A headset that reads your brainwaves | Tan Le

377,362 views ・ 2010-07-22

TED


Please double-click on the English subtitles below to play the video.

Prevodilac: Žarko Milićević Lektor: Sandra Gojic
00:16
Up until now, our communication with machines
0
16260
2000
Sve do nedavno, komunikacija sa mašinama
00:18
has always been limited
1
18260
2000
je bila ograničena
00:20
to conscious and direct forms.
2
20260
2000
na namerne i direktne postupke.
00:22
Whether it's something simple
3
22260
2000
Svejedno da li je u pitanju nešto jednostavno,
00:24
like turning on the lights with a switch,
4
24260
2000
recimo, paljenje svetla prekidačem,
00:26
or even as complex as programming robotics,
5
26260
3000
ili složeno, poput programiranja robota,
00:29
we have always had to give a command to a machine,
6
29260
3000
mašini smo uvek morali zadati naredbu,
00:32
or even a series of commands,
7
32260
2000
ili, čak, niz naredbi,
00:34
in order for it to do something for us.
8
34260
3000
kako bi ona tad nešto izvršila.
00:37
Communication between people, on the other hand,
9
37260
2000
Komunikacija između ljudi
00:39
is far more complex and a lot more interesting
10
39260
3000
je daleko složenija i zanimljivija
00:42
because we take into account
11
42260
2000
jer obuhvata mnogo više
00:44
so much more than what is explicitly expressed.
12
44260
3000
od onoga što se iskazuje rečima.
00:47
We observe facial expressions, body language,
13
47260
3000
Bitan je izraz lica, govor tela,
00:50
and we can intuit feelings and emotions
14
50260
2000
jer neposredno opažamo osećanja sagovornika
00:52
from our dialogue with one another.
15
52260
3000
iz samog dijaloga ali i ponašanja.
00:55
This actually forms a large part
16
55260
2000
To je jako veliki deo
00:57
of our decision-making process.
17
57260
2000
procesa donošenja odluka.
00:59
Our vision is to introduce
18
59260
2000
Naš cilj je da uvedemo
01:01
this whole new realm of human interaction
19
61260
3000
tu novu dimenziju komunikacije
01:04
into human-computer interaction
20
64260
2000
u interakciju čoveka sa kompjuterom,
01:06
so that computers can understand
21
66260
2000
da omogućimo kompjuteru da razume
01:08
not only what you direct it to do,
22
68260
2000
ne samo šta treba da uradi,
01:10
but it can also respond
23
70260
2000
već da reaguje
01:12
to your facial expressions
24
72260
2000
i na izraze lica
01:14
and emotional experiences.
25
74260
2000
i ispoljavanje emocija.
01:16
And what better way to do this
26
76260
2000
A nema boljeg načina da postignemo cilj
01:18
than by interpreting the signals
27
78260
2000
od tumačenja signala
01:20
naturally produced by our brain,
28
80260
2000
koje i inače emituje čovekov mozak,
01:22
our center for control and experience.
29
82260
3000
centar za kontrolu i opažanje.
01:25
Well, it sounds like a pretty good idea,
30
85260
2000
Jeste, zvuči kao jako lepa ideja,
01:27
but this task, as Bruno mentioned,
31
87260
2000
ali, kao što Bruno reče,
01:29
isn't an easy one for two main reasons:
32
89260
3000
nije je lako ostvariti, iz dva razloga:
01:32
First, the detection algorithms.
33
92260
3000
Prvi su algoritmi za detekciju.
01:35
Our brain is made up of
34
95260
2000
Naš mozak sačinjavaju
01:37
billions of active neurons,
35
97260
2000
milijarde aktivnih neurona,
01:39
around 170,000 km
36
99260
3000
ukupne dužine aksona
01:42
of combined axon length.
37
102260
2000
preko 170.000 km.
01:44
When these neurons interact,
38
104260
2000
Pri radu neurona,
01:46
the chemical reaction emits an electrical impulse,
39
106260
2000
hemijske reakcije u njima prave električne impulse
01:48
which can be measured.
40
108260
2000
koji su merljivi.
01:50
The majority of our functional brain
41
110260
3000
Deo mozga koji vrši nama potrebne funkcije
01:53
is distributed over
42
113260
2000
je raspoređen po
01:55
the outer surface layer of the brain,
43
115260
2000
spoljnoj površini mozga.
01:57
and to increase the area that's available for mental capacity,
44
117260
3000
A radi uvećanja površine te aktivne oblasti
02:00
the brain surface is highly folded.
45
120260
3000
kora mozga je veoma naborana.
02:03
Now this cortical folding
46
123260
2000
Zbog svog tog savijanja i nabiranja
02:05
presents a significant challenge
47
125260
2000
veliki je problem
02:07
for interpreting surface electrical impulses.
48
127260
3000
tačno razabrati električne impulse.
02:10
Each individual's cortex
49
130260
2000
Kora mozga svakog čoveka
02:12
is folded differently,
50
132260
2000
se nabira drugačije, jedinstveno,
02:14
very much like a fingerprint.
51
134260
2000
kao otisci prstiju.
02:16
So even though a signal
52
136260
2000
Mada signali dolaze
02:18
may come from the same functional part of the brain,
53
138260
3000
iz istog moždanog centra,
02:21
by the time the structure has been folded,
54
141260
2000
zbog nabiranja površine mozga
02:23
its physical location
55
143260
2000
lokacije samih centara
02:25
is very different between individuals,
56
145260
2000
vrlo variraju među ljudima,
02:27
even identical twins.
57
147260
3000
čak i kod identičnih blizanaca.
02:30
There is no longer any consistency
58
150260
2000
Tako se gubi poreklo
02:32
in the surface signals.
59
152260
2000
površinskih električnih signala.
02:34
Our breakthrough was to create an algorithm
60
154260
2000
Proboj smo napravili izradom algoritma
02:36
that unfolds the cortex,
61
156260
2000
koji "izravna" površinu velikog mozga,
02:38
so that we can map the signals
62
158260
2000
pa signale sad tačnije mapiramo
02:40
closer to its source,
63
160260
2000
na njihova izvorišta,
02:42
and therefore making it capable of working across a mass population.
64
162260
3000
što nam omogućava masovnu primenu.
02:46
The second challenge
65
166260
2000
Drugi problem je
02:48
is the actual device for observing brainwaves.
66
168260
3000
sam uređaj za hvatanje moždanih talasa.
02:51
EEG measurements typically involve
67
171260
2000
EEG snimci se obično rade
02:53
a hairnet with an array of sensors,
68
173260
3000
sa mrežicom za glavu načičkanom senzorima,
02:56
like the one that you can see here in the photo.
69
176260
3000
kao ova na slici.
02:59
A technician will put the electrodes
70
179260
2000
Tehničar stavlja elektrode
03:01
onto the scalp
71
181260
2000
direktno na površinu glave
03:03
using a conductive gel or paste
72
183260
2000
namazanu provodnim gelom ili namazom,
03:05
and usually after a procedure of preparing the scalp
73
185260
3000
a sve to nakon pripremanja
03:08
by light abrasion.
74
188260
2000
i plitke abrazije kože glave.
03:10
Now this is quite time consuming
75
190260
2000
To sve zahteva dosta vremena
03:12
and isn't the most comfortable process.
76
192260
2000
a nije baš ni prijatno.
03:14
And on top of that, these systems
77
194260
2000
Povrh svega, ovakvi sistemi
03:16
actually cost in the tens of thousands of dollars.
78
196260
3000
koštaju desetihe hiljada dolara.
03:20
So with that, I'd like to invite onstage
79
200260
3000
Sa svim tim na umu, molim vas da pozdravite
03:23
Evan Grant, who is one of last year's speakers,
80
203260
2000
Evana Granta, prošlogodišnjeg govornika,
03:25
who's kindly agreed
81
205260
2000
koji je ljubazno pristao
03:27
to help me to demonstrate
82
207260
2000
da mi pomogne da pokažem
03:29
what we've been able to develop.
83
209260
2000
šta smo napravili.
03:31
(Applause)
84
211260
6000
(Aplauz)
03:37
So the device that you see
85
217260
2000
Uređaj koji vidite je
03:39
is a 14-channel, high-fidelity
86
219260
2000
14-kanalni, vrlo precizni
03:41
EEG acquisition system.
87
221260
2000
EEG snimač.
03:43
It doesn't require any scalp preparation,
88
223260
3000
Ne zahteva prethodnu pripremu glave,
03:46
no conductive gel or paste.
89
226260
2000
nikakav provodni gel.
03:48
It only takes a few minutes to put on
90
228260
3000
Namesti se i kalibriše
03:51
and for the signals to settle.
91
231260
2000
za dva-tri minuta.
03:53
It's also wireless,
92
233260
2000
Takođe je bežičan,
03:55
so it gives you the freedom to move around.
93
235260
3000
i omogućava punu slobodu kretanja.
03:58
And compared to the tens of thousands of dollars
94
238260
3000
Za razliku od dosadašnjih EEG sistema,
04:01
for a traditional EEG system,
95
241260
3000
koji koštaju desetine hiljada dolara,
04:04
this headset only costs
96
244260
2000
ovaj uređaj košta
04:06
a few hundred dollars.
97
246260
2000
nekoliko stotina dolara.
04:08
Now on to the detection algorithms.
98
248260
3000
Nazad na algoritme detekcije.
04:11
So facial expressions --
99
251260
2000
Prepoznavanje izraza lica,
04:13
as I mentioned before in emotional experiences --
100
253260
2000
-- bitno za prepoznavanje emotivnog stanja --
04:15
are actually designed to work out of the box
101
255260
2000
funkcioniše bez prethodnog podešavanja,
04:17
with some sensitivity adjustments
102
257260
2000
a osetljivost se može naknadno
04:19
available for personalization.
103
259260
3000
fino podešavati prema korisniku.
04:22
But with the limited time we have available,
104
262260
2000
Ali, pošto nam je vreme ograničeno,
04:24
I'd like to show you the cognitive suite,
105
264260
2000
prikazaću vam kognitivnu aplikaciju
04:26
which is the ability for you
106
266260
2000
koja daje mogućnost
04:28
to basically move virtual objects with your mind.
107
268260
3000
da umom pomerate virtuelne objekte.
04:32
Now, Evan is new to this system,
108
272260
2000
Evan prvi put koristi sistem,
04:34
so what we have to do first
109
274260
2000
pa prvo moramo
04:36
is create a new profile for him.
110
276260
2000
da mu napravimo lični profil.
04:38
He's obviously not Joanne -- so we'll "add user."
111
278260
3000
Očigledno, on nije "Džoana", dodaću korisnika...
04:41
Evan. Okay.
112
281260
2000
"Evan". OK...
04:43
So the first thing we need to do with the cognitive suite
113
283260
3000
Prvo je nephodno da
04:46
is to start with training
114
286260
2000
kalibrišemo aplikaciju
04:48
a neutral signal.
115
288260
2000
na neutralan signal.
04:50
With neutral, there's nothing in particular
116
290260
2000
Na neutralnom, Evan ne treba da
04:52
that Evan needs to do.
117
292260
2000
radi ništa konkretno.
04:54
He just hangs out. He's relaxed.
118
294260
2000
Treba da je miran i opušten.
04:56
And the idea is to establish a baseline
119
296260
2000
Cilj je da se snimi
04:58
or normal state for his brain,
120
298260
2000
"normalno" stanje njegovog mozga,
05:00
because every brain is different.
121
300260
2000
jer svaki je mozak drugačiji.
05:02
It takes eight seconds to do this,
122
302260
2000
Ovo traje osam sekundi.
05:04
and now that that's done,
123
304260
2000
Sad smo to završili,
05:06
we can choose a movement-based action.
124
306260
2000
možemo da radimo neki pokret.
05:08
So Evan, choose something
125
308260
2000
Evane, izaberi nešto
05:10
that you can visualize clearly in your mind.
126
310260
2000
što možeš jasno da zamisliš.
05:12
Evan Grant: Let's do "pull."
127
312260
2000
Evan Grant: Hajde da "povučemo".
05:14
Tan Le: Okay, so let's choose "pull."
128
314260
2000
Tan Le: Ok, izabrali smo "povlačenje".
05:16
So the idea here now
129
316260
2000
E sad,
05:18
is that Evan needs to
130
318260
2000
Evan bi sada trebalo da
05:20
imagine the object coming forward
131
320260
2000
zamišlja kako povlači objekat
05:22
into the screen,
132
322260
2000
ka ekranu, ka sebi.
05:24
and there's a progress bar that will scroll across the screen
133
324260
3000
Tu je i pokazivač koji će
05:27
while he's doing that.
134
327260
2000
da prati kalibraciju.
05:29
The first time, nothing will happen,
135
329260
2000
Prvi put se neće ništa desiti,
05:31
because the system has no idea how he thinks about "pull."
136
331260
3000
jer sistem ne zna kako Evan misli o "povlačenju".
05:34
But maintain that thought
137
334260
2000
Ali ako zadrži tu misao
05:36
for the entire duration of the eight seconds.
138
336260
2000
svih osam sekundi...
05:38
So: one, two, three, go.
139
338260
3000
Ajmo: jedan, dva, tri, kreni!
05:49
Okay.
140
349260
2000
OK.
05:51
So once we accept this,
141
351260
2000
Nakon što smo uneli komandu,
05:53
the cube is live.
142
353260
2000
kocka može odmah da reaguje.
05:55
So let's see if Evan
143
355260
2000
Hajde da vidimo da li Evan
05:57
can actually try and imagine pulling.
144
357260
3000
može da je povuče.
06:00
Ah, good job!
145
360260
2000
Aaa, odlično!
06:02
(Applause)
146
362260
3000
(aplauz)
06:05
That's really amazing.
147
365260
2000
To je bilo neverovatno.
06:07
(Applause)
148
367260
4000
(tapšu)
06:11
So we have a little bit of time available,
149
371260
2000
Imamo još nešto vremena,
06:13
so I'm going to ask Evan
150
373260
2000
pa ću zamoliti Evana
06:15
to do a really difficult task.
151
375260
2000
da probamo teži zadatak.
06:17
And this one is difficult
152
377260
2000
Ovaj zadatak je teži
06:19
because it's all about being able to visualize something
153
379260
3000
jer treba zamisliti nešto
06:22
that doesn't exist in our physical world.
154
382260
2000
što ne postoji u svakodnevici.
06:24
This is "disappear."
155
384260
2000
To je komanda "nestani".
06:26
So what you want to do -- at least with movement-based actions,
156
386260
2000
Komande vezane za kretanje su lake,
06:28
we do that all the time, so you can visualize it.
157
388260
3000
to radimo i zamišljamo i inače,
06:31
But with "disappear," there's really no analogies --
158
391260
2000
ali za "nestani" nema dobrih analogija.
06:33
so Evan, what you want to do here
159
393260
2000
Dakle, Evane,
06:35
is to imagine the cube slowly fading out, okay.
160
395260
3000
zamisli kocku kako polako nestaje.
06:38
Same sort of drill. So: one, two, three, go.
161
398260
3000
Isti je postupak. Jedan, dva, tri.
06:50
Okay. Let's try that.
162
410260
3000
Ok, sad da probamo.
06:53
Oh, my goodness. He's just too good.
163
413260
3000
O moj bože. Mnogo je dobar.
06:57
Let's try that again.
164
417260
2000
Probaj opet.
07:04
EG: Losing concentration.
165
424260
2000
Evan: Gubim koncentraciju.
07:06
(Laughter)
166
426260
2000
(smeju se)
07:08
TL: But we can see that it actually works,
167
428260
2000
Tan Le: Vidimo da proces počinje,
07:10
even though you can only hold it
168
430260
2000
mada ne možeš dugo da
07:12
for a little bit of time.
169
432260
2000
održiš misao.
07:14
As I said, it's a very difficult process
170
434260
3000
Kažem opet, jako je teško
07:17
to imagine this.
171
437260
2000
zamišljati "nestajanje".
07:19
And the great thing about it is that
172
439260
2000
Ono što je bitno je
07:21
we've only given the software one instance
173
441260
2000
da smo programu samo jednom dali
07:23
of how he thinks about "disappear."
174
443260
3000
kako Evan misli "nestani".
07:26
As there is a machine learning algorithm in this --
175
446260
3000
Program je u stanju da uči --
07:29
(Applause)
176
449260
4000
(aplauz)
07:33
Thank you.
177
453260
2000
Hvala.
07:35
Good job. Good job.
178
455260
3000
Bravo, bravo.
07:38
(Applause)
179
458260
2000
(tapšu)
07:40
Thank you, Evan, you're a wonderful, wonderful
180
460260
3000
Hvala ti, Evane, divno si,
07:43
example of the technology.
181
463260
3000
divno prikazao ovu tehnologiju.
07:46
So, as you can see, before,
182
466260
2000
Kao što vidite,
07:48
there is a leveling system built into this software
183
468260
3000
postoji više nivoa i komandi u progamu,
07:51
so that as Evan, or any user,
184
471260
2000
tako da Evan, i bilo koji drugi korisnik,
07:53
becomes more familiar with the system,
185
473260
2000
kad se privikne na sistem,
07:55
they can continue to add more and more detections,
186
475260
3000
može da dodaje sve više i više obrazaca,
07:58
so that the system begins to differentiate
187
478260
2000
te će sistem biti u stanju da razlikuje
08:00
between different distinct thoughts.
188
480260
3000
više različitih pojedinačnih misli.
08:04
And once you've trained up the detections,
189
484260
2000
A jednom kad se potpuno izvežbate,
08:06
these thoughts can be assigned or mapped
190
486260
2000
te komande se mogu dodeliti ili prebaciti
08:08
to any computing platform,
191
488260
2000
drugim kompjuterskim platformama,
08:10
application or device.
192
490260
2000
programima ili uređajima.
08:12
So I'd like to show you a few examples,
193
492260
2000
Prikazaću vam samo nekoliko primera,
08:14
because there are many possible applications
194
494260
2000
jer ima puno mogućih primena
08:16
for this new interface.
195
496260
2000
za ovaj novi interfejs.
08:19
In games and virtual worlds, for example,
196
499260
2000
U igrama i virtuelnim svetovima,
08:21
your facial expressions
197
501260
2000
vaš izraz lica
08:23
can naturally and intuitively be used
198
503260
2000
se može prirodno i interaktivno koristiti
08:25
to control an avatar or virtual character.
199
505260
3000
da upravljate avatarom ili virtuelnim likom.
08:29
Obviously, you can experience the fantasy of magic
200
509260
2000
Možete iskusiti fantastiku magije
08:31
and control the world with your mind.
201
511260
3000
i kontrolisati svet svojim mislima.
08:36
And also, colors, lighting,
202
516260
3000
Boje, osvetljenje,
08:39
sound and effects
203
519260
2000
zvuk i efekti,
08:41
can dynamically respond to your emotional state
204
521260
2000
sve može dinamički da reaguje na vaše raspoloženje
08:43
to heighten the experience that you're having, in real time.
205
523260
3000
da dodatno pojača doživljaj.
08:47
And moving on to some applications
206
527260
2000
Evo nekih primena
08:49
developed by developers and researchers around the world,
207
529260
3000
razvijanih širom sveta
08:52
with robots and simple machines, for example --
208
532260
3000
sa robotima i jednostavnim uređajima.
08:55
in this case, flying a toy helicopter
209
535260
2000
Ovo je mali helikopter,
08:57
simply by thinking "lift" with your mind.
210
537260
3000
koji poleće na misaonu komandu "poleti".
09:00
The technology can also be applied
211
540260
2000
Ista tehnologija se može primeniti
09:02
to real world applications --
212
542260
2000
u svakodnevnom životu,
09:04
in this example, a smart home.
213
544260
2000
recimo u "pametnoj kući".
09:06
You know, from the user interface of the control system
214
546260
3000
Iz interfejsa kontrolog sistema možete
09:09
to opening curtains
215
549260
2000
razvući zavese,
09:11
or closing curtains.
216
551260
3000
navući zavese.
09:22
And of course, also to the lighting --
217
562260
3000
Naravno, osvetljenje.
09:25
turning them on
218
565260
3000
Možete paliti
09:28
or off.
219
568260
2000
ili gasiti svetla.
09:30
And finally,
220
570260
2000
I najzad,
09:32
to real life-changing applications,
221
572260
2000
primene koje menjaju živote ljudima,
09:34
such as being able to control an electric wheelchair.
222
574260
3000
poput mogućnosti da se upravlja električnim kolicima.
09:37
In this example,
223
577260
2000
U ovom primeru,
09:39
facial expressions are mapped to the movement commands.
224
579260
3000
izrazi lica se povezuju na kontrole kretanja.
09:42
Man: Now blink right to go right.
225
582260
3000
"Sad namigni desnim da skreneš desno."
09:50
Now blink left to turn back left.
226
590260
3000
"Sad levim, da skreneš levo."
10:02
Now smile to go straight.
227
602260
3000
"Sad se smeši da ideš pravo."
10:08
TL: We really -- Thank you.
228
608260
2000
TL: Hvala...
10:10
(Applause)
229
610260
5000
(aplauz)
10:15
We are really only scratching the surface of what is possible today,
230
615260
3000
Stvarno smo tek na početku shvatanja šta je sve sa ovim moguće.
10:18
and with the community's input,
231
618260
2000
A sa uplivom zajednice,
10:20
and also with the involvement of developers
232
620260
2000
sa tehničkom saradnjom,
10:22
and researchers from around the world,
233
622260
3000
sa istraživačima širom sveta,
10:25
we hope that you can help us to shape
234
625260
2000
nadamo se da ćete nam pomoći da
10:27
where the technology goes from here. Thank you so much.
235
627260
3000
oblikujemo budućnost ove tehnologije. Hvala vam puno.
About this website

This site will introduce you to YouTube videos that are useful for learning English. You will see English lessons taught by top-notch teachers from around the world. Double-click on the English subtitles displayed on each video page to play the video from there. The subtitles scroll in sync with the video playback. If you have any comments or requests, please contact us using this contact form.

https://forms.gle/WvT1wiN1qDtmnspy7