A headset that reads your brainwaves | Tan Le

378,354 views ・ 2010-07-22

TED


请双击下面的英文字幕来播放视频。

翻译人员: Halei Liu 校对人员: Xu Jiang
00:16
Up until now, our communication with machines
0
16260
2000
直到现在,我们和机器的沟通的方式
00:18
has always been limited
1
18260
2000
都被限制在
00:20
to conscious and direct forms.
2
20260
2000
一种有意识和直接的形式上。
00:22
Whether it's something simple
3
22260
2000
无论是简单得像
00:24
like turning on the lights with a switch,
4
24260
2000
打开灯的开关那样,
00:26
or even as complex as programming robotics,
5
26260
3000
还是复杂得像编写一个机器人那样,
00:29
we have always had to give a command to a machine,
6
29260
3000
我们必须给机器一段指令,
00:32
or even a series of commands,
7
32260
2000
或一系列的指令,
00:34
in order for it to do something for us.
8
34260
3000
才能让机器为我们做我们想做的事情。
00:37
Communication between people, on the other hand,
9
37260
2000
而人和人之间的交流
00:39
is far more complex and a lot more interesting
10
39260
3000
就远远要复杂和有趣些,
00:42
because we take into account
11
42260
2000
因为我们接受的
00:44
so much more than what is explicitly expressed.
12
44260
3000
远比外露的表现要多。
00:47
We observe facial expressions, body language,
13
47260
3000
我们观察脸部表情,肢体语言,
00:50
and we can intuit feelings and emotions
14
50260
2000
我们可以通过对话
00:52
from our dialogue with one another.
15
52260
3000
感受到感觉和情感。
00:55
This actually forms a large part
16
55260
2000
这些其实都是我们做决定的过程中的
00:57
of our decision-making process.
17
57260
2000
一大部分。
00:59
Our vision is to introduce
18
59260
2000
我们的视野是向人机互动科技
01:01
this whole new realm of human interaction
19
61260
3000
介绍一个崭新的人类互动的
01:04
into human-computer interaction
20
64260
2000
新领域,
01:06
so that computers can understand
21
66260
2000
这样的话,计算机就不仅仅
01:08
not only what you direct it to do,
22
68260
2000
按照你的指令工作,
01:10
but it can also respond
23
70260
2000
也能够根据你脸部表情
01:12
to your facial expressions
24
72260
2000
和感情
01:14
and emotional experiences.
25
74260
2000
做出反应。
01:16
And what better way to do this
26
76260
2000
如果要这样做的话
01:18
than by interpreting the signals
27
78260
2000
还有什么能比得上
01:20
naturally produced by our brain,
28
80260
2000
去理解我们脑部所发出的电波,
01:22
our center for control and experience.
29
82260
3000
我们的控制和体验中心。
01:25
Well, it sounds like a pretty good idea,
30
85260
2000
好,这听起来是一个十分好的主意,
01:27
but this task, as Bruno mentioned,
31
87260
2000
但是这项任务,就像Burno提过的,
01:29
isn't an easy one for two main reasons:
32
89260
3000
并不是那么简单,这主要有两个原因:
01:32
First, the detection algorithms.
33
92260
3000
第一,检测的算法。
01:35
Our brain is made up of
34
95260
2000
我们的大脑是由上亿个
01:37
billions of active neurons,
35
97260
2000
活跃的脑神经所组成,
01:39
around 170,000 km
36
99260
3000
轴突的长度总共有
01:42
of combined axon length.
37
102260
2000
170,000 千米。
01:44
When these neurons interact,
38
104260
2000
当这些脑神经互动时,
01:46
the chemical reaction emits an electrical impulse,
39
106260
2000
所产生的化学反应放出的电脉冲
01:48
which can be measured.
40
108260
2000
是可以被测量的。
01:50
The majority of our functional brain
41
110260
3000
我们大脑的主要功能
01:53
is distributed over
42
113260
2000
是分布在大脑
01:55
the outer surface layer of the brain,
43
115260
2000
的外表面层。
01:57
and to increase the area that's available for mental capacity,
44
117260
3000
从心理的能力来说要去增加这个区域是可能的,
02:00
the brain surface is highly folded.
45
120260
3000
大脑表面充满了褶皱。
02:03
Now this cortical folding
46
123260
2000
皮质折叠
02:05
presents a significant challenge
47
125260
2000
对于解析表面电脉冲来说
02:07
for interpreting surface electrical impulses.
48
127260
3000
是一个重大挑战。
02:10
Each individual's cortex
49
130260
2000
每一个单独的皮层
02:12
is folded differently,
50
132260
2000
其折叠的结构都是有区别的,
02:14
very much like a fingerprint.
51
134260
2000
就像我们的指纹一样。
02:16
So even though a signal
52
136260
2000
就算一个信号
02:18
may come from the same functional part of the brain,
53
138260
3000
可能来自于大脑同一功能的部分,
02:21
by the time the structure has been folded,
54
141260
2000
就在这个结构被折叠的时间里,
02:23
its physical location
55
143260
2000
它的实际位置
02:25
is very different between individuals,
56
145260
2000
是十分不同的,
02:27
even identical twins.
57
147260
3000
就算是双胞胎也一样。
02:30
There is no longer any consistency
58
150260
2000
表层的信号
02:32
in the surface signals.
59
152260
2000
没有什么持续性。
02:34
Our breakthrough was to create an algorithm
60
154260
2000
我们的突破是创造一种计算方法
02:36
that unfolds the cortex,
61
156260
2000
可以展开皮层,
02:38
so that we can map the signals
62
158260
2000
这样我们可以在更靠近源头的地方
02:40
closer to its source,
63
160260
2000
来接受信号,
02:42
and therefore making it capable of working across a mass population.
64
162260
3000
从而就可以在更广泛的人群中使用。
02:46
The second challenge
65
166260
2000
第二个挑战是
02:48
is the actual device for observing brainwaves.
66
168260
3000
观测脑部的实际装置。
02:51
EEG measurements typically involve
67
171260
2000
脑电图一般是
02:53
a hairnet with an array of sensors,
68
173260
3000
一系列传感器的阵列,
02:56
like the one that you can see here in the photo.
69
176260
3000
就和你们在照片上所看到的一样。
02:59
A technician will put the electrodes
70
179260
2000
技术人员使用导电胶或粘贴
03:01
onto the scalp
71
181260
2000
将电极
03:03
using a conductive gel or paste
72
183260
2000
放到头皮上
03:05
and usually after a procedure of preparing the scalp
73
185260
3000
这通常会有一个光磨损的过程
03:08
by light abrasion.
74
188260
2000
来准备头皮。
03:10
Now this is quite time consuming
75
190260
2000
这十分耗时
03:12
and isn't the most comfortable process.
76
192260
2000
而且过程也不舒适。
03:14
And on top of that, these systems
77
194260
2000
加上,这个系统
03:16
actually cost in the tens of thousands of dollars.
78
196260
3000
要花费上百万美元。
03:20
So with that, I'd like to invite onstage
79
200260
3000
我现在想邀请我们去年的
03:23
Evan Grant, who is one of last year's speakers,
80
203260
2000
一位演讲者Evan Grant,上台来。
03:25
who's kindly agreed
81
205260
2000
他很客气的同意了
03:27
to help me to demonstrate
82
207260
2000
来帮助我们来展示
03:29
what we've been able to develop.
83
209260
2000
我们的研究发展。
03:31
(Applause)
84
211260
6000
(掌声)
03:37
So the device that you see
85
217260
2000
这个装置如你们所看见的
03:39
is a 14-channel, high-fidelity
86
219260
2000
是一个14个通道,高保真
03:41
EEG acquisition system.
87
221260
2000
脑电采集系统。
03:43
It doesn't require any scalp preparation,
88
223260
3000
不需要任何的头皮处理过程,
03:46
no conductive gel or paste.
89
226260
2000
不用导流胶或导流膏。
03:48
It only takes a few minutes to put on
90
228260
3000
只需要几分钟来固定好
03:51
and for the signals to settle.
91
231260
2000
和稳定信号。
03:53
It's also wireless,
92
233260
2000
这也是无线的,
03:55
so it gives you the freedom to move around.
93
235260
3000
所以这样就可以自由的移动。
03:58
And compared to the tens of thousands of dollars
94
238260
3000
和上百万美元的
04:01
for a traditional EEG system,
95
241260
3000
传统脑电图系统比
04:04
this headset only costs
96
244260
2000
这个装置只用
04:06
a few hundred dollars.
97
246260
2000
几百美元。
04:08
Now on to the detection algorithms.
98
248260
3000
现在说说检测的算法。
04:11
So facial expressions --
99
251260
2000
所以脸部的表情 --
04:13
as I mentioned before in emotional experiences --
100
253260
2000
就像我先前提到的感情表达一样 --
04:15
are actually designed to work out of the box
101
255260
2000
都是意想不到的
04:17
with some sensitivity adjustments
102
257260
2000
通过一些敏感性的调整
04:19
available for personalization.
103
259260
3000
使之个性化。
04:22
But with the limited time we have available,
104
262260
2000
但是由于时间原因,
04:24
I'd like to show you the cognitive suite,
105
264260
2000
我向你们介绍一套认知系统,
04:26
which is the ability for you
106
266260
2000
系统所做的是
04:28
to basically move virtual objects with your mind.
107
268260
3000
让你用你的意念来移动物体。
04:32
Now, Evan is new to this system,
108
272260
2000
现在,Evan是第一次接触这个系统,
04:34
so what we have to do first
109
274260
2000
所以我们要先为他
04:36
is create a new profile for him.
110
276260
2000
创建新的个人信息。
04:38
He's obviously not Joanne -- so we'll "add user."
111
278260
3000
他显然不是Joanne --所以我们选择“添加用户。”
04:41
Evan. Okay.
112
281260
2000
Evan。 搞定。
04:43
So the first thing we need to do with the cognitive suite
113
283260
3000
我们先要做的是
04:46
is to start with training
114
286260
2000
开始训练一个
04:48
a neutral signal.
115
288260
2000
中和的信号。
04:50
With neutral, there's nothing in particular
116
290260
2000
所谓中和,就是Evan不用
04:52
that Evan needs to do.
117
292260
2000
做任何事情。
04:54
He just hangs out. He's relaxed.
118
294260
2000
他只是放松。
04:56
And the idea is to establish a baseline
119
296260
2000
这个过程会给他建立一个地基
04:58
or normal state for his brain,
120
298260
2000
或是他大脑的普通模式,
05:00
because every brain is different.
121
300260
2000
因为每一人的大脑都是不一样的。
05:02
It takes eight seconds to do this,
122
302260
2000
这大概需要8秒的时间。
05:04
and now that that's done,
123
304260
2000
好,现在完成了,
05:06
we can choose a movement-based action.
124
306260
2000
我们可以选择一个以移动为主的动作。
05:08
So Evan, choose something
125
308260
2000
所以Evan选中一个
05:10
that you can visualize clearly in your mind.
126
310260
2000
他可以在他大脑中现形的物体。
05:12
Evan Grant: Let's do "pull."
127
312260
2000
Evan:让我们来作“拉近。”
05:14
Tan Le: Okay, so let's choose "pull."
128
314260
2000
Tan:好,让我们选中“拉近。”
05:16
So the idea here now
129
316260
2000
现在的目标是
05:18
is that Evan needs to
130
318260
2000
Evan要去想象
05:20
imagine the object coming forward
131
320260
2000
这个物体会向
05:22
into the screen,
132
322260
2000
屏幕靠近。
05:24
and there's a progress bar that will scroll across the screen
133
324260
3000
在他做的同时,屏幕上会显示
05:27
while he's doing that.
134
327260
2000
一个进度条。
05:29
The first time, nothing will happen,
135
329260
2000
第一次,什么都没有。
05:31
because the system has no idea how he thinks about "pull."
136
331260
3000
因为系统不知到他所想的“拉近”是什么。
05:34
But maintain that thought
137
334260
2000
但是持续这个想象
05:36
for the entire duration of the eight seconds.
138
336260
2000
程序8秒钟。
05:38
So: one, two, three, go.
139
338260
3000
所以,1,2,3,开始。
05:49
Okay.
140
349260
2000
好。
05:51
So once we accept this,
141
351260
2000
一旦我们接受这个,
05:53
the cube is live.
142
353260
2000
方块就活起来了。
05:55
So let's see if Evan
143
355260
2000
现在我们看Evan
05:57
can actually try and imagine pulling.
144
357260
3000
能不能想象一下“拉近。”
06:00
Ah, good job!
145
360260
2000
哦,干的好!
06:02
(Applause)
146
362260
3000
(掌声)
06:05
That's really amazing.
147
365260
2000
十分令人惊叹。
06:07
(Applause)
148
367260
4000
(掌声)
06:11
So we have a little bit of time available,
149
371260
2000
这样我们还有一点时间,
06:13
so I'm going to ask Evan
150
373260
2000
所以我们让Evan
06:15
to do a really difficult task.
151
375260
2000
做个难一点的任务。
06:17
And this one is difficult
152
377260
2000
这个比较难
06:19
because it's all about being able to visualize something
153
379260
3000
因为这个是要想象
06:22
that doesn't exist in our physical world.
154
382260
2000
一个不存在我们现实世界里的物体。
06:24
This is "disappear."
155
384260
2000
这是“消失。”
06:26
So what you want to do -- at least with movement-based actions,
156
386260
2000
所以,你要做的 -- 先做一个运动为主的动作,
06:28
we do that all the time, so you can visualize it.
157
388260
3000
我们在现实中一直在做这个动作,所以我们可以看到这个动作。
06:31
But with "disappear," there's really no analogies --
158
391260
2000
但是“消失”,从没有过。
06:33
so Evan, what you want to do here
159
393260
2000
所以Even,你现在要做的是
06:35
is to imagine the cube slowly fading out, okay.
160
395260
3000
想象这个正方体会慢慢的消失掉,好吗。
06:38
Same sort of drill. So: one, two, three, go.
161
398260
3000
跟刚才一样。所以,1,2,3,开始。
06:50
Okay. Let's try that.
162
410260
3000
好,让我们试试。
06:53
Oh, my goodness. He's just too good.
163
413260
3000
哦,天哪。他太棒了。
06:57
Let's try that again.
164
417260
2000
我们在试一次。
07:04
EG: Losing concentration.
165
424260
2000
Even:分心了。
07:06
(Laughter)
166
426260
2000
(笑)
07:08
TL: But we can see that it actually works,
167
428260
2000
Tan:但是我们可以看到这是可行的,
07:10
even though you can only hold it
168
430260
2000
就算你只花了一点点的时间
07:12
for a little bit of time.
169
432260
2000
在这个上面。
07:14
As I said, it's a very difficult process
170
434260
3000
就像我说的,去想象“消失”
07:17
to imagine this.
171
437260
2000
是一个很难的过程。
07:19
And the great thing about it is that
172
439260
2000
了不起的事情是
07:21
we've only given the software one instance
173
441260
2000
我们只给了系统一个他如何想象“消失”
07:23
of how he thinks about "disappear."
174
443260
3000
的例子。
07:26
As there is a machine learning algorithm in this --
175
446260
3000
因为这里有一个机器解析的过程 --
07:29
(Applause)
176
449260
4000
(掌声)
07:33
Thank you.
177
453260
2000
谢谢。
07:35
Good job. Good job.
178
455260
3000
做的好,做的好。
07:38
(Applause)
179
458260
2000
(掌声)
07:40
Thank you, Evan, you're a wonderful, wonderful
180
460260
3000
谢谢你,Even,你是这项技术的
07:43
example of the technology.
181
463260
3000
完美代表。
07:46
So, as you can see, before,
182
466260
2000
所以就像你之前看到的,
07:48
there is a leveling system built into this software
183
468260
3000
这个系统是被建入这个软件中
07:51
so that as Evan, or any user,
184
471260
2000
这样就算是Even,或者其他的用户,
07:53
becomes more familiar with the system,
185
473260
2000
都能更熟悉这个系统,
07:55
they can continue to add more and more detections,
186
475260
3000
他们可以不停的加入更多的探测方式,
07:58
so that the system begins to differentiate
187
478260
2000
而系统也会在不同
08:00
between different distinct thoughts.
188
480260
3000
的想法中区分不同的差别。
08:04
And once you've trained up the detections,
189
484260
2000
而且,一旦你训练好了探测功能,
08:06
these thoughts can be assigned or mapped
190
486260
2000
这个功能会可以被分享到
08:08
to any computing platform,
191
488260
2000
任何一种计算器平台,
08:10
application or device.
192
490260
2000
应用程序或装置中。
08:12
So I'd like to show you a few examples,
193
492260
2000
所以我想向你们展示一些例子,
08:14
because there are many possible applications
194
494260
2000
因为这个新界面有很多
08:16
for this new interface.
195
496260
2000
潜在的应用程序。
08:19
In games and virtual worlds, for example,
196
499260
2000
比如说在游戏和虚拟世界中,
08:21
your facial expressions
197
501260
2000
你的脸部表情
08:23
can naturally and intuitively be used
198
503260
2000
可以直观的被用来
08:25
to control an avatar or virtual character.
199
505260
3000
控制虚拟替身或人物。
08:29
Obviously, you can experience the fantasy of magic
200
509260
2000
显然的,你能体验到神奇的魔法
08:31
and control the world with your mind.
201
511260
3000
和用你的意念来控制世界。
08:36
And also, colors, lighting,
202
516260
3000
颜色,和灯光,
08:39
sound and effects
203
519260
2000
声音和特效,
08:41
can dynamically respond to your emotional state
204
521260
2000
也会根据你的感情模式做出相应的反应
08:43
to heighten the experience that you're having, in real time.
205
523260
3000
以此来提高你在现实中的体验。
08:47
And moving on to some applications
206
527260
2000
现在看看世界各地的开发者和研究家们
08:49
developed by developers and researchers around the world,
207
529260
3000
所开发的应用程序,
08:52
with robots and simple machines, for example --
208
532260
3000
用机器人和简单机械,比如说 --
08:55
in this case, flying a toy helicopter
209
535260
2000
在这个例子里,通过想象提升来
08:57
simply by thinking "lift" with your mind.
210
537260
3000
简单的驾驶一个玩具直升机。
09:00
The technology can also be applied
211
540260
2000
这个科技也可以被应用到
09:02
to real world applications --
212
542260
2000
现实生活中 --
09:04
in this example, a smart home.
213
544260
2000
比如,智能家庭。
09:06
You know, from the user interface of the control system
214
546260
3000
你知道的,通过人机界面中的控制系统
09:09
to opening curtains
215
549260
2000
来打开窗帘
09:11
or closing curtains.
216
551260
3000
或关闭窗帘。
09:22
And of course, also to the lighting --
217
562260
3000
当然还有照明 --
09:25
turning them on
218
565260
3000
开灯
09:28
or off.
219
568260
2000
或者关灯。
09:30
And finally,
220
570260
2000
以及最后的,
09:32
to real life-changing applications,
221
572260
2000
可以改变生活的应用程序
09:34
such as being able to control an electric wheelchair.
222
574260
3000
就比如说控制电子轮椅。
09:37
In this example,
223
577260
2000
在这个例子里,
09:39
facial expressions are mapped to the movement commands.
224
579260
3000
脸部表情被用来控制移动命令。
09:42
Man: Now blink right to go right.
225
582260
3000
男子:现在眨右眼往右。
09:50
Now blink left to turn back left.
226
590260
3000
现在眨左眼往左。
10:02
Now smile to go straight.
227
602260
3000
现在微笑往前。
10:08
TL: We really -- Thank you.
228
608260
2000
Tan:我们十分感谢你 -- 谢谢。
10:10
(Applause)
229
610260
5000
(掌声)
10:15
We are really only scratching the surface of what is possible today,
230
615260
3000
我们今天仅仅大致地揭开了这个系统潜力的一角。
10:18
and with the community's input,
231
618260
2000
随着用户群体的投入,
10:20
and also with the involvement of developers
232
620260
2000
开发者
10:22
and researchers from around the world,
233
622260
3000
以及世界各地的研究员的加盟,
10:25
we hope that you can help us to shape
234
625260
2000
我们希望你们可以帮助我们来
10:27
where the technology goes from here. Thank you so much.
235
627260
3000
探寻这项技术将何去何从。十分谢谢你们。
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog