A headset that reads your brainwaves | Tan Le

377,362 views ・ 2010-07-22

TED


請雙擊下方英文字幕播放視頻。

譯者: Jeannie Cheng 審譯者: Sunshine Wang
00:16
Up until now, our communication with machines
0
16260
2000
直到現在,我們與機器的溝通
00:18
has always been limited
1
18260
2000
仍局限於
00:20
to conscious and direct forms.
2
20260
2000
有意識和直接的模式
00:22
Whether it's something simple
3
22260
2000
不論是一些簡單的事情
00:24
like turning on the lights with a switch,
4
24260
2000
如用開關開燈
00:26
or even as complex as programming robotics,
5
26260
3000
或一些複雜的程式來控制機械人
00:29
we have always had to give a command to a machine,
6
29260
3000
我們都要給機器輸入一個
00:32
or even a series of commands,
7
32260
2000
甚至一系列的指令
00:34
in order for it to do something for us.
8
34260
3000
才能命令它執行一些動作
00:37
Communication between people, on the other hand,
9
37260
2000
相反的,人與人的溝通
00:39
is far more complex and a lot more interesting
10
39260
3000
就更加複雜和有趣得多
00:42
because we take into account
11
42260
2000
因為我們會考慮到
00:44
so much more than what is explicitly expressed.
12
44260
3000
言語未表達的言外之意
00:47
We observe facial expressions, body language,
13
47260
3000
我們會觀察表情、肢體語言
00:50
and we can intuit feelings and emotions
14
50260
2000
在對話中我們會用直覺來
00:52
from our dialogue with one another.
15
52260
3000
感受對方的感覺和情緒
00:55
This actually forms a large part
16
55260
2000
這些都是做決定時
00:57
of our decision-making process.
17
57260
2000
一些重要的因素
00:59
Our vision is to introduce
18
59260
2000
我們的願景是引進
01:01
this whole new realm of human interaction
19
61260
3000
全新的人與電腦的互動科技
01:04
into human-computer interaction
20
64260
2000
到人類互動的領域
01:06
so that computers can understand
21
66260
2000
這麼一來電腦不只可以
01:08
not only what you direct it to do,
22
68260
2000
明白你指示它所做的事情
01:10
but it can also respond
23
70260
2000
而且也會對面部表情
01:12
to your facial expressions
24
72260
2000
和情緒經歷
01:14
and emotional experiences.
25
74260
2000
作出反應
01:16
And what better way to do this
26
76260
2000
還有什麼比從大腦的
01:18
than by interpreting the signals
27
78260
2000
情感控制中樞直接解譯
01:20
naturally produced by our brain,
28
80260
2000
大腦產生的電波
01:22
our center for control and experience.
29
82260
3000
來得更好呢?
01:25
Well, it sounds like a pretty good idea,
30
85260
2000
這聽起來好像是不錯的主意
01:27
but this task, as Bruno mentioned,
31
87260
2000
但這個任務,正如Bruno所說
01:29
isn't an easy one for two main reasons:
32
89260
3000
並不容易,原因有兩個
01:32
First, the detection algorithms.
33
92260
3000
第一是大腦的偵查演算法
01:35
Our brain is made up of
34
95260
2000
我們的腦是由
01:37
billions of active neurons,
35
97260
2000
數十億個活躍的神經元所組成
01:39
around 170,000 km
36
99260
3000
如果把神經細胞的軸索連在一起
01:42
of combined axon length.
37
102260
2000
大概有十七萬公里
01:44
When these neurons interact,
38
104260
2000
這些神經元互動時
01:46
the chemical reaction emits an electrical impulse,
39
106260
2000
產生的化學作用所發射出的電脈衝
01:48
which can be measured.
40
108260
2000
能夠被測量到
01:50
The majority of our functional brain
41
110260
3000
大部分功能性腦
01:53
is distributed over
42
113260
2000
是分佈在
01:55
the outer surface layer of the brain,
43
115260
2000
大腦的表層
01:57
and to increase the area that's available for mental capacity,
44
117260
3000
心智能力功能也位於此,為了增加表面積
02:00
the brain surface is highly folded.
45
120260
3000
大腦皮質層有非常多的褶皺
02:03
Now this cortical folding
46
123260
2000
大腦皮質褶皺
02:05
presents a significant challenge
47
125260
2000
對分析電脈衝
02:07
for interpreting surface electrical impulses.
48
127260
3000
帶來一個很大的挑戰
02:10
Each individual's cortex
49
130260
2000
每個人大腦皮質層
02:12
is folded differently,
50
132260
2000
的褶皺都不同
02:14
very much like a fingerprint.
51
134260
2000
就像指紋一樣
02:16
So even though a signal
52
136260
2000
因此電脈衝訊息
02:18
may come from the same functional part of the brain,
53
138260
3000
雖然來自功能腦同樣的區域
02:21
by the time the structure has been folded,
54
141260
2000
但大腦皮質褶皺結構早已形成
02:23
its physical location
55
143260
2000
在不同的人的大腦裡
02:25
is very different between individuals,
56
145260
2000
即使是雙胞胎
02:27
even identical twins.
57
147260
3000
訊息發生位置也不同
02:30
There is no longer any consistency
58
150260
2000
大腦皮質層電脈衝訊息
02:32
in the surface signals.
59
152260
2000
沒有一致性
02:34
Our breakthrough was to create an algorithm
60
154260
2000
我們的突破是建立一個演算法
02:36
that unfolds the cortex,
61
156260
2000
攤開大腦皮質層
02:38
so that we can map the signals
62
158260
2000
去勘測這些
02:40
closer to its source,
63
160260
2000
訊息的原點
02:42
and therefore making it capable of working across a mass population.
64
162260
3000
繼而把它運用在大眾身上
02:46
The second challenge
65
166260
2000
第二項挑戰是
02:48
is the actual device for observing brainwaves.
66
168260
3000
觀察腦電波的儀器
02:51
EEG measurements typically involve
67
171260
2000
腦波測量基本上包括
02:53
a hairnet with an array of sensors,
68
173260
3000
一個有許多感應器的髮網
02:56
like the one that you can see here in the photo.
69
176260
3000
就像現在圖中所看到的
02:59
A technician will put the electrodes
70
179260
2000
技術人員會把電極
03:01
onto the scalp
71
181260
2000
用導電的膠或漿糊
03:03
using a conductive gel or paste
72
183260
2000
固定在頭皮上
03:05
and usually after a procedure of preparing the scalp
73
185260
3000
這個準備程序需要在頭皮製造
03:08
by light abrasion.
74
188260
2000
輕微的擦傷
03:10
Now this is quite time consuming
75
190260
2000
這個程序既費時
03:12
and isn't the most comfortable process.
76
192260
2000
又不舒服
03:14
And on top of that, these systems
77
194260
2000
再加上,這些系統
03:16
actually cost in the tens of thousands of dollars.
78
196260
3000
非常昂貴,得花上數萬美金
03:20
So with that, I'd like to invite onstage
79
200260
3000
現在,我邀請Evan Grant
03:23
Evan Grant, who is one of last year's speakers,
80
203260
2000
去年的演講者上台
03:25
who's kindly agreed
81
205260
2000
他很樂意
03:27
to help me to demonstrate
82
207260
2000
幫忙示範
03:29
what we've been able to develop.
83
209260
2000
我們所設計的儀器
03:31
(Applause)
84
211260
6000
(鼓掌)
03:37
So the device that you see
85
217260
2000
你們所看到的儀器是
03:39
is a 14-channel, high-fidelity
86
219260
2000
有十四個頻道,高傳真的
03:41
EEG acquisition system.
87
221260
2000
腦電波訊號擷取系統
03:43
It doesn't require any scalp preparation,
88
223260
3000
不需要任何頭皮準備程序
03:46
no conductive gel or paste.
89
226260
2000
沒有導電的膠或漿糊
03:48
It only takes a few minutes to put on
90
228260
3000
戴上它,等訊號穩定
03:51
and for the signals to settle.
91
231260
2000
只要幾分鐘
03:53
It's also wireless,
92
233260
2000
而且是無線的
03:55
so it gives you the freedom to move around.
93
235260
3000
它讓你活動自如
03:58
And compared to the tens of thousands of dollars
94
238260
3000
比起那些幾萬美元的
04:01
for a traditional EEG system,
95
241260
3000
傳統腦電波系統
04:04
this headset only costs
96
244260
2000
這個頭戴式耳機
04:06
a few hundred dollars.
97
246260
2000
只要幾百美金
04:08
Now on to the detection algorithms.
98
248260
3000
現在來談談大腦感應演算法
04:11
So facial expressions --
99
251260
2000
好,面部表情--
04:13
as I mentioned before in emotional experiences --
100
253260
2000
如同之前講到的情緒經驗--
04:15
are actually designed to work out of the box
101
255260
2000
這套系統有令人意想不到的設計
04:17
with some sensitivity adjustments
102
257260
2000
只要做一些敏感度調整
04:19
available for personalization.
103
259260
3000
就可以運用於個人化的使用
04:22
But with the limited time we have available,
104
262260
2000
但因時間的關係
04:24
I'd like to show you the cognitive suite,
105
264260
2000
現在只示範認知的部份
04:26
which is the ability for you
106
266260
2000
這套系統能夠讓您
04:28
to basically move virtual objects with your mind.
107
268260
3000
只用意念移動虛擬物件
04:32
Now, Evan is new to this system,
108
272260
2000
Evan是第一次接觸這個系統
04:34
so what we have to do first
109
274260
2000
因此我們要先
04:36
is create a new profile for him.
110
276260
2000
建立一個新的檔案
04:38
He's obviously not Joanne -- so we'll "add user."
111
278260
3000
他當然不是Joanne, 所以要增加一個用戶
04:41
Evan. Okay.
112
281260
2000
Evan,好了!
04:43
So the first thing we need to do with the cognitive suite
113
283260
3000
首先要做的是
04:46
is to start with training
114
286260
2000
練習發出一個
04:48
a neutral signal.
115
288260
2000
中立的訊號
04:50
With neutral, there's nothing in particular
116
290260
2000
Evan不需要做
04:52
that Evan needs to do.
117
292260
2000
什麼特別的事
04:54
He just hangs out. He's relaxed.
118
294260
2000
就這樣放輕鬆
04:56
And the idea is to establish a baseline
119
296260
2000
重點是建立一個基準線
04:58
or normal state for his brain,
120
298260
2000
或是大腦的正常狀態
05:00
because every brain is different.
121
300260
2000
因為每個人的腦都不相同
05:02
It takes eight seconds to do this,
122
302260
2000
這大概需要八秒的時間
05:04
and now that that's done,
123
304260
2000
完成了
05:06
we can choose a movement-based action.
124
306260
2000
我們可以選擇一個有動作的活動
05:08
So Evan, choose something
125
308260
2000
Evan,你可選擇一個
05:10
that you can visualize clearly in your mind.
126
310260
2000
在你腦海中可以清楚看到的事情
05:12
Evan Grant: Let's do "pull."
127
312260
2000
讓我們做一個"拉"的動作
05:14
Tan Le: Okay, so let's choose "pull."
128
314260
2000
好,點選"拉"
05:16
So the idea here now
129
316260
2000
我們現在
05:18
is that Evan needs to
130
318260
2000
需要Evan想像
05:20
imagine the object coming forward
131
320260
2000
一件物品在螢幕上
05:22
into the screen,
132
322260
2000
往前移動
05:24
and there's a progress bar that will scroll across the screen
133
324260
3000
他這樣做的時候
05:27
while he's doing that.
134
327260
2000
螢幕上會出現一個測量棒
05:29
The first time, nothing will happen,
135
329260
2000
第一次沒有任何事情發生
05:31
because the system has no idea how he thinks about "pull."
136
331260
3000
因為系統還不知道他怎麼想像"拉"的動作
05:34
But maintain that thought
137
334260
2000
在這八秒中
05:36
for the entire duration of the eight seconds.
138
336260
2000
持續想著這個念頭
05:38
So: one, two, three, go.
139
338260
3000
一、二、三、開始
05:49
Okay.
140
349260
2000
好了
05:51
So once we accept this,
141
351260
2000
當我們按了接受
05:53
the cube is live.
142
353260
2000
這個方塊就活了起來
05:55
So let's see if Evan
143
355260
2000
讓我們看看Evan
05:57
can actually try and imagine pulling.
144
357260
3000
能否真的嘗試想像"拉"的動作
06:00
Ah, good job!
145
360260
2000
哇! 非常好!
06:02
(Applause)
146
362260
3000
(鼓掌)
06:05
That's really amazing.
147
365260
2000
真是令人驚訝!
06:07
(Applause)
148
367260
4000
(鼓掌)
06:11
So we have a little bit of time available,
149
371260
2000
我們還有一些時間
06:13
so I'm going to ask Evan
150
373260
2000
我要請Evan
06:15
to do a really difficult task.
151
375260
2000
做一些比較困難的動作
06:17
And this one is difficult
152
377260
2000
這個有點難
06:19
because it's all about being able to visualize something
153
379260
3000
因為要想像
06:22
that doesn't exist in our physical world.
154
382260
2000
在物質界裡不存在的事物
06:24
This is "disappear."
155
384260
2000
就是 "消失"
06:26
So what you want to do -- at least with movement-based actions,
156
386260
2000
就動作而言
06:28
we do that all the time, so you can visualize it.
157
388260
3000
因為經常做這些動作,所以能"看見"它
06:31
But with "disappear," there's really no analogies --
158
391260
2000
但"消失"沒有任何類似的動作
06:33
so Evan, what you want to do here
159
393260
2000
Evan, 現在請你
06:35
is to imagine the cube slowly fading out, okay.
160
395260
3000
想像這個方塊慢慢消失
06:38
Same sort of drill. So: one, two, three, go.
161
398260
3000
一樣的練習。 一、二、三、開始
06:50
Okay. Let's try that.
162
410260
3000
可以了,我們試試吧
06:53
Oh, my goodness. He's just too good.
163
413260
3000
我的天啊!他真的是非常厲害
06:57
Let's try that again.
164
417260
2000
再試一次
07:04
EG: Losing concentration.
165
424260
2000
(EG儀器:) 失去專注力
07:06
(Laughter)
166
426260
2000
(笑聲)
07:08
TL: But we can see that it actually works,
167
428260
2000
這套系統真的辦到了
07:10
even though you can only hold it
168
430260
2000
雖然只維持
07:12
for a little bit of time.
169
432260
2000
一段很短的時間
07:14
As I said, it's a very difficult process
170
434260
3000
我認為想像"消失"
07:17
to imagine this.
171
437260
2000
真的是非常困難
07:19
And the great thing about it is that
172
439260
2000
這個系統了不起的是
07:21
we've only given the software one instance
173
441260
2000
這套軟體只有一次機會
07:23
of how he thinks about "disappear."
174
443260
3000
知道Evan是怎麼想像"消失"的
07:26
As there is a machine learning algorithm in this --
175
446260
3000
而這部機器便學會了演算它
07:29
(Applause)
176
449260
4000
(鼓掌)
07:33
Thank you.
177
453260
2000
謝謝
07:35
Good job. Good job.
178
455260
3000
很棒!很棒!
07:38
(Applause)
179
458260
2000
(鼓掌)
07:40
Thank you, Evan, you're a wonderful, wonderful
180
460260
3000
謝謝,Evan你真的是這項科技
07:43
example of the technology.
181
463260
3000
最佳的展示人員
07:46
So, as you can see, before,
182
466260
2000
正如你們所見
07:48
there is a leveling system built into this software
183
468260
3000
這個軟體有一個水準測量系統
07:51
so that as Evan, or any user,
184
471260
2000
Evan或其他使用者
07:53
becomes more familiar with the system,
185
473260
2000
對這個系統越熟悉
07:55
they can continue to add more and more detections,
186
475260
3000
就能不斷地增加更多,更多的檢測項目
07:58
so that the system begins to differentiate
187
478260
2000
這個系統就能開始分辨
08:00
between different distinct thoughts.
188
480260
3000
不同的明顯想法
08:04
And once you've trained up the detections,
189
484260
2000
當你訓練做這些檢測項目
08:06
these thoughts can be assigned or mapped
190
486260
2000
這些念頭、想法就能指定或聯繫到
08:08
to any computing platform,
191
488260
2000
任何的電腦平台、
08:10
application or device.
192
490260
2000
應用程式或儀器上
08:12
So I'd like to show you a few examples,
193
492260
2000
讓我為你們展示幾個例子
08:14
because there are many possible applications
194
494260
2000
這個新界面有
08:16
for this new interface.
195
496260
2000
很多可運用的應用程式
08:19
In games and virtual worlds, for example,
196
499260
2000
例如在遊戲或虛擬世界
08:21
your facial expressions
197
501260
2000
你可以用臉部表情
08:23
can naturally and intuitively be used
198
503260
2000
自然、直覺地
08:25
to control an avatar or virtual character.
199
505260
3000
操控遊戲角色或虛擬人物
08:29
Obviously, you can experience the fantasy of magic
200
509260
2000
無庸置疑,你將會親身體驗幻想的魔力
08:31
and control the world with your mind.
201
511260
3000
和運用意念來控制世界
08:36
And also, colors, lighting,
202
516260
3000
顏色,燈光
08:39
sound and effects
203
519260
2000
聲音和音效
08:41
can dynamically respond to your emotional state
204
521260
2000
也可以不斷地變化來反映你的情緒狀態
08:43
to heighten the experience that you're having, in real time.
205
523260
3000
即時強化你的感受
08:47
And moving on to some applications
206
527260
2000
現在來看看應用程式
08:49
developed by developers and researchers around the world,
207
529260
3000
全世界的研發人員發明了
08:52
with robots and simple machines, for example --
208
532260
3000
不同的機械人和簡單的機器,例如
08:55
in this case, flying a toy helicopter
209
535260
2000
這個例子是操作玩具直昇機
08:57
simply by thinking "lift" with your mind.
210
537260
3000
只要用意念就可以讓它飛起來
09:00
The technology can also be applied
211
540260
2000
這項科技也可以應用在
09:02
to real world applications --
212
542260
2000
實際生活中
09:04
in this example, a smart home.
213
544260
2000
看看智能家居的例子
09:06
You know, from the user interface of the control system
214
546260
3000
從使用者界面控制系統
09:09
to opening curtains
215
549260
2000
來打開
09:11
or closing curtains.
216
551260
3000
或關上窗簾
09:22
And of course, also to the lighting --
217
562260
3000
當然電燈也可以
09:25
turning them on
218
565260
3000
09:28
or off.
219
568260
2000
或關
09:30
And finally,
220
570260
2000
最後
09:32
to real life-changing applications,
221
572260
2000
是應用在改善真實生活
09:34
such as being able to control an electric wheelchair.
222
574260
3000
例如能夠控制電動輪椅
09:37
In this example,
223
577260
2000
這個例子裡
09:39
facial expressions are mapped to the movement commands.
224
579260
3000
面部表情對應於移動方向的指令
09:42
Man: Now blink right to go right.
225
582260
3000
男聲: 現在眨右眼右轉
09:50
Now blink left to turn back left.
226
590260
3000
眨左眼左轉
10:02
Now smile to go straight.
227
602260
3000
微笑往前
10:08
TL: We really -- Thank you.
228
608260
2000
TL: 我們真的.... 多謝各位。
10:10
(Applause)
229
610260
5000
(鼓掌)
10:15
We are really only scratching the surface of what is possible today,
230
615260
3000
現今我們所做到的只是很小的一部分
10:18
and with the community's input,
231
618260
2000
有研發團隊的投入
10:20
and also with the involvement of developers
232
620260
2000
及全世界的研發和
10:22
and researchers from around the world,
233
622260
3000
研究人員的參與
10:25
we hope that you can help us to shape
234
625260
2000
我們希望這一項科技能夠
10:27
where the technology goes from here. Thank you so much.
235
627260
3000
從這裡一路順利發展。謝謝各位。
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7