Jennifer Golbeck: The curly fry conundrum: Why social media "likes" say more than you might think
376,892 views ・ 2014-04-03
请双击下面的英文字幕来播放视频。
翻译人员: Li Li
校对人员: 杏儀 歐陽
00:12
If you remember that first decade of the web,
0
12738
1997
如果你还记得网络时代的头十年,
00:14
it was really a static place.
1
14735
2255
网络是一个水尽鹅飞的地方。
00:16
You could go online, you could look at pages,
2
16990
2245
你可以上网,你可以浏览网页,
00:19
and they were put up either by organizations
3
19235
2513
当时的网站
00:21
who had teams to do it
4
21748
1521
要么是由某个组织的专门团队建立,
00:23
or by individuals who were really tech-savvy
5
23269
2229
要么就是由真正的技术行家所做,
00:25
for the time.
6
25498
1737
这就是当时情况。
00:27
And with the rise of social media
7
27235
1575
但在二十一世纪初
00:28
and social networks in the early 2000s,
8
28810
2399
随着社交媒体以及社交网络的兴起,
00:31
the web was completely changed
9
31209
2149
网络发生了翻天覆地的变化:
00:33
to a place where now the vast majority of content
10
33358
3608
如今网络上大部分的互动内容
00:36
we interact with is put up by average users,
11
36966
3312
都是由大众网络用户提供,
00:40
either in YouTube videos or blog posts
12
40278
2697
既有Youtube视频,也有博客文章,
00:42
or product reviews or social media postings.
13
42975
3315
既有产品评论,也有社交媒体发布。
00:46
And it's also become a much more interactive place,
14
46290
2347
与此同时,互联网成为了一个有更多互动的地方,
00:48
where people are interacting with others,
15
48637
2637
人们在这里互相交流、
00:51
they're commenting, they're sharing,
16
51274
1696
互相评论、互相分享,
00:52
they're not just reading.
17
52970
1614
而不只是阅读信息。
00:54
So Facebook is not the only place you can do this,
18
54584
1866
面谱网不是唯一一个你可以做这些事情的地方,
00:56
but it's the biggest,
19
56450
1098
但它确实是最大的一个,
00:57
and it serves to illustrate the numbers.
20
57548
1784
并且它用数字来证明这点。
00:59
Facebook has 1.2 billion users per month.
21
59332
3477
面谱网每个月有12亿用户。
01:02
So half the Earth's Internet population
22
62809
1930
由此可见,地球上一半的互联网用户
01:04
is using Facebook.
23
64739
1653
都在使用面谱网。
01:06
They are a site, along with others,
24
66392
1932
这些都是网站,
01:08
that has allowed people to create an online persona
25
68324
3219
允许人们在网上创建不同的角色,
01:11
with very little technical skill,
26
71543
1782
但这些人又不需要有多少计算机技能,
01:13
and people responded by putting huge amounts
27
73325
2476
而人们的反应是
01:15
of personal data online.
28
75801
1983
在网上输入大量的个人信息。
01:17
So the result is that we have behavioral,
29
77784
2543
结果是,我们拥有数以亿计人的
01:20
preference, demographic data
30
80327
1986
行为信息、喜好信息
01:22
for hundreds of millions of people,
31
82313
2101
以及人口数据资料。
01:24
which is unprecedented in history.
32
84414
2026
这在历史上前所未有。
01:26
And as a computer scientist,
what this means is that
33
86440
2560
对于作为计算机科学家的我来说,这意味着
01:29
I've been able to build models
34
89000
1664
我能够建立模型
01:30
that can predict all sorts of hidden attributes
35
90664
2322
来预测各种各样的
01:32
for all of you that you don't even know
36
92986
2284
你或许完全没有意识到的
01:35
you're sharing information about.
37
95270
2202
与你所分享的信息相关的隐藏信息。
01:37
As scientists, we use that to help
38
97472
2382
作为科学家,我们利用这些信息
01:39
the way people interact online,
39
99854
2114
来帮助人们在网上交流。
01:41
but there's less altruistic applications,
40
101968
2499
但也有人用此来谋取自己的私欲,
01:44
and there's a problem in that users don't really
41
104467
2381
而问题是,用户并没有真正理解
01:46
understand these techniques and how they work,
42
106848
2470
其中用到的技术和技术的应用方式。
01:49
and even if they did, they don't
have a lot of control over it.
43
109318
3128
即便理解了,也不见得他们有话事权。
01:52
So what I want to talk to you about today
44
112446
1490
所以,我今天想谈谈
01:53
is some of these things that we're able to do,
45
113936
2702
我们能够做的一些事情,
01:56
and then give us some ideas
of how we might go forward
46
116638
2763
也启发我们
01:59
to move some control back into the hands of users.
47
119401
2769
如何改善情况、让话事权回归用户。
02:02
So this is Target, the company.
48
122170
1586
这是塔吉特百货公司的商标。
02:03
I didn't just put that logo
49
123756
1324
我并不单单把那个商标
02:05
on this poor, pregnant woman's belly.
50
125080
2170
放在这个可怜的孕妇的肚子上。
02:07
You may have seen this anecdote that was printed
51
127250
1840
或许在福布斯杂志上
02:09
in Forbes magazine where Target
52
129090
2061
你看过这么一则趣事:
02:11
sent a flyer to this 15-year-old girl
53
131151
2361
塔吉特百货公司给这个15岁女孩寄了一份传单,
02:13
with advertisements and coupons
54
133512
1710
传单上都是婴儿奶瓶、尿布、
02:15
for baby bottles and diapers and cribs
55
135222
2554
婴儿床的广告和优惠券。
02:17
two weeks before she told her parents
56
137776
1684
这一切发生在
02:19
that she was pregnant.
57
139460
1864
她把怀孕消息告诉父母的两周前。
02:21
Yeah, the dad was really upset.
58
141324
2704
没错,女孩的父亲很生气。
02:24
He said, "How did Target figure out
59
144028
1716
他说:”塔吉特是如何
02:25
that this high school girl was pregnant
60
145744
1824
在连这个高中女生的父母都尚未知情之前
02:27
before she told her parents?"
61
147568
1960
就知道她怀孕了?“
02:29
It turns out that they have the purchase history
62
149528
2621
原来,塔吉特有成千上万的顾客,
02:32
for hundreds of thousands of customers
63
152149
2301
并拥有他们的购买历史记录,
02:34
and they compute what they
call a pregnancy score,
64
154450
2730
他们用计算机推算出他们所谓的“怀孕分数”,
02:37
which is not just whether or
not a woman's pregnant,
65
157180
2332
不仅能知道一个女性是否怀孕,
02:39
but what her due date is.
66
159512
1730
而且还能计算出她的分娩日期。
02:41
And they compute that
67
161242
1304
他们计算出的结果
02:42
not by looking at the obvious things,
68
162546
1768
不单单是基于一些显而易见的事情,
02:44
like, she's buying a crib or baby clothes,
69
164314
2512
比如说,她准备买个婴儿床或孩子的衣服,
02:46
but things like, she bought more vitamins
70
166826
2943
更是基于其他一些事情,
02:49
than she normally had,
71
169769
1717
例如她比平时多买了维他命,
02:51
or she bought a handbag
72
171486
1464
或她买了一个新的手提包
02:52
that's big enough to hold diapers.
73
172950
1711
大得可以放尿布。
02:54
And by themselves, those purchases don't seem
74
174661
1910
单独来看这些消费记录
02:56
like they might reveal a lot,
75
176571
2469
或许并不能说明什么,
02:59
but it's a pattern of behavior that,
76
179040
1978
但这确是一种行为模式,
03:01
when you take it in the context
of thousands of other people,
77
181018
3117
当你有大量人口背景作比较,
03:04
starts to actually reveal some insights.
78
184135
2757
这种行为模式就开始透露一些见解。
03:06
So that's the kind of thing that we do
79
186892
1793
当我们根据社交媒体来预测关于你的一些事情时,
03:08
when we're predicting stuff
about you on social media.
80
188685
2567
这便是我们常做的一类事情。
03:11
We're looking for little
patterns of behavior that,
81
191252
2796
我们着眼于零星的行为模式,
03:14
when you detect them among millions of people,
82
194048
2682
当你在众人中发现这些行为模式时,
03:16
lets us find out all kinds of things.
83
196730
2706
会帮助我们发现各种各样的事情。
03:19
So in my lab and with colleagues,
84
199436
1747
在我的实验室,在同事们的合作下,
03:21
we've developed mechanisms where we can
85
201183
1777
我们已经开发了一些机制
03:22
quite accurately predict things
86
202960
1560
来较为准确地推测一些事情,
03:24
like your political preference,
87
204520
1725
比如你的政治立场、
03:26
your personality score, gender, sexual orientation,
88
206245
3752
你的性格得分、性别、性取向、
03:29
religion, age, intelligence,
89
209997
2873
宗教信仰、年龄、智商,
03:32
along with things like
90
212870
1394
另外还有:
03:34
how much you trust the people you know
91
214264
1937
你对认识的人的信任程度、
03:36
and how strong those relationships are.
92
216201
1804
你的人际关系程度。
03:38
We can do all of this really well.
93
218005
1785
我们能够很好地完成这些推测。
03:39
And again, it doesn't come from what you might
94
219790
2197
我在这里在强调一遍,这种推测并基于
03:41
think of as obvious information.
95
221987
2102
在你看来显而易见的信息。
03:44
So my favorite example is from this study
96
224089
2281
我最喜欢的例子是来自
03:46
that was published this year
97
226370
1240
今年发表在
03:47
in the Proceedings of the National Academies.
98
227610
1795
美国国家论文集上的一个研究。
03:49
If you Google this, you'll find it.
99
229405
1285
你可以在谷歌搜索找到这篇文章。
03:50
It's four pages, easy to read.
100
230690
1872
这篇文章总共四页,容易阅读。
03:52
And they looked at just people's Facebook likes,
101
232562
3003
他们仅仅研究了人们在面谱网上的“赞”,
03:55
so just the things you like on Facebook,
102
235565
1920
也就是你在面谱网上喜欢的事情。
03:57
and used that to predict all these attributes,
103
237485
2138
他们利用这些数据来预测
03:59
along with some other ones.
104
239623
1645
之前所说的所有特性,还有其他的一些特性。
04:01
And in their paper they listed the five likes
105
241268
2961
在文章中列举了
04:04
that were most indicative of high intelligence.
106
244229
2787
最能够显示高智商的五个“赞”。
04:07
And among those was liking a page
107
247016
2324
在这五项中
04:09
for curly fries. (Laughter)
108
249340
1905
赞“炸扭薯”页面的是其中之一
04:11
Curly fries are delicious,
109
251245
2093
炸扭薯很好吃,
04:13
but liking them does not necessarily mean
110
253338
2530
但喜欢吃炸扭薯
04:15
that you're smarter than the average person.
111
255868
2080
并不一定意味着你比一般人聪明。
04:17
So how is it that one of the strongest indicators
112
257948
3207
那么为什么喜欢某个页面
04:21
of your intelligence
113
261155
1570
就成为显示你智商
04:22
is liking this page
114
262725
1447
的重要因素,
04:24
when the content is totally irrelevant
115
264172
2252
尽管该页面的内容和所预测的属性
04:26
to the attribute that's being predicted?
116
266424
2527
与此毫不相干?
04:28
And it turns out that we have to look at
117
268951
1584
事实是我们必须审视
04:30
a whole bunch of underlying theories
118
270535
1618
大量的基础理论,
04:32
to see why we're able to do this.
119
272153
2569
从而了解我们是如何做到准确推测的。
04:34
One of them is a sociological
theory called homophily,
120
274722
2913
其中一个基础理论是社会学的同质性理论,
04:37
which basically says people are
friends with people like them.
121
277635
3092
主要意思是人们和自己相似的人交朋友。
04:40
So if you're smart, you tend to
be friends with smart people,
122
280727
2014
所以说,如果你很聪明,你倾向于和聪明的人交朋友。
04:42
and if you're young, you tend
to be friends with young people,
123
282741
2630
如果你还年轻,你倾向于和年轻人交朋友。
04:45
and this is well established
124
285371
1627
这是数百年来
04:46
for hundreds of years.
125
286998
1745
公认的理论。
04:48
We also know a lot
126
288743
1232
我们很清楚
04:49
about how information spreads through networks.
127
289975
2550
信息在网络上传播的传播途径。
04:52
It turns out things like viral videos
128
292525
1754
结果是,流行的视频、
04:54
or Facebook likes or other information
129
294279
2406
脸书上得到很多“赞”的内容、
04:56
spreads in exactly the same way
130
296685
1888
或者其他信息的传播,
04:58
that diseases spread through social networks.
131
298573
2454
同疾病在社交网络中蔓延的方式是相同的。
05:01
So this is something we've studied for a long time.
132
301027
1791
我们在这方面已经研究很久了。
05:02
We have good models of it.
133
302818
1576
我们己经建立了很好的模型。
05:04
And so you can put those things together
134
304394
2157
你能够将所有这些事物放在一起,
05:06
and start seeing why things like this happen.
135
306551
3088
看看为什么这样的事情会发生。
05:09
So if I were to give you a hypothesis,
136
309639
1814
如果要我给你一个假说的话,
05:11
it would be that a smart guy started this page,
137
311453
3227
我会猜测一个聪明的人建立了这个页面,
05:14
or maybe one of the first people who liked it
138
314680
1939
或者第一个喜欢这个页面的人
05:16
would have scored high on that test.
139
316619
1736
拥有挺高的智商得分。
05:18
And they liked it, and their friends saw it,
140
318355
2288
他们喜欢了这个页面,然后他们的朋友看到了,
05:20
and by homophily, we know that
he probably had smart friends,
141
320643
3122
根据同质性理论,我们知道这些人可能有聪明的朋友,
05:23
and so it spread to them,
and some of them liked it,
142
323765
3056
然后他们看到这类信息,他们中的一部分人也喜欢,
05:26
and they had smart friends,
143
326821
1189
他们也有聪明的朋友,
05:28
and so it spread to them,
144
328010
807
05:28
and so it propagated through the network
145
328817
1973
所以这类信息也传到其他朋友那里,
所以信息就在网络上
05:30
to a host of smart people,
146
330790
2569
在聪明人的圈子里流传开来了,
05:33
so that by the end, the action
147
333359
2056
因此到了最后,
05:35
of liking the curly fries page
148
335415
2544
喜欢炸扭薯的这个页面
05:37
is indicative of high intelligence,
149
337959
1615
就成了高智商的象征,
05:39
not because of the content,
150
339574
1803
而不是因为内容本身,
05:41
but because the actual action of liking
151
341377
2522
而是“喜欢”这一个实际行动
05:43
reflects back the common attributes
152
343899
1900
反映了那些也付诸同样行动的人
05:45
of other people who have done it.
153
345799
2468
的相同特征。
05:48
So this is pretty complicated stuff, right?
154
348267
2897
听起来很复杂,对吧?
05:51
It's a hard thing to sit down and explain
155
351164
2199
对于一般用户来说
05:53
to an average user, and even if you do,
156
353363
2848
它比较难解释清楚,就算你解释清楚了,
05:56
what can the average user do about it?
157
356211
2188
一般用户又能利用它来干嘛呢?
05:58
How do you know that
you've liked something
158
358399
2048
你又怎么能知道你喜欢的事情
06:00
that indicates a trait for you
159
360447
1492
反映了你什么特征
06:01
that's totally irrelevant to the
content of what you've liked?
160
361939
3545
而且这个特征还和你喜欢的内容毫不相干呢?
06:05
There's a lot of power that users don't have
161
365484
2546
用户其实没有太多的能力
06:08
to control how this data is used.
162
368030
2230
去控制这些数据的使用。
06:10
And I see that as a real
problem going forward.
163
370260
3112
我把这个看作将来的真实问题,
06:13
So I think there's a couple paths
164
373372
1977
我认为,要是我们想让用户拥有
06:15
that we want to look at
165
375349
1001
使用这些数据的能力,
06:16
if we want to give users some control
166
376350
1910
那么有几条路径
06:18
over how this data is used,
167
378260
1740
我们需要探究,
06:20
because it's not always going to be used
168
380000
1940
因为这些数据并不总是
06:21
for their benefit.
169
381940
1381
用来为他们谋利益。
06:23
An example I often give is that,
170
383321
1422
这有一个我经常举的例子,
06:24
if I ever get bored being a professor,
171
384743
1646
如果我厌倦了当一名教授,
06:26
I'm going to go start a company
172
386389
1653
我会选择自己开家公司
06:28
that predicts all of these attributes
173
388042
1454
这家公司能预测这些特性和事物
06:29
and things like how well you work in teams
174
389496
1602
例如你在团队里的能力
06:31
and if you're a drug user, if you're an alcoholic.
175
391098
2671
例如你是否是一个吸毒者或酗酒者。
06:33
We know how to predict all that.
176
393769
1440
我们知道如何去预测这些特性。
06:35
And I'm going to sell reports
177
395209
1761
然后我就会把这些报告
06:36
to H.R. companies and big businesses
178
396970
2100
卖给那些人力资源公司
06:39
that want to hire you.
179
399070
2273
和想要雇佣你的大公司。
06:41
We totally can do that now.
180
401343
1177
我们完全可以做到这点。
06:42
I could start that business tomorrow,
181
402520
1788
我明天就能开始这个项目,
06:44
and you would have
absolutely no control
182
404308
2052
并且你对我这用使用你的数据
06:46
over me using your data like that.
183
406360
2138
是一点办法也没有的。
06:48
That seems to me to be a problem.
184
408498
2292
这对我来说是一个问题。
06:50
So one of the paths we can go down
185
410790
1910
所以我们可选的其中一条路径
06:52
is the policy and law path.
186
412700
2032
是政策和法律这条途径。
06:54
And in some respects, I think
that that would be most effective,
187
414732
3046
某程度上我觉得这可能是最有效的
06:57
but the problem is we'd
actually have to do it.
188
417778
2756
但问题是,事实上我们将不得不这么做。
07:00
Observing our political process in action
189
420534
2780
观察我们目前的政治进程
07:03
makes me think it's highly unlikely
190
423314
2379
让我觉得在美国
07:05
that we're going to get a bunch of representatives
191
425693
1597
把一帮代表们聚在一起
07:07
to sit down, learn about this,
192
427290
1986
让他们坐下来理解这个问题,
07:09
and then enact sweeping changes
193
429276
2106
然后颁布有关知识产权法方面的颠覆性条例,
07:11
to intellectual property law in the U.S.
194
431382
2157
让用户掌控自己的数据,
07:13
so users control their data.
195
433539
2461
这似乎是不可能的。
07:16
We could go the policy route,
196
436000
1304
我们可以走政策途径,
07:17
where social media companies say,
197
437304
1479
这样社交媒体公司就会告诉你,
07:18
you know what? You own your data.
198
438783
1402
你知道吗?你的确拥有你的数据。
07:20
You have total control over how it's used.
199
440185
2489
你绝对能自己决定要怎么去用。
07:22
The problem is that the revenue models
200
442674
1848
但问题在于大部分的社交媒体公司
07:24
for most social media companies
201
444522
1724
他们的盈利模式
07:26
rely on sharing or exploiting
users' data in some way.
202
446246
4031
在某方面取决于分享或挖掘用户的数据资料。
07:30
It's sometimes said of Facebook that the users
203
450277
1833
所以有时会说面谱网的用户并不是顾客,
07:32
aren't the customer, they're the product.
204
452110
2528
而是产品。
07:34
And so how do you get a company
205
454638
2714
那么你要怎样让一个公司
07:37
to cede control of their main asset
206
457352
2558
将他们的主要资产控制权
07:39
back to the users?
207
459910
1249
双手拱让给用户呢?
07:41
It's possible, but I don't think it's something
208
461159
1701
这是可能的,但我不觉得
07:42
that we're going to see change quickly.
209
462860
2320
我们能很快见证这种改变。
07:45
So I think the other path
210
465180
1500
所以我认为我们得走另一条途径
07:46
that we can go down that's
going to be more effective
211
466680
2288
一条更有效的途径,
07:48
is one of more science.
212
468968
1508
一条更加科学的途径。
07:50
It's doing science that allowed us to develop
213
470476
2510
这途径是开发一种技术
07:52
all these mechanisms for computing
214
472986
1750
让我们能够发展所有这些机制
07:54
this personal data in the first place.
215
474736
2052
来首先处理自己的个人信息资料。
07:56
And it's actually very similar research
216
476788
2106
而这很接近
07:58
that we'd have to do
217
478894
1438
我们必须做的研究,
08:00
if we want to develop mechanisms
218
480332
2386
要是我们想要发展这些机制
08:02
that can say to a user,
219
482718
1421
跟用户说明,
08:04
"Here's the risk of that action you just took."
220
484139
2229
“这样做你需要承担那样的风险。”
08:06
By liking that Facebook page,
221
486368
2080
你在面谱网上点“赞”
08:08
or by sharing this piece of personal information,
222
488448
2535
或者分享一些私人信息,
08:10
you've now improved my ability
223
490983
1502
就相当于增强了我的能力
08:12
to predict whether or not you're using drugs
224
492485
2086
去预测你是不是在吸毒
08:14
or whether or not you get
along well in the workplace.
225
494571
2862
或者你在工作中是否顺利。
08:17
And that, I think, can affect whether or not
226
497433
1848
我觉得,这样做
08:19
people want to share something,
227
499281
1510
能够影响人们分享的决定:
08:20
keep it private, or just keep it offline altogether.
228
500791
3239
是要保持私隐,还是在网上只字不提。
08:24
We can also look at things like
229
504030
1563
我们也可以探究一些别的,例如
08:25
allowing people to encrypt data that they upload,
230
505593
2728
让人们去给上传的东西加密,
08:28
so it's kind of invisible and worthless
231
508321
1855
那么像面谱网这样的网站
08:30
to sites like Facebook
232
510176
1431
或其他能获取信息的第三方来说
08:31
or third party services that access it,
233
511607
2629
这些信息就隐秘很多,也少了很多意义,
08:34
but that select users who the person who posted it
234
514236
3247
而且只有上传人指定的用户
08:37
want to see it have access to see it.
235
517483
2670
才有浏览的权限。
08:40
This is all super exciting research
236
520153
2166
从智能的角度来看,
08:42
from an intellectual perspective,
237
522319
1620
这是一个非常振奋人心的研究,
08:43
and so scientists are going to be willing to do it.
238
523939
1859
而且科学家们也会乐意去做这样的事。
08:45
So that gives us an advantage over the law side.
239
525798
3610
这样在法律方面,我们就有优势了。
08:49
One of the problems that people bring up
240
529408
1725
当我谈论到这个话题时,
08:51
when I talk about this is, they say,
241
531133
1595
人们提到的其中一个问题,就是
08:52
you know, if people start
keeping all this data private,
242
532728
2646
如果当人们开始把这些数据进行保密,
08:55
all those methods that you've been developing
243
535374
2113
那些你研发的用来预测
08:57
to predict their traits are going to fail.
244
537487
2653
人们特性的手段都会作废。
09:00
And I say, absolutely, and for me, that's success,
245
540140
3520
我会说,绝对会作废,但对我来说,这是成功,
09:03
because as a scientist,
246
543660
1786
因为作为一个科学家,
09:05
my goal is not to infer information about users,
247
545446
3688
我的目标不是去推测出用户的信息,
09:09
it's to improve the way people interact online.
248
549134
2767
而是提高人们在网上互动的方式。
09:11
And sometimes that involves
inferring things about them,
249
551901
3218
虽然有时涉及到推测用户的资料,
09:15
but if users don't want me to use that data,
250
555119
3022
但如果用户不希望我们用他们的数据,
09:18
I think they should have the right to do that.
251
558141
2038
我觉得他们应该有权去拒绝。
09:20
I want users to be informed and consenting
252
560179
2651
我希望用户能被告知
09:22
users of the tools that we develop.
253
562830
2112
并且赞同我们开发的这种工具。
09:24
And so I think encouraging this kind of science
254
564942
2952
所以我认为,鼓励这类科学,
09:27
and supporting researchers
255
567894
1346
支持这些研究者们
09:29
who want to cede some of that control back to users
256
569240
3023
这些愿意放弃部分控制,退还给用户们,
09:32
and away from the social media companies
257
572263
2311
并且不让社交媒体公司接触数据的研究者们
09:34
means that going forward, as these tools evolve
258
574574
2671
随着这些工具的进化和提高
09:37
and advance,
259
577245
1476
这一切意味着向前的发展,
09:38
means that we're going to have an educated
260
578721
1414
意味着我们将会拥有一个
09:40
and empowered user base,
261
580135
1694
有素质有权力的用户基础,
09:41
and I think all of us can agree
262
581829
1100
我觉得我们都会同意
09:42
that that's a pretty ideal way to go forward.
263
582929
2564
这是一个理想的前进目标。
09:45
Thank you.
264
585493
2184
谢谢。
09:47
(Applause)
265
587677
3080
(掌声)
New videos
Original video on YouTube.com
关于本网站
这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。