A headset that reads your brainwaves | Tan Le

378,354 views ・ 2010-07-22

TED


請雙擊下方英文字幕播放視頻。

譯者: Jeannie Cheng 審譯者: Sunshine Wang
00:16
Up until now, our communication with machines
0
16260
2000
直到現在,我們與機器的溝通
00:18
has always been limited
1
18260
2000
仍局限於
00:20
to conscious and direct forms.
2
20260
2000
有意識和直接的模式
00:22
Whether it's something simple
3
22260
2000
不論是一些簡單的事情
00:24
like turning on the lights with a switch,
4
24260
2000
如用開關開燈
00:26
or even as complex as programming robotics,
5
26260
3000
或一些複雜的程式來控制機械人
00:29
we have always had to give a command to a machine,
6
29260
3000
我們都要給機器輸入一個
00:32
or even a series of commands,
7
32260
2000
甚至一系列的指令
00:34
in order for it to do something for us.
8
34260
3000
才能命令它執行一些動作
00:37
Communication between people, on the other hand,
9
37260
2000
相反的,人與人的溝通
00:39
is far more complex and a lot more interesting
10
39260
3000
就更加複雜和有趣得多
00:42
because we take into account
11
42260
2000
因為我們會考慮到
00:44
so much more than what is explicitly expressed.
12
44260
3000
言語未表達的言外之意
00:47
We observe facial expressions, body language,
13
47260
3000
我們會觀察表情、肢體語言
00:50
and we can intuit feelings and emotions
14
50260
2000
在對話中我們會用直覺來
00:52
from our dialogue with one another.
15
52260
3000
感受對方的感覺和情緒
00:55
This actually forms a large part
16
55260
2000
這些都是做決定時
00:57
of our decision-making process.
17
57260
2000
一些重要的因素
00:59
Our vision is to introduce
18
59260
2000
我們的願景是引進
01:01
this whole new realm of human interaction
19
61260
3000
全新的人與電腦的互動科技
01:04
into human-computer interaction
20
64260
2000
到人類互動的領域
01:06
so that computers can understand
21
66260
2000
這麼一來電腦不只可以
01:08
not only what you direct it to do,
22
68260
2000
明白你指示它所做的事情
01:10
but it can also respond
23
70260
2000
而且也會對面部表情
01:12
to your facial expressions
24
72260
2000
和情緒經歷
01:14
and emotional experiences.
25
74260
2000
作出反應
01:16
And what better way to do this
26
76260
2000
還有什麼比從大腦的
01:18
than by interpreting the signals
27
78260
2000
情感控制中樞直接解譯
01:20
naturally produced by our brain,
28
80260
2000
大腦產生的電波
01:22
our center for control and experience.
29
82260
3000
來得更好呢?
01:25
Well, it sounds like a pretty good idea,
30
85260
2000
這聽起來好像是不錯的主意
01:27
but this task, as Bruno mentioned,
31
87260
2000
但這個任務,正如Bruno所說
01:29
isn't an easy one for two main reasons:
32
89260
3000
並不容易,原因有兩個
01:32
First, the detection algorithms.
33
92260
3000
第一是大腦的偵查演算法
01:35
Our brain is made up of
34
95260
2000
我們的腦是由
01:37
billions of active neurons,
35
97260
2000
數十億個活躍的神經元所組成
01:39
around 170,000 km
36
99260
3000
如果把神經細胞的軸索連在一起
01:42
of combined axon length.
37
102260
2000
大概有十七萬公里
01:44
When these neurons interact,
38
104260
2000
這些神經元互動時
01:46
the chemical reaction emits an electrical impulse,
39
106260
2000
產生的化學作用所發射出的電脈衝
01:48
which can be measured.
40
108260
2000
能夠被測量到
01:50
The majority of our functional brain
41
110260
3000
大部分功能性腦
01:53
is distributed over
42
113260
2000
是分佈在
01:55
the outer surface layer of the brain,
43
115260
2000
大腦的表層
01:57
and to increase the area that's available for mental capacity,
44
117260
3000
心智能力功能也位於此,為了增加表面積
02:00
the brain surface is highly folded.
45
120260
3000
大腦皮質層有非常多的褶皺
02:03
Now this cortical folding
46
123260
2000
大腦皮質褶皺
02:05
presents a significant challenge
47
125260
2000
對分析電脈衝
02:07
for interpreting surface electrical impulses.
48
127260
3000
帶來一個很大的挑戰
02:10
Each individual's cortex
49
130260
2000
每個人大腦皮質層
02:12
is folded differently,
50
132260
2000
的褶皺都不同
02:14
very much like a fingerprint.
51
134260
2000
就像指紋一樣
02:16
So even though a signal
52
136260
2000
因此電脈衝訊息
02:18
may come from the same functional part of the brain,
53
138260
3000
雖然來自功能腦同樣的區域
02:21
by the time the structure has been folded,
54
141260
2000
但大腦皮質褶皺結構早已形成
02:23
its physical location
55
143260
2000
在不同的人的大腦裡
02:25
is very different between individuals,
56
145260
2000
即使是雙胞胎
02:27
even identical twins.
57
147260
3000
訊息發生位置也不同
02:30
There is no longer any consistency
58
150260
2000
大腦皮質層電脈衝訊息
02:32
in the surface signals.
59
152260
2000
沒有一致性
02:34
Our breakthrough was to create an algorithm
60
154260
2000
我們的突破是建立一個演算法
02:36
that unfolds the cortex,
61
156260
2000
攤開大腦皮質層
02:38
so that we can map the signals
62
158260
2000
去勘測這些
02:40
closer to its source,
63
160260
2000
訊息的原點
02:42
and therefore making it capable of working across a mass population.
64
162260
3000
繼而把它運用在大眾身上
02:46
The second challenge
65
166260
2000
第二項挑戰是
02:48
is the actual device for observing brainwaves.
66
168260
3000
觀察腦電波的儀器
02:51
EEG measurements typically involve
67
171260
2000
腦波測量基本上包括
02:53
a hairnet with an array of sensors,
68
173260
3000
一個有許多感應器的髮網
02:56
like the one that you can see here in the photo.
69
176260
3000
就像現在圖中所看到的
02:59
A technician will put the electrodes
70
179260
2000
技術人員會把電極
03:01
onto the scalp
71
181260
2000
用導電的膠或漿糊
03:03
using a conductive gel or paste
72
183260
2000
固定在頭皮上
03:05
and usually after a procedure of preparing the scalp
73
185260
3000
這個準備程序需要在頭皮製造
03:08
by light abrasion.
74
188260
2000
輕微的擦傷
03:10
Now this is quite time consuming
75
190260
2000
這個程序既費時
03:12
and isn't the most comfortable process.
76
192260
2000
又不舒服
03:14
And on top of that, these systems
77
194260
2000
再加上,這些系統
03:16
actually cost in the tens of thousands of dollars.
78
196260
3000
非常昂貴,得花上數萬美金
03:20
So with that, I'd like to invite onstage
79
200260
3000
現在,我邀請Evan Grant
03:23
Evan Grant, who is one of last year's speakers,
80
203260
2000
去年的演講者上台
03:25
who's kindly agreed
81
205260
2000
他很樂意
03:27
to help me to demonstrate
82
207260
2000
幫忙示範
03:29
what we've been able to develop.
83
209260
2000
我們所設計的儀器
03:31
(Applause)
84
211260
6000
(鼓掌)
03:37
So the device that you see
85
217260
2000
你們所看到的儀器是
03:39
is a 14-channel, high-fidelity
86
219260
2000
有十四個頻道,高傳真的
03:41
EEG acquisition system.
87
221260
2000
腦電波訊號擷取系統
03:43
It doesn't require any scalp preparation,
88
223260
3000
不需要任何頭皮準備程序
03:46
no conductive gel or paste.
89
226260
2000
沒有導電的膠或漿糊
03:48
It only takes a few minutes to put on
90
228260
3000
戴上它,等訊號穩定
03:51
and for the signals to settle.
91
231260
2000
只要幾分鐘
03:53
It's also wireless,
92
233260
2000
而且是無線的
03:55
so it gives you the freedom to move around.
93
235260
3000
它讓你活動自如
03:58
And compared to the tens of thousands of dollars
94
238260
3000
比起那些幾萬美元的
04:01
for a traditional EEG system,
95
241260
3000
傳統腦電波系統
04:04
this headset only costs
96
244260
2000
這個頭戴式耳機
04:06
a few hundred dollars.
97
246260
2000
只要幾百美金
04:08
Now on to the detection algorithms.
98
248260
3000
現在來談談大腦感應演算法
04:11
So facial expressions --
99
251260
2000
好,面部表情--
04:13
as I mentioned before in emotional experiences --
100
253260
2000
如同之前講到的情緒經驗--
04:15
are actually designed to work out of the box
101
255260
2000
這套系統有令人意想不到的設計
04:17
with some sensitivity adjustments
102
257260
2000
只要做一些敏感度調整
04:19
available for personalization.
103
259260
3000
就可以運用於個人化的使用
04:22
But with the limited time we have available,
104
262260
2000
但因時間的關係
04:24
I'd like to show you the cognitive suite,
105
264260
2000
現在只示範認知的部份
04:26
which is the ability for you
106
266260
2000
這套系統能夠讓您
04:28
to basically move virtual objects with your mind.
107
268260
3000
只用意念移動虛擬物件
04:32
Now, Evan is new to this system,
108
272260
2000
Evan是第一次接觸這個系統
04:34
so what we have to do first
109
274260
2000
因此我們要先
04:36
is create a new profile for him.
110
276260
2000
建立一個新的檔案
04:38
He's obviously not Joanne -- so we'll "add user."
111
278260
3000
他當然不是Joanne, 所以要增加一個用戶
04:41
Evan. Okay.
112
281260
2000
Evan,好了!
04:43
So the first thing we need to do with the cognitive suite
113
283260
3000
首先要做的是
04:46
is to start with training
114
286260
2000
練習發出一個
04:48
a neutral signal.
115
288260
2000
中立的訊號
04:50
With neutral, there's nothing in particular
116
290260
2000
Evan不需要做
04:52
that Evan needs to do.
117
292260
2000
什麼特別的事
04:54
He just hangs out. He's relaxed.
118
294260
2000
就這樣放輕鬆
04:56
And the idea is to establish a baseline
119
296260
2000
重點是建立一個基準線
04:58
or normal state for his brain,
120
298260
2000
或是大腦的正常狀態
05:00
because every brain is different.
121
300260
2000
因為每個人的腦都不相同
05:02
It takes eight seconds to do this,
122
302260
2000
這大概需要八秒的時間
05:04
and now that that's done,
123
304260
2000
完成了
05:06
we can choose a movement-based action.
124
306260
2000
我們可以選擇一個有動作的活動
05:08
So Evan, choose something
125
308260
2000
Evan,你可選擇一個
05:10
that you can visualize clearly in your mind.
126
310260
2000
在你腦海中可以清楚看到的事情
05:12
Evan Grant: Let's do "pull."
127
312260
2000
讓我們做一個"拉"的動作
05:14
Tan Le: Okay, so let's choose "pull."
128
314260
2000
好,點選"拉"
05:16
So the idea here now
129
316260
2000
我們現在
05:18
is that Evan needs to
130
318260
2000
需要Evan想像
05:20
imagine the object coming forward
131
320260
2000
一件物品在螢幕上
05:22
into the screen,
132
322260
2000
往前移動
05:24
and there's a progress bar that will scroll across the screen
133
324260
3000
他這樣做的時候
05:27
while he's doing that.
134
327260
2000
螢幕上會出現一個測量棒
05:29
The first time, nothing will happen,
135
329260
2000
第一次沒有任何事情發生
05:31
because the system has no idea how he thinks about "pull."
136
331260
3000
因為系統還不知道他怎麼想像"拉"的動作
05:34
But maintain that thought
137
334260
2000
在這八秒中
05:36
for the entire duration of the eight seconds.
138
336260
2000
持續想著這個念頭
05:38
So: one, two, three, go.
139
338260
3000
一、二、三、開始
05:49
Okay.
140
349260
2000
好了
05:51
So once we accept this,
141
351260
2000
當我們按了接受
05:53
the cube is live.
142
353260
2000
這個方塊就活了起來
05:55
So let's see if Evan
143
355260
2000
讓我們看看Evan
05:57
can actually try and imagine pulling.
144
357260
3000
能否真的嘗試想像"拉"的動作
06:00
Ah, good job!
145
360260
2000
哇! 非常好!
06:02
(Applause)
146
362260
3000
(鼓掌)
06:05
That's really amazing.
147
365260
2000
真是令人驚訝!
06:07
(Applause)
148
367260
4000
(鼓掌)
06:11
So we have a little bit of time available,
149
371260
2000
我們還有一些時間
06:13
so I'm going to ask Evan
150
373260
2000
我要請Evan
06:15
to do a really difficult task.
151
375260
2000
做一些比較困難的動作
06:17
And this one is difficult
152
377260
2000
這個有點難
06:19
because it's all about being able to visualize something
153
379260
3000
因為要想像
06:22
that doesn't exist in our physical world.
154
382260
2000
在物質界裡不存在的事物
06:24
This is "disappear."
155
384260
2000
就是 "消失"
06:26
So what you want to do -- at least with movement-based actions,
156
386260
2000
就動作而言
06:28
we do that all the time, so you can visualize it.
157
388260
3000
因為經常做這些動作,所以能"看見"它
06:31
But with "disappear," there's really no analogies --
158
391260
2000
但"消失"沒有任何類似的動作
06:33
so Evan, what you want to do here
159
393260
2000
Evan, 現在請你
06:35
is to imagine the cube slowly fading out, okay.
160
395260
3000
想像這個方塊慢慢消失
06:38
Same sort of drill. So: one, two, three, go.
161
398260
3000
一樣的練習。 一、二、三、開始
06:50
Okay. Let's try that.
162
410260
3000
可以了,我們試試吧
06:53
Oh, my goodness. He's just too good.
163
413260
3000
我的天啊!他真的是非常厲害
06:57
Let's try that again.
164
417260
2000
再試一次
07:04
EG: Losing concentration.
165
424260
2000
(EG儀器:) 失去專注力
07:06
(Laughter)
166
426260
2000
(笑聲)
07:08
TL: But we can see that it actually works,
167
428260
2000
這套系統真的辦到了
07:10
even though you can only hold it
168
430260
2000
雖然只維持
07:12
for a little bit of time.
169
432260
2000
一段很短的時間
07:14
As I said, it's a very difficult process
170
434260
3000
我認為想像"消失"
07:17
to imagine this.
171
437260
2000
真的是非常困難
07:19
And the great thing about it is that
172
439260
2000
這個系統了不起的是
07:21
we've only given the software one instance
173
441260
2000
這套軟體只有一次機會
07:23
of how he thinks about "disappear."
174
443260
3000
知道Evan是怎麼想像"消失"的
07:26
As there is a machine learning algorithm in this --
175
446260
3000
而這部機器便學會了演算它
07:29
(Applause)
176
449260
4000
(鼓掌)
07:33
Thank you.
177
453260
2000
謝謝
07:35
Good job. Good job.
178
455260
3000
很棒!很棒!
07:38
(Applause)
179
458260
2000
(鼓掌)
07:40
Thank you, Evan, you're a wonderful, wonderful
180
460260
3000
謝謝,Evan你真的是這項科技
07:43
example of the technology.
181
463260
3000
最佳的展示人員
07:46
So, as you can see, before,
182
466260
2000
正如你們所見
07:48
there is a leveling system built into this software
183
468260
3000
這個軟體有一個水準測量系統
07:51
so that as Evan, or any user,
184
471260
2000
Evan或其他使用者
07:53
becomes more familiar with the system,
185
473260
2000
對這個系統越熟悉
07:55
they can continue to add more and more detections,
186
475260
3000
就能不斷地增加更多,更多的檢測項目
07:58
so that the system begins to differentiate
187
478260
2000
這個系統就能開始分辨
08:00
between different distinct thoughts.
188
480260
3000
不同的明顯想法
08:04
And once you've trained up the detections,
189
484260
2000
當你訓練做這些檢測項目
08:06
these thoughts can be assigned or mapped
190
486260
2000
這些念頭、想法就能指定或聯繫到
08:08
to any computing platform,
191
488260
2000
任何的電腦平台、
08:10
application or device.
192
490260
2000
應用程式或儀器上
08:12
So I'd like to show you a few examples,
193
492260
2000
讓我為你們展示幾個例子
08:14
because there are many possible applications
194
494260
2000
這個新界面有
08:16
for this new interface.
195
496260
2000
很多可運用的應用程式
08:19
In games and virtual worlds, for example,
196
499260
2000
例如在遊戲或虛擬世界
08:21
your facial expressions
197
501260
2000
你可以用臉部表情
08:23
can naturally and intuitively be used
198
503260
2000
自然、直覺地
08:25
to control an avatar or virtual character.
199
505260
3000
操控遊戲角色或虛擬人物
08:29
Obviously, you can experience the fantasy of magic
200
509260
2000
無庸置疑,你將會親身體驗幻想的魔力
08:31
and control the world with your mind.
201
511260
3000
和運用意念來控制世界
08:36
And also, colors, lighting,
202
516260
3000
顏色,燈光
08:39
sound and effects
203
519260
2000
聲音和音效
08:41
can dynamically respond to your emotional state
204
521260
2000
也可以不斷地變化來反映你的情緒狀態
08:43
to heighten the experience that you're having, in real time.
205
523260
3000
即時強化你的感受
08:47
And moving on to some applications
206
527260
2000
現在來看看應用程式
08:49
developed by developers and researchers around the world,
207
529260
3000
全世界的研發人員發明了
08:52
with robots and simple machines, for example --
208
532260
3000
不同的機械人和簡單的機器,例如
08:55
in this case, flying a toy helicopter
209
535260
2000
這個例子是操作玩具直昇機
08:57
simply by thinking "lift" with your mind.
210
537260
3000
只要用意念就可以讓它飛起來
09:00
The technology can also be applied
211
540260
2000
這項科技也可以應用在
09:02
to real world applications --
212
542260
2000
實際生活中
09:04
in this example, a smart home.
213
544260
2000
看看智能家居的例子
09:06
You know, from the user interface of the control system
214
546260
3000
從使用者界面控制系統
09:09
to opening curtains
215
549260
2000
來打開
09:11
or closing curtains.
216
551260
3000
或關上窗簾
09:22
And of course, also to the lighting --
217
562260
3000
當然電燈也可以
09:25
turning them on
218
565260
3000
09:28
or off.
219
568260
2000
或關
09:30
And finally,
220
570260
2000
最後
09:32
to real life-changing applications,
221
572260
2000
是應用在改善真實生活
09:34
such as being able to control an electric wheelchair.
222
574260
3000
例如能夠控制電動輪椅
09:37
In this example,
223
577260
2000
這個例子裡
09:39
facial expressions are mapped to the movement commands.
224
579260
3000
面部表情對應於移動方向的指令
09:42
Man: Now blink right to go right.
225
582260
3000
男聲: 現在眨右眼右轉
09:50
Now blink left to turn back left.
226
590260
3000
眨左眼左轉
10:02
Now smile to go straight.
227
602260
3000
微笑往前
10:08
TL: We really -- Thank you.
228
608260
2000
TL: 我們真的.... 多謝各位。
10:10
(Applause)
229
610260
5000
(鼓掌)
10:15
We are really only scratching the surface of what is possible today,
230
615260
3000
現今我們所做到的只是很小的一部分
10:18
and with the community's input,
231
618260
2000
有研發團隊的投入
10:20
and also with the involvement of developers
232
620260
2000
及全世界的研發和
10:22
and researchers from around the world,
233
622260
3000
研究人員的參與
10:25
we hope that you can help us to shape
234
625260
2000
我們希望這一項科技能夠
10:27
where the technology goes from here. Thank you so much.
235
627260
3000
從這裡一路順利發展。謝謝各位。
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog