Jennifer Golbeck: The curly fry conundrum: Why social media "likes" say more than you might think

376,125 views

2014-04-03 ・ TED


New videos

Jennifer Golbeck: The curly fry conundrum: Why social media "likes" say more than you might think

376,125 views ・ 2014-04-03

TED


請雙擊下方英文字幕播放視頻。

譯者: Adrienne Lin 審譯者: Ying Ru Wu
00:12
If you remember that first decade of the web,
0
12738
1997
如果你還記得網路出現的頭十年,
00:14
it was really a static place.
1
14735
2255
當時是一個很靜態的環境。
00:16
You could go online, you could look at pages,
2
16990
2245
你可以上網、瀏覽網頁,
00:19
and they were put up either by organizations
3
19235
2513
這些網站或許是由一些機構製作,
00:21
who had teams to do it
4
21748
1521
這些機構有自己的團隊,
00:23
or by individuals who were really tech-savvy
5
23269
2229
或是當時很懂科技的人製作的。
00:25
for the time.
6
25498
1737
00:27
And with the rise of social media
7
27235
1575
隨著社交媒體、
00:28
and social networks in the early 2000s,
8
28810
2399
社交網路在 21 世紀初期的興起,
00:31
the web was completely changed
9
31209
2149
網路世界完全改變了。
00:33
to a place where now the vast majority of content
10
33358
3608
現在的網路有很多內容
我們互動的內容是由網路用戶放上網的,
00:36
we interact with is put up by average users,
11
36966
3312
00:40
either in YouTube videos or blog posts
12
40278
2697
不管是 YouTube 上的影片或者部落格,
00:42
or product reviews or social media postings.
13
42975
3315
抑或是商品評價或者社交媒體的文章。
00:46
And it's also become a much more interactive place,
14
46290
2347
除此之外,網路也多了很多互動。
00:48
where people are interacting with others,
15
48637
2637
人們在網絡上互動,
00:51
they're commenting, they're sharing,
16
51274
1696
他們評論、分享,
00:52
they're not just reading.
17
52970
1614
而不僅是看看而已。
00:54
So Facebook is not the only place you can do this,
18
54584
1866
臉書不是唯一一個 能做這些事的網站,
00:56
but it's the biggest,
19
56450
1098
但它是最大的。
00:57
and it serves to illustrate the numbers.
20
57548
1784
我們可以通過臉書 來判斷使用人數。
00:59
Facebook has 1.2 billion users per month.
21
59332
3477
臉書每個月的用戶高達 12 億。
01:02
So half the Earth's Internet population
22
62809
1930
也就是說全球一半的網民
01:04
is using Facebook.
23
64739
1653
都在使用臉書。
01:06
They are a site, along with others,
24
66392
1932
這個網站,還有其他的網站,
01:08
that has allowed people to create an online persona
25
68324
3219
讓網民能創建網路上的個人形象
01:11
with very little technical skill,
26
71543
1782
而且無需太多的技術即可操作。
01:13
and people responded by putting huge amounts
27
73325
2476
用戶反應熱烈,上傳大量的
01:15
of personal data online.
28
75801
1983
個人訊息到網路上。
01:17
So the result is that we have behavioral,
29
77784
2543
這樣一來我們就有了有關行為、
01:20
preference, demographic data
30
80327
1986
偏好、地理數據,
01:22
for hundreds of millions of people,
31
82313
2101
提供給成千上萬的人,
01:24
which is unprecedented in history.
32
84414
2026
這是史無前例的。
01:26
And as a computer scientist, what this means is that
33
86440
2560
作為電腦科學家,這就意味著
01:29
I've been able to build models
34
89000
1664
我可以建立很多模型
01:30
that can predict all sorts of hidden attributes
35
90664
2322
用來推測各種隱藏特性,
01:32
for all of you that you don't even know
36
92986
2284
而你們自己可能都不知道
你們分享的訊息透露了這些特性。
01:35
you're sharing information about.
37
95270
2202
01:37
As scientists, we use that to help
38
97472
2382
科學家利用這些數據來改善
01:39
the way people interact online,
39
99854
2114
網民在網路上的互動,
01:41
but there's less altruistic applications,
40
101968
2499
但網路也有一些 沒那麼利他主義的應用,
01:44
and there's a problem in that users don't really
41
104467
2381
我們面臨一個問題, 那就是網路用戶並不真正
01:46
understand these techniques and how they work,
42
106848
2470
了解這些網路技術、它們的運作原理,
01:49
and even if they did, they don't have a lot of control over it.
43
109318
3128
而且即使他們懂, 也沒什麼辦法控制其影響。
01:52
So what I want to talk to you about today
44
112446
1490
所以我今天想和你們分享的,
01:53
is some of these things that we're able to do,
45
113936
2702
是我們力所能及、可控制的一些事情,
01:56
and then give us some ideas of how we might go forward
46
116638
2763
給大家一些想法,看看我們如何發展才能
01:59
to move some control back into the hands of users.
47
119401
2769
把部分控制權交回到網路用戶的手上。
02:02
So this is Target, the company.
48
122170
1586
這個是 Target 公司。
02:03
I didn't just put that logo
49
123756
1324
我不是沒事把 Target 的標誌放在
02:05
on this poor, pregnant woman's belly.
50
125080
2170
這個可憐孕婦的肚子上。
02:07
You may have seen this anecdote that was printed
51
127250
1840
你可能讀過一個小故事,刊登在
02:09
in Forbes magazine where Target
52
129090
2061
富比士雜誌。故事提到 Target
02:11
sent a flyer to this 15-year-old girl
53
131151
2361
發了張傳單給一位 15 歲的女孩。
02:13
with advertisements and coupons
54
133512
1710
上面的廣告和折價卷
02:15
for baby bottles and diapers and cribs
55
135222
2554
都是嬰兒奶瓶、尿布、嬰兒床的。
02:17
two weeks before she told her parents
56
137776
1684
這還是在她告訴她父親
02:19
that she was pregnant.
57
139460
1864
自己懷孕了之前兩週的事。
02:21
Yeah, the dad was really upset.
58
141324
2704
是的,她的父親很難過。
02:24
He said, "How did Target figure out
59
144028
1716
那為什麼 Target 知道
02:25
that this high school girl was pregnant
60
145744
1824
在這高中女生告訴父母她懷孕以前, 就已經先知道了呢?
02:27
before she told her parents?"
61
147568
1960
02:29
It turns out that they have the purchase history
62
149528
2621
原來,Target 有購物記錄,
02:32
for hundreds of thousands of customers
63
152149
2301
記錄成千上萬網路顧客的購物歷史,
02:34
and they compute what they call a pregnancy score,
64
154450
2730
而且他們還有一個叫做 “懷孕分數”的計算系統,
02:37
which is not just whether or not a woman's pregnant,
65
157180
2332
這個系統不只計算一位女性是否懷孕,
02:39
but what her due date is.
66
159512
1730
還有她們的預產期。
02:41
And they compute that
67
161242
1304
另外,他們不僅探討一些很明顯的資訊,
02:42
not by looking at the obvious things,
68
162546
1768
02:44
like, she's buying a crib or baby clothes,
69
164314
2512
比如說購買了一張嬰兒床、嬰兒服,
02:46
but things like, she bought more vitamins
70
166826
2943
還會計算她買了比平時多的維他命,
02:49
than she normally had,
71
169769
1717
02:51
or she bought a handbag
72
171486
1464
或者是她買了一個 大小足夠放下尿布的包包。
02:52
that's big enough to hold diapers.
73
172950
1711
02:54
And by themselves, those purchases don't seem
74
174661
1910
對購買者來說, 他們並不覺得這些購物訊息
02:56
like they might reveal a lot,
75
176571
2469
透露很多隱私,
02:59
but it's a pattern of behavior that,
76
179040
1978
但其實這是一種行為模式,
03:01
when you take it in the context of thousands of other people,
77
181018
3117
當你把和成千上萬 網友的資料放在一起看,
03:04
starts to actually reveal some insights.
78
184135
2757
其實就能推測出很多東西。
03:06
So that's the kind of thing that we do
79
186892
1793
所以這些就是我們所做的事情,
03:08
when we're predicting stuff about you on social media.
80
188685
2567
我們在社群網站上 推測與你們相關的東西。
03:11
We're looking for little patterns of behavior that,
81
191252
2796
我們要找的行為模式是,
03:14
when you detect them among millions of people,
82
194048
2682
當你們從上百萬人身上發現這種模式,
03:16
lets us find out all kinds of things.
83
196730
2706
我們就能找到所有相關的事情。
03:19
So in my lab and with colleagues,
84
199436
1747
所以我和實驗室的同事們,
03:21
we've developed mechanisms where we can
85
201183
1777
開發了多種機制,幫助我們
03:22
quite accurately predict things
86
202960
1560
較精確地推斷很多事情,
03:24
like your political preference,
87
204520
1725
像是你的政治傾向、
03:26
your personality score, gender, sexual orientation,
88
206245
3752
性格測試分數、性別、性取向、
03:29
religion, age, intelligence,
89
209997
2873
宗教信仰、年齡、智力,
03:32
along with things like
90
212870
1394
同時還有像是
03:34
how much you trust the people you know
91
214264
1937
你對認識的人有多信任、
03:36
and how strong those relationships are.
92
216201
1804
你們的關係有多緊密等。
03:38
We can do all of this really well.
93
218005
1785
所有這些我們都可以做得很好。
03:39
And again, it doesn't come from what you might
94
219790
2197
而且,這些都不是來自於
03:41
think of as obvious information.
95
221987
2102
你會認為是明顯的訊息。
03:44
So my favorite example is from this study
96
224089
2281
我最喜歡舉的一個例子
03:46
that was published this year
97
226370
1240
是一個今年發表的研究
03:47
in the Proceedings of the National Academies.
98
227610
1795
刊在《美國國家科學院院刊》上。
03:49
If you Google this, you'll find it.
99
229405
1285
Google 一下就能查到。
03:50
It's four pages, easy to read.
100
230690
1872
研究只有四頁紙,很容易讀。
03:52
And they looked at just people's Facebook likes,
101
232562
3003
他們僅是研究了用戶在臉書的點讚,
03:55
so just the things you like on Facebook,
102
235565
1920
只是你在臉書上點讚的內容,
03:57
and used that to predict all these attributes,
103
237485
2138
用這些點讚的內容 來推斷所有這些特性,
03:59
along with some other ones.
104
239623
1645
以及其他的資訊。
04:01
And in their paper they listed the five likes
105
241268
2961
在調查中,他們列出了五類的讚,
04:04
that were most indicative of high intelligence.
106
244229
2787
這些讚最能表明高智商的用戶。
04:07
And among those was liking a page
107
247016
2324
這其中還包括
到炸馬鈴薯圈頁面點讚。(笑聲)
04:09
for curly fries. (Laughter)
108
249340
1905
04:11
Curly fries are delicious,
109
251245
2093
炸馬鈴薯圈是好吃,
04:13
but liking them does not necessarily mean
110
253338
2530
但是到這頁面按讚不表示
04:15
that you're smarter than the average person.
111
255868
2080
你就比一般人聰明。
04:17
So how is it that one of the strongest indicators
112
257948
3207
到底為什麼,
最能體現你智商指數的指標之一
04:21
of your intelligence
113
261155
1570
04:22
is liking this page
114
262725
1447
是到一個頁面按讚,
04:24
when the content is totally irrelevant
115
264172
2252
即使頁面的內容完全無關於
04:26
to the attribute that's being predicted?
116
266424
2527
要推斷的特性?
04:28
And it turns out that we have to look at
117
268951
1584
結論是,我們需要參考
04:30
a whole bunch of underlying theories
118
270535
1618
很多背後的理論
04:32
to see why we're able to do this.
119
272153
2569
來了解為什麼我們能夠做到這點。
04:34
One of them is a sociological theory called homophily,
120
274722
2913
其中一個就是社會學理論,叫同質相吸,
04:37
which basically says people are friends with people like them.
121
277635
3092
指的是人們通常 和與自己相像的人交朋友。
04:40
So if you're smart, you tend to be friends with smart people,
122
280727
2014
所以如果你聰明, 你會和聰明的人交朋友,
04:42
and if you're young, you tend to be friends with young people,
123
282741
2630
如果你年輕, 你會和年輕人交朋友,
04:45
and this is well established
124
285371
1627
這個理論是經過驗證的,
04:46
for hundreds of years.
125
286998
1745
多年來大家都肯定。
04:48
We also know a lot
126
288743
1232
我們還知道很多
04:49
about how information spreads through networks.
127
289975
2550
關於訊息在網路上如何傳播。
04:52
It turns out things like viral videos
128
292525
1754
我們發現病毒影片、
04:54
or Facebook likes or other information
129
294279
2406
臉書按讚或是其他訊息
04:56
spreads in exactly the same way
130
296685
1888
傳播的方式完全和
04:58
that diseases spread through social networks.
131
298573
2454
病毒透過社群網站傳播的方式一樣。
05:01
So this is something we've studied for a long time.
132
301027
1791
這是我們研究了很長時間的東西,
05:02
We have good models of it.
133
302818
1576
我們有很好的模型。
05:04
And so you can put those things together
134
304394
2157
所以如果你們把這些模型都放在一起,
05:06
and start seeing why things like this happen.
135
306551
3088
就能了解為何這樣的事情會發生了。
05:09
So if I were to give you a hypothesis,
136
309639
1814
如果要給各位一個假設,
05:11
it would be that a smart guy started this page,
137
311453
3227
那就是一個聰明的人 建立了一個粉絲頁,
05:14
or maybe one of the first people who liked it
138
314680
1939
或者剛開始幾個去按讚的人
05:16
would have scored high on that test.
139
316619
1736
在智力測試上得了高分,
05:18
And they liked it, and their friends saw it,
140
318355
2288
他們給這個頁面點了讚, 當他們的朋友看見了,
05:20
and by homophily, we know that he probably had smart friends,
141
320643
3122
根據同質相吸的原理,我們知道 這些人的朋友可能也很聰明,
05:23
and so it spread to them, and some of them liked it,
142
323765
3056
當訊息傳給他們, 有些人也會給這個頁面點讚,
05:26
and they had smart friends,
143
326821
1189
而他們又有聰明的朋友,
05:28
and so it spread to them,
144
328010
807
05:28
and so it propagated through the network
145
328817
1973
訊息接著傳出去,
這樣一來,就在網路上傳開了,
05:30
to a host of smart people,
146
330790
2569
傳給一群聰明的人,
05:33
so that by the end, the action
147
333359
2056
如此,到最後
05:35
of liking the curly fries page
148
335415
2544
給炸馬鈴薯圈頁面點讚的行為
05:37
is indicative of high intelligence,
149
337959
1615
就成了高智商的指標,
05:39
not because of the content,
150
339574
1803
並不是因為頁面的內容,
05:41
but because the actual action of liking
151
341377
2522
而是因為點讚的這一行為
05:43
reflects back the common attributes
152
343899
1900
反映了做這件事情的人的
05:45
of other people who have done it.
153
345799
2468
共同特性。
05:48
So this is pretty complicated stuff, right?
154
348267
2897
所以這還是挺複雜的,是吧?
05:51
It's a hard thing to sit down and explain
155
351164
2199
要坐下來跟普通用戶解釋是困難的,
05:53
to an average user, and even if you do,
156
353363
2848
而且即使我們分析了,
05:56
what can the average user do about it?
157
356211
2188
對普通用戶們又有什麼用呢?
05:58
How do you know that you've liked something
158
358399
2048
你們怎麼知道到某個粉絲頁按讚
06:00
that indicates a trait for you
159
360447
1492
能夠反映出你的特性,
06:01
that's totally irrelevant to the content of what you've liked?
160
361939
3545
而這特性又和你按讚的內容 完全無關呢?
06:05
There's a lot of power that users don't have
161
365484
2546
很多的權力用戶都沒有,
06:08
to control how this data is used.
162
368030
2230
他們沒法控制這些數據的使用。
06:10
And I see that as a real problem going forward.
163
370260
3112
我認為這是我們繼續發展 所面臨的真正困難。
06:13
So I think there's a couple paths
164
373372
1977
所以我想到了幾條途徑
06:15
that we want to look at
165
375349
1001
我們可以參考,
06:16
if we want to give users some control
166
376350
1910
看能不能給用戶一些
06:18
over how this data is used,
167
378260
1740
控制這些數據的方法。
06:20
because it's not always going to be used
168
380000
1940
因為這些數據並不總是
06:21
for their benefit.
169
381940
1381
能替用戶帶來益處。
06:23
An example I often give is that,
170
383321
1422
我常舉例說,
06:24
if I ever get bored being a professor,
171
384743
1646
如果我厭倦當教授,
06:26
I'm going to go start a company
172
386389
1653
我要開個公司
06:28
that predicts all of these attributes
173
388042
1454
去推斷所有這些用戶特性,
06:29
and things like how well you work in teams
174
389496
1602
像是你的團隊合作、
06:31
and if you're a drug user, if you're an alcoholic.
175
391098
2671
嗑不嗑藥、是不是酒鬼。
06:33
We know how to predict all that.
176
393769
1440
我們知道如何去推斷這些訊息。
06:35
And I'm going to sell reports
177
395209
1761
接著我就要把這些報告
06:36
to H.R. companies and big businesses
178
396970
2100
賣給人力資源公司或者大企業
06:39
that want to hire you.
179
399070
2273
就是那些將要雇你的人。
06:41
We totally can do that now.
180
401343
1177
我們現在完全可以做到這些。
06:42
I could start that business tomorrow,
181
402520
1788
我明天就可以開始做,
06:44
and you would have absolutely no control
182
404308
2052
而且你完全沒法控制
06:46
over me using your data like that.
183
406360
2138
我這樣使用數據的行為。
06:48
That seems to me to be a problem.
184
408498
2292
這在我看來是一個問題。
06:50
So one of the paths we can go down
185
410790
1910
所以我們能選擇的 其中一條途徑就是
06:52
is the policy and law path.
186
412700
2032
政策和法律的制定。
06:54
And in some respects, I think that that would be most effective,
187
414732
3046
在某種程度上, 我認為這將是最有效的方法,
06:57
but the problem is we'd actually have to do it.
188
417778
2756
但問題是我們必須得實際執行。
07:00
Observing our political process in action
189
420534
2780
透過觀察我們的政治進程,
07:03
makes me think it's highly unlikely
190
423314
2379
讓我意識到我們很難
07:05
that we're going to get a bunch of representatives
191
425693
1597
集合一群代表,
07:07
to sit down, learn about this,
192
427290
1986
讓他們坐下來了解這件事,
07:09
and then enact sweeping changes
193
429276
2106
然後開始進行大規模改變,
07:11
to intellectual property law in the U.S.
194
431382
2157
修改美國的知識產權法律
07:13
so users control their data.
195
433539
2461
以讓用戶有權控制他們的數據。
07:16
We could go the policy route,
196
436000
1304
我們可以走政策道路,
07:17
where social media companies say,
197
437304
1479
讓社群公司表態,
07:18
you know what? You own your data.
198
438783
1402
「好,你們擁有自己的數據。
07:20
You have total control over how it's used.
199
440185
2489
你們能完全地控制對它們的使用。」
07:22
The problem is that the revenue models
200
442674
1848
問題在於
多數社交媒體的收益模式
07:24
for most social media companies
201
444522
1724
07:26
rely on sharing or exploiting users' data in some way.
202
446246
4031
某種程度上仰賴 分享或利用用戶的數據。
07:30
It's sometimes said of Facebook that the users
203
450277
1833
有人說臉書的用戶
07:32
aren't the customer, they're the product.
204
452110
2528
不是顧客,而是產品。
07:34
And so how do you get a company
205
454638
2714
所以你怎麼可能讓一間公司
07:37
to cede control of their main asset
206
457352
2558
放棄對他們主要收入的控制
07:39
back to the users?
207
459910
1249
把控制權還給用戶呢?
07:41
It's possible, but I don't think it's something
208
461159
1701
這是有可能的,但我不認為
07:42
that we're going to see change quickly.
209
462860
2320
我們能很快看到這一改變。
07:45
So I think the other path
210
465180
1500
所以我認為另外一條途徑
07:46
that we can go down that's going to be more effective
211
466680
2288
一條更有效的途徑,
07:48
is one of more science.
212
468968
1508
是更科學的途徑。
07:50
It's doing science that allowed us to develop
213
470476
2510
正是透過科學,我們才能開發
07:52
all these mechanisms for computing
214
472986
1750
所有的這些機制首先用於計算個人數據
07:54
this personal data in the first place.
215
474736
2052
07:56
And it's actually very similar research
216
476788
2106
事實上,有個很類似的研究,
07:58
that we'd have to do
217
478894
1438
08:00
if we want to develop mechanisms
218
480332
2386
如果我們要發明一些機制
08:02
that can say to a user,
219
482718
1421
是可以對用戶說
08:04
"Here's the risk of that action you just took."
220
484139
2229
「這是你剛才所做的行為 要面臨的風險。」
08:06
By liking that Facebook page,
221
486368
2080
藉由臉書按讚,
08:08
or by sharing this piece of personal information,
222
488448
2535
或者是分享私人資訊,
08:10
you've now improved my ability
223
490983
1502
你現在給了我更多能力
08:12
to predict whether or not you're using drugs
224
492485
2086
去推斷你是否嗑藥
08:14
or whether or not you get along well in the workplace.
225
494571
2862
或者你是否和同事相處融洽。
08:17
And that, I think, can affect whether or not
226
497433
1848
我認為這些會影響
08:19
people want to share something,
227
499281
1510
人們是否願意分享事情、
08:20
keep it private, or just keep it offline altogether.
228
500791
3239
還是設為隱私,或者是完全不放上網絡。
08:24
We can also look at things like
229
504030
1563
我們還可以研究一些像是
08:25
allowing people to encrypt data that they upload,
230
505593
2728
讓用戶可以加密他們上傳的數據,
08:28
so it's kind of invisible and worthless
231
508321
1855
所以對像是臉書的網站, 這是隱形而且無用的,
08:30
to sites like Facebook
232
510176
1431
08:31
or third party services that access it,
233
511607
2629
或者是第三方服務網站也是如此。
08:34
but that select users who the person who posted it
234
514236
3247
但是用戶可選擇上傳的東西
08:37
want to see it have access to see it.
235
517483
2670
要讓誰有權可以看到。
08:40
This is all super exciting research
236
520153
2166
如果我們從知識的角度去看,
08:42
from an intellectual perspective,
237
522319
1620
這些都是非常令人興奮的研究,
08:43
and so scientists are going to be willing to do it.
238
523939
1859
所以說科學家會願意做相關的研究。
08:45
So that gives us an advantage over the law side.
239
525798
3610
這比起法律的途徑, 給了我們更多的好處。
08:49
One of the problems that people bring up
240
529408
1725
當我談到這個的時候,
08:51
when I talk about this is, they say,
241
531133
1595
人們常會提出一個疑問,
08:52
you know, if people start keeping all this data private,
242
532728
2646
你知道,如果人們開始把這些數據都保密了,
08:55
all those methods that you've been developing
243
535374
2113
你們一直在開發的這些
08:57
to predict their traits are going to fail.
244
537487
2653
用來推斷他們特性的方法都將失效,
09:00
And I say, absolutely, and for me, that's success,
245
540140
3520
我回答說,完全正確,
但對我來說,那就是成功。
09:03
because as a scientist,
246
543660
1786
因為身為一名科學家,
09:05
my goal is not to infer information about users,
247
545446
3688
我的目標不是要推斷用戶的資訊,
09:09
it's to improve the way people interact online.
248
549134
2767
而是要改進人們在網路互動的方式。
09:11
And sometimes that involves inferring things about them,
249
551901
3218
有時候這包括推斷關於他們的事情,
09:15
but if users don't want me to use that data,
250
555119
3022
但如果用戶不想要我使用這些數據,
09:18
I think they should have the right to do that.
251
558141
2038
我認為他們有權利這麼做。
09:20
I want users to be informed and consenting
252
560179
2651
我希望用戶們可以知道且同意
09:22
users of the tools that we develop.
253
562830
2112
我們一直開發這些工具。
09:24
And so I think encouraging this kind of science
254
564942
2952
所以,我認為推廣這類科學、
09:27
and supporting researchers
255
567894
1346
支持研究者,
09:29
who want to cede some of that control back to users
256
569240
3023
支持那些希望把控制權 交回到用戶手中,
09:32
and away from the social media companies
257
572263
2311
從社群媒體公司 拿回這些權利的研究者,
09:34
means that going forward, as these tools evolve
258
574574
2671
意味著隨著這些工具進化和發展, 我們是向前發展的。
09:37
and advance,
259
577245
1476
09:38
means that we're going to have an educated
260
578721
1414
我們將有一組教育程度更高、 更有力的用戶數據,
09:40
and empowered user base,
261
580135
1694
09:41
and I think all of us can agree
262
581829
1100
我相信大家都會認同
09:42
that that's a pretty ideal way to go forward.
263
582929
2564
朝此理想的發展方式前進。
09:45
Thank you.
264
585493
2184
謝謝。
09:47
(Applause)
265
587677
3080
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7