you to YouTube videos that are useful for learning English. You will see English lessons taught by top-notch teachers from around the world. Double-click on the English subtitles displayed on each video page to play the video from there. The subtitles scroll in sync with the video playback. If you have any comments or requests, please contact us using this contact form.

https://forms.gle/WvT1wiN1qDtmnspy7