A headset that reads your brainwaves | Tan Le

377,362 views ใƒป 2010-07-22

TED


์•„๋ž˜ ์˜๋ฌธ์ž๋ง‰์„ ๋”๋ธ”ํด๋ฆญํ•˜์‹œ๋ฉด ์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค.

๋ฒˆ์—ญ: Sunphil Ga ๊ฒ€ํ† : Seo Rim Kim
00:16
Up until now, our communication with machines
0
16260
2000
์ง€๊ธˆ๊นŒ์ง€, ๊ธฐ๊ณ„๋ฅผ ํ†ตํ•œ ์šฐ๋ฆฌ์˜ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜์€
00:18
has always been limited
1
18260
2000
์˜์‹, ๋ถ„๋ช…ํ•œ ํ˜•ํƒœ ๋ถ€๋ถ„์—์„œ๋Š”
00:20
to conscious and direct forms.
2
20260
2000
์–ธ์ œ๋‚˜ ํ•œ๊ณ„๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
00:22
Whether it's something simple
3
22260
2000
์Šค์œ„์น˜๋กœ ๋ถˆ์„ ํ‚ค๋Š” ๊ฒƒ๊ณผ ๊ฐ™์ด
00:24
like turning on the lights with a switch,
4
24260
2000
๊ฐ„๋‹คํ•˜๊ฑฐ๋‚˜ ํ˜น์€ ์‹ฌ์ง€์–ด
00:26
or even as complex as programming robotics,
5
26260
3000
๋กœ๋ด‡ ํ”„๋กœ๊ทธ๋ž˜๋ฐ๊ณผ ๊ฐ™์ด ๋ณต์žกํ•ฉ๋‹ˆ๋‹ค,
00:29
we have always had to give a command to a machine,
6
29260
3000
์šฐ๋ฆฌ๋Š” ๊ธฐ๊ณ„์— ๋ช…๋ น ์ฒด๊ณ„๋ฅผ ์ค๋‹ˆ๋‹ค
00:32
or even a series of commands,
7
32260
2000
์šฐ๋ฆฌ๋ฅผ ์œ„ํ•ด ๋ฌด์–ธ๊ฐ€๋ฅผ
00:34
in order for it to do something for us.
8
34260
3000
์‹คํ–‰์‹œํ‚ค๊ธฐ ์œ„ํ•œ ๊ฒƒ์ด์ฃ .
00:37
Communication between people, on the other hand,
9
37260
2000
๋ฐ˜๋Œ€๋กœ ์‚ฌ๋žŒ๋“ค ์‚ฌ์ด์˜ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜์€ ์ข€ ๋” ๋ณต์žกํ•˜๊ฑฐ๋‚˜
00:39
is far more complex and a lot more interesting
10
39260
3000
๋”์šฑ๋” ํฅ๋ฏธ๋กญ์Šต๋‹ˆ๋‹ค,
00:42
because we take into account
11
42260
2000
์™œ๋ƒํ•˜๋ฉด ์šฐ๋ฆฌ๊ฐ€ ์ข€๋”
00:44
so much more than what is explicitly expressed.
12
44260
3000
๋šœ๋ ทํ•˜๊ฒŒ ๊ฐ์ •์„ ๊ณ ๋ คํ•˜๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
00:47
We observe facial expressions, body language,
13
47260
3000
์šฐ๋ฆฌ๋Š” ์–ผ๊ตด ํ‘œ์ •, ๋ชธ์˜ ์›€์ง์ž„์„ ๊ด€์ฐฐํ•ฉ๋‹ˆ๋‹ค,
00:50
and we can intuit feelings and emotions
14
50260
2000
์šฐ๋ฆฌ๋Š” ์ƒ๋Œ€๋ฐฉ๊ณผ์˜ ๋Œ€ํ™”์—์„œ ์˜ค๋Š”
00:52
from our dialogue with one another.
15
52260
3000
๊ฐ์ •๊ณผ ๋Š๋‚Œ์„ ์ง๊ด€์ ์œผ๋กœ ๋Š๋‚„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
00:55
This actually forms a large part
16
55260
2000
์‹ค์ œ๋กœ ์šฐ๋ฆฌ์˜ ์˜์‚ฌ๊ฒฐ์ •์—
00:57
of our decision-making process.
17
57260
2000
ํฐ ๋ถ€๋ถ„์„ ์ฐจ์ง€๊ณ ํ•˜๊ณ  ์žˆ์ฃ .
00:59
Our vision is to introduce
18
59260
2000
์šฐ๋ฆฌ์˜ ๋น„์ ผ์€
01:01
this whole new realm of human interaction
19
61260
3000
ํฐ ๋ฒ”์œ„์—์„œ์˜ ์ธ๊ฐ„์˜ ๊ต๋ฅ˜๋ฅผ
01:04
into human-computer interaction
20
64260
2000
์ธ๊ฐ„-์ปดํ“จํ„ฐ ๊ต๋ฅ˜์— ์†Œ๊ฐœํ•˜๊ณ  ํ•ฉ๋‹ˆ๋‹ค,
01:06
so that computers can understand
21
66260
2000
๊ทธ๋ž˜์„œ ์ปดํ“จํ„ฐ๊ฐ€ ๋ฐ”๋กœ ์‹คํ–‰ํ•˜๊ณ ์ž ํ•˜๋Š” ๊ฒƒ์„
01:08
not only what you direct it to do,
22
68260
2000
์ดํ•ดํ•  ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ,
01:10
but it can also respond
23
70260
2000
๋˜ํ•œ ์–ผ๊ตด ํ‘œ์ •
01:12
to your facial expressions
24
72260
2000
๊ฐ์ • ๊ฒฝํ—˜์—
01:14
and emotional experiences.
25
74260
2000
์‘๋‹ตํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
01:16
And what better way to do this
26
76260
2000
์‹ ํ˜ธ๋ฅผ ํ•ด์„ํ•˜๋Š” ๊ฒƒ๋ณด๋‹ค
01:18
than by interpreting the signals
27
78260
2000
์ด๊ฒƒ์„ ๋” ์ž˜ ์‹คํ–‰์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์€
01:20
naturally produced by our brain,
28
80260
2000
๋‡Œ๋ฅผ ํ†ตํ•ด ์กฐ์ข…๊ณผ ๊ฒฝํ—˜์„
01:22
our center for control and experience.
29
82260
3000
ํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค.
01:25
Well, it sounds like a pretty good idea,
30
85260
2000
์Œ, ์ •๋ง ์ข‹์€ ์•„์ด๋””์–ด ๊ฐ™์Šต๋‹ˆ๋‹ค,
01:27
but this task, as Bruno mentioned,
31
87260
2000
ํ•˜์ง€๋งŒ ์ด ์ž‘์—…์€, ๋ถ€๋ฅด๋…ธ๊ฐ€ ์–ธ๊ธ‰ํ•˜์‹  ๊ฒƒ์ฒ˜๋Ÿผ,
01:29
isn't an easy one for two main reasons:
32
89260
3000
๋‘ ๊ฐ€์ง€ ์ฃผ์š” ๋ฌธ์ œ๋กœ ์ธํ•ด ์‰ฝ์ง€๋Š” ์•Š์ฃ :
01:32
First, the detection algorithms.
33
92260
3000
์ฒซ ์งธ, ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ถ”์ •์ž…๋‹ˆ๋‹ค.
01:35
Our brain is made up of
34
95260
2000
์šฐ๋ฆฌ์˜ ๋‡Œ๋Š” 170,000km์˜
01:37
billions of active neurons,
35
97260
2000
์ถ•์ƒ‰๋Œ๊ธฐ๋ฅผ ๋‘˜๋Ÿฌ์‹ธ๊ณ  ์žˆ๋Š”
01:39
around 170,000 km
36
99260
3000
์ˆ˜์‹ญ์–ต๊ฐœ์˜ ํ™œ๋™์ ์ธ
01:42
of combined axon length.
37
102260
2000
๋‰ด๋Ÿฐ์œผ๋กœ ๋งŒ๋“ค์–ด์กŒ์Šต๋‹ˆ๋‹ค.
01:44
When these neurons interact,
38
104260
2000
์ด ๋‰ด๋Ÿฐ๋“ค์ด ์„œ๋กœ ์‹ ํ˜ธ๋ฅผ ๋ณด๋‚ผ ๋•Œ,
01:46
the chemical reaction emits an electrical impulse,
39
106260
2000
ํ™”ํ•™์ ์ธ ๋ฐ˜์‘์ด ์ „๊ธฐ์  ์‹ ํ˜ธ๋ฅผ ๋ฐฉ์ถœํ•ฉ๋‹ˆ๋‹ค
01:48
which can be measured.
40
108260
2000
์ด ์‹ ํ˜ธ๋Š” ์ธก์ •๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
01:50
The majority of our functional brain
41
110260
3000
ํฐ ๊ธฐ๋Šฅ์„ ๋‹น๋‹ดํ•˜๊ณ  ์žˆ๋Š” ๋‡Œ๋Š”
01:53
is distributed over
42
113260
2000
๋ฐ”๊นฅ์ชฝ ๋ถ€๋ถ„์—
01:55
the outer surface layer of the brain,
43
115260
2000
๋ถ„ํฌํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
01:57
and to increase the area that's available for mental capacity,
44
117260
3000
์ •์‹  ์ˆ˜์šฉ์ด ๊ฐ€๋Šฅํ•œ ์ด ์˜์—ญ์„ ์ฆ๊ฐ€์‹œํ‚ค๊ธฐ ์œ„ํ•ด,
02:00
the brain surface is highly folded.
45
120260
3000
๋‡Œ์˜ ํ‘œ๋ฉด์€ ๋งค์šฐ ์ ‘ํ˜€์žˆ๋Š” ์ƒํƒœ์ž…๋‹ˆ๋‹ค.
02:03
Now this cortical folding
46
123260
2000
์ด ์ ‘ํ˜€์ง„ ๋Œ€๋‡Œ ํ”ผ์งˆ์€
02:05
presents a significant challenge
47
125260
2000
๋ถ„๋ช…ํ•œ ๋„์ „์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค
02:07
for interpreting surface electrical impulses.
48
127260
3000
๋‡Œ ํ‘œ๋ฉด์˜ ์ „๊ธฐ์  ์‹ ํ˜ธ๋ฅผ ํ•ด์„ํ•˜๊ธฐ ์œ„ํ•œ ๊ฒƒ์ด์ฃ .
02:10
Each individual's cortex
49
130260
2000
๊ฐœ์ธ์˜ ํ”ผ์งˆ์€
02:12
is folded differently,
50
132260
2000
๋‹ค๋ฅด๊ฒŒ ์ ‘ํ˜€์žˆ์Šต๋‹ˆ๋‹ค,
02:14
very much like a fingerprint.
51
134260
2000
๋งˆ์น˜ ์ง€๋ฌธ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค.
02:16
So even though a signal
52
136260
2000
๊ทธ๋ž˜์„œ ๋น„๋ก ํ•˜๋‚˜์˜ ์‹ ํ˜ธ๊ฐ€
02:18
may come from the same functional part of the brain,
53
138260
3000
์ ‘ํ˜€์ง„ ๊ตฌ์กฐ์  ์‹œ๊ฐ„์— ์˜ํ•ด
02:21
by the time the structure has been folded,
54
141260
2000
๊ธฐ๋Šฅ์ ์œผ๋กœ ๊ฐ™์€ ๋‡Œ ๋ถ€๋ถ„์—์„œ ์™”๋‹ค๊ณ  ํ•ด๋„,
02:23
its physical location
55
143260
2000
๋ฌผ๋ฆฌ์ ์ธ ์˜์น˜๋Š”
02:25
is very different between individuals,
56
145260
2000
๊ฐœ์ธ๋งˆ๋‹ค ๋งค์šฐ ๋‹ค๋ฆ…๋‹ˆ๋‹ค,
02:27
even identical twins.
57
147260
3000
์‹ฌ์ง€์–ด ์Œ๋‘ฅ์ด๋„ ๋‹ค๋ฅด์ฃ .
02:30
There is no longer any consistency
58
150260
2000
ํ‘œ๋ฉด์˜ ์‹ ํ˜ธ๊ฐ€ ๋”์ด์ƒ
02:32
in the surface signals.
59
152260
2000
์ง€์†์ ์ด์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
02:34
Our breakthrough was to create an algorithm
60
154260
2000
์šฐ๋ฆฌ์˜ ๋„์ „์€ ํ”ผ์งˆ์„ ๋‚˜ํƒ€๋‚ด๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„
02:36
that unfolds the cortex,
61
156260
2000
๋งŒ๋“ค์–ด ๋‚ด๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค,
02:38
so that we can map the signals
62
158260
2000
๊ทธ๋ž˜์„œ ์šฐ๋ฆฌ๋Š” ์ด ์‹ ํ˜ธ๋ฅผ
02:40
closer to its source,
63
160260
2000
์ง€๋„ํ™” ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค,
02:42
and therefore making it capable of working across a mass population.
64
162260
3000
๊ทธ๋ž˜์„œ ํฐ ๋งŽ์€ ์ผ๋“ค์„ ๊ฐ€๋Šฅํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•ฉ๋‹ˆ๋‹ค.
02:46
The second challenge
65
166260
2000
๋‘ ๋ฒˆ์งธ ๋„์ „์€
02:48
is the actual device for observing brainwaves.
66
168260
3000
๋‡ŒํŒŒ๋ฅผ ๊ด€์ฐฐํ•˜๋Š” ์‹ค์งˆ์ ์ธ ๋„๊ตฌ์ž…๋‹ˆ๋‹ค.
02:51
EEG measurements typically involve
67
171260
2000
EEG ์ธก์ •์žฅ์น˜๋Š” ํ‘œ์ค€์ ์œผ๋กœ
02:53
a hairnet with an array of sensors,
68
173260
3000
์„ผ์„œ ๋ณ‘๋ ฌ์ด ์žˆ๋Š” ํ—ฌ๋ฉง์„ ํฌํ•จํ•˜์ฃ ,
02:56
like the one that you can see here in the photo.
69
176260
3000
์ง€๊ธˆ ์‚ฌ์ง„์—์„œ ๋ณด์‹œ๋Š” ๊ฒƒ๊ณผ ๊ฐ™์€ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
02:59
A technician will put the electrodes
70
179260
2000
๊ธฐ์ˆ ์ž๋Š” ์ „๊ทน์„ ๋‘ํ”ผ ์œ„์—
03:01
onto the scalp
71
181260
2000
์˜ฌ๋ ค๋†“์Šต๋‹ˆ๋‹ค
03:03
using a conductive gel or paste
72
183260
2000
์ „๋„์„ฑ์˜ ์ ค ํ˜น์€ ์ ‘์ฐฉ๋ฅ˜๋ฅผ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค
03:05
and usually after a procedure of preparing the scalp
73
185260
3000
๋ณดํ†ต ๋‘ํ”ผ์— ์ž‘์€ ์ž๊ทน์— ์˜ํ•œ ์ค€๋น„๊ณผ์ • ์ดํ›„์˜
03:08
by light abrasion.
74
188260
2000
์ผ์ด์ฃ 
03:10
Now this is quite time consuming
75
190260
2000
์ง€๊ธˆ ์ด๊ฒƒ์€ ๊ฝค ์‹œ๊ฐ„์„ ์†Œ๋น„ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค
03:12
and isn't the most comfortable process.
76
192260
2000
ํ•˜์ง€๋งŒ ๊ฐ€์žฅ ์ข‹์€ ํ”„๋กœ์„ธ์Šค๋Š” ์•„๋‹™๋‹ˆ๋‹ค.
03:14
And on top of that, these systems
77
194260
2000
์ด ์‹œ์Šคํ…œ์€ ์‹ค์งˆ์ ์œผ๋กœ
03:16
actually cost in the tens of thousands of dollars.
78
196260
3000
์ˆ˜ ๋งŒ๋‹ฌ๋Ÿฌ์˜ ๊ฐ€๊ฒฉ์ž…๋‹ˆ๋‹ค.
03:20
So with that, I'd like to invite onstage
79
200260
3000
๊ทธ๋ž˜์„œ ์ด ์žฅ์น˜์™€ ํ•จ๊ป˜, ์ €๋Š” ์—๋ธ ๊ทธ๋žœํŠธ์”จ๋ฅผ
03:23
Evan Grant, who is one of last year's speakers,
80
203260
2000
๋ฌด๋Œ€์— ์ดˆ๋Œ€ํ•˜๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค, ๊ทธ๋Š” ์ž‘๋…„ ์—ฐ์„ค์ž์ด์…จ๊ณ ,
03:25
who's kindly agreed
81
205260
2000
์นœ์ ˆํ•˜๊ฒŒ๋„ ์šฐ๋ฆฌ๊ฐ€
03:27
to help me to demonstrate
82
207260
2000
๊ฐœ๋ฐœํ–ˆ๋˜ ํ”„๋กœ๊ทธ๋žจ ์‹œ์—ฐ์„
03:29
what we've been able to develop.
83
209260
2000
๋„์›€ ์ฃผ์‹œ๊ธฐ๋กœ ํ—ˆ๋ฝ ํ•ด์ฃผ์…จ์Šต๋‹ˆ๋‹ค.
03:31
(Applause)
84
211260
6000
(๋ฐ•์ˆ˜)
03:37
So the device that you see
85
217260
2000
๋ณด๊ณ ๊ณ„์‹  ์ด ์žฅ์น˜๋Š”
03:39
is a 14-channel, high-fidelity
86
219260
2000
14๊ฐœ์˜ ์ฑ„๋„, ๊ณ ์„ฑ๋Šฅ
03:41
EEG acquisition system.
87
221260
2000
EEG ์ˆ˜์‹  ์‹œ์Šคํ…œ์ž…๋‹ˆ๋‹ค.
03:43
It doesn't require any scalp preparation,
88
223260
3000
๋‘ํ”ผ ์ค€๋น„๊ณผ์ •, ์ „๋„์„ฑ์˜
03:46
no conductive gel or paste.
89
226260
2000
์ ค ํ˜น์€ ์ ‘์ฐฉ๋ฅ ๋ฅผ ํ•„์š”๋กœ ํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
03:48
It only takes a few minutes to put on
90
228260
3000
์ด ์žฅ์น˜๋Š” ์ฐฉ์šฉํ•˜๊ณ  ์‹ ํ˜ธ๊ฐ€ ์ •์ฐฉ๋˜๋Š”๋ฐ
03:51
and for the signals to settle.
91
231260
2000
์งง์€ ์‹œ๊ฐ„์ด ๊ฑธ๋ฆฝ๋‹ˆ๋‹ค.
03:53
It's also wireless,
92
233260
2000
๊ฒŒ๋‹ค๊ฐ€ ๋ฌด์„ ์ด์ฃ ,
03:55
so it gives you the freedom to move around.
93
235260
3000
๊ทธ๋ž˜์„œ ์šฐ๋ฆฌ์—๊ฒŒ ์ด๋™์˜ ์ž์œ ๋กœ์›€์„ ์ฃผ์ฃ .
03:58
And compared to the tens of thousands of dollars
94
238260
3000
์ˆ˜ ๋งŒ ๋‹ฌ๋Ÿฌ๊ฐ€ ๋“œ๋Š” EEG ์‹œ์Šคํ…œ๊ณผ ๋น„๊ตํ•ด์„œ
04:01
for a traditional EEG system,
95
241260
3000
์ด ํ—ค๋“œ์…‹์€
04:04
this headset only costs
96
244260
2000
์˜ค์ง ์ˆ˜๋ฐฑ๋‹ฌ๋Ÿฌ ์ •๋„
04:06
a few hundred dollars.
97
246260
2000
๋น„์šฉ์ด ๋“ค์ฃ .
04:08
Now on to the detection algorithms.
98
248260
3000
์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ถ”์ ์— ๊ด€ํ•ด์„œ ๋ง์ด์ฃ .
04:11
So facial expressions --
99
251260
2000
์•ˆ๋ฉด ํ‘œํ˜„๋ ฅ์€ --
04:13
as I mentioned before in emotional experiences --
100
253260
2000
์ œ๊ฐ€ ์ด์ „์— ์–ธ๊ธ‰ํ–ˆ๋˜ ๊ฐ์ • ํ‘œํ˜„๋“ค์€ --
04:15
are actually designed to work out of the box
101
255260
2000
๋ช‡๋ช‡ ์žฅ๋น„์™€ ํ•จ๊ป˜ ์ฆ‰์‹œ ํ™œ์šฉ ๊ฐ€๋Šฅํ•˜๋„๋ก
04:17
with some sensitivity adjustments
102
257260
2000
๋งŒ๋“ค์–ด์กŒ์œผ๋ฉฐ ๊ฐœ์ธํ™”๊ฐ€
04:19
available for personalization.
103
259260
3000
๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค.
04:22
But with the limited time we have available,
104
262260
2000
ํ•˜์ง€๋งŒ ์ง€๊ธˆ ๊ฐ€๋Šฅํ•œ ํ•œ์ •๋œ ์‹œ๊ฐ„์—,
04:24
I'd like to show you the cognitive suite,
105
264260
2000
์ €๋Š” ์ด ์žฅ์น˜๋ฅผ ๋ณด์—ฌ์ฃผ๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค,
04:26
which is the ability for you
106
266260
2000
๊ธฐ๋ณธ์ ์œผ๋กœ ์‹ค์ œ ๋ฌผ์ฒด๋ฅผ
04:28
to basically move virtual objects with your mind.
107
268260
3000
์—ฌ๋Ÿฌ๋ถ„์˜ ๋งˆ์Œ์œผ๋กœ ์›€์ง์ด๊ฒŒ ํ•˜๋Š” ๋Šฅ๋ ฅ์ด ์žˆ์ฃ .
04:32
Now, Evan is new to this system,
108
272260
2000
์—๋ธ์—๊ฒŒ ์ด ์‹œ์Šคํ…œ์ด ์ฒ˜์Œ์ž…๋‹ˆ๋‹ค,
04:34
so what we have to do first
109
274260
2000
์šฐ๋ฆฌ๊ฐ€ ์ฒ˜์Œ์œผ๋กœ ํ•ด์•ผ๋˜๋Š” ๊ฒƒ์€
04:36
is create a new profile for him.
110
276260
2000
๊ทธ์˜ ์ƒˆ๋กœ์šด ํ”„๋กœํ•„์„ ๋งŒ๋“œ๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
04:38
He's obviously not Joanne -- so we'll "add user."
111
278260
3000
๋ถ„๋ช…ํ•˜๊ฒŒ ์กฐ์•ˆ์ด ์•„๋‹ˆ์ฃ  -- ์œ ์ € ๋“ฑ๋ก์„ ํ•˜์„ธ์š”
04:41
Evan. Okay.
112
281260
2000
์—๋ธ: ๋„ค.
04:43
So the first thing we need to do with the cognitive suite
113
283260
3000
์ด ์žฅ์น˜์— ๊ฐ€์žฅ ๋จผ์ € ํ•„์š”ํ•œ ๊ฒƒ์€
04:46
is to start with training
114
286260
2000
์ค‘๋ฆฝ ์‹ ํ˜ธ ํŠธ๋ ˆ์ด๋‹์„
04:48
a neutral signal.
115
288260
2000
์‹œ์ž‘ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
04:50
With neutral, there's nothing in particular
116
290260
2000
์ค‘๋ฆฝ์‹ ํ˜ธ์™€ ํ•จ๊ป˜, ํŠน๋ณ„ํ•˜๊ฒŒ ์—๋ธ์ด
04:52
that Evan needs to do.
117
292260
2000
ํ•„์š”๋กœ ํ•˜๋Š” ํ–‰๋™์€ ์—†์Šต๋‹ˆ๋‹ค.
04:54
He just hangs out. He's relaxed.
118
294260
2000
์‹œ์ž‘ํ•ฉ๋‹ˆ๋‹ค. ์ด์™„๋œ ์ƒํƒœ์ด์ฃ .
04:56
And the idea is to establish a baseline
119
296260
2000
์ด ์•„์ด๋””์–ด๋Š” ์—๋ธ์˜ ๋‡Œ๋ฅผ ์œ„ํ•œ
04:58
or normal state for his brain,
120
298260
2000
๊ธฐ๋ณธ ํ˜น์€ ๋ณดํ†ต์˜ ์ƒํƒœ๋ฅผ ๋งŒ๋“ญ๋‹ˆ๋‹ค,
05:00
because every brain is different.
121
300260
2000
์™œ๋ƒํ•˜๋ฉด ๋ชจ๋“  ๋‡Œ๊ฐ€ ๋‹ค๋ฅด๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
05:02
It takes eight seconds to do this,
122
302260
2000
์ด ์ž‘์—…์„ ์œ„ํ•ด 8์ดˆ๊ฐ€ ์†Œ์š”๋ฉ๋‹ˆ๋‹ค.
05:04
and now that that's done,
123
304260
2000
์ง€๊ธˆ, ๋‹ค ๋์Šต๋‹ˆ๋‹ค,
05:06
we can choose a movement-based action.
124
306260
2000
์šฐ๋ฆฌ๋Š” ์šด๋™๊ธฐ๋ฐ˜์˜ ๋™์ž‘์„ ์„ ํƒํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
05:08
So Evan, choose something
125
308260
2000
๊ทธ๋ž˜์„œ ๊ทธ๋Š” ๋งˆ์Œ ์†์—์„œ
05:10
that you can visualize clearly in your mind.
126
310260
2000
์‹œ๊ฐํ™” ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์„ ์„ ํƒํ•ฉ๋‹ˆ๋‹ค.
05:12
Evan Grant: Let's do "pull."
127
312260
2000
์—๋ธ ๊ทธ๋žœํŠธ: ๋Œ์–ด ๋‹น๊ธฐ๊ธฐ๋กœ ํ•˜์ฃ .
05:14
Tan Le: Okay, so let's choose "pull."
128
314260
2000
ํƒ„ ๋ฆฌ: ์ข‹์•„์š”. ๋‹น๊ธฐ๊ธฐ๋ฅผ ์„ ํƒํ•˜์ฃ .
05:16
So the idea here now
129
316260
2000
์—ฌ๊ธฐ์žˆ๋Š” ์ด ์•„์ด๋””์–ด๋Š”
05:18
is that Evan needs to
130
318260
2000
๊ทธ๋Š” ๋ฌผ์ฒด๊ฐ€
05:20
imagine the object coming forward
131
320260
2000
์Šคํฌ๋ฆฐ ์•ž์œผ๋กœ ๋‚˜์˜ฌ ์ˆ˜ ์žˆ๋„๋ก
05:22
into the screen,
132
322260
2000
์ƒ์ƒํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
05:24
and there's a progress bar that will scroll across the screen
133
324260
3000
๊ทธ๊ฐ€ ๊ทธ๊ฒƒ์„ ์‹คํ–‰ํ•˜๋Š” ๋™์•ˆ, ํ™”๋ฉด์„ ์Šคํฌ๋กค ํ•˜๋Š”
05:27
while he's doing that.
134
327260
2000
์ง„ํ–‰ ๋ฐ”๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
05:29
The first time, nothing will happen,
135
329260
2000
์ฒ˜์Œ์—๋Š”, ์•„๋ฌด ๊ฒƒ๋„ ์ผ์–ด๋‚˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค,
05:31
because the system has no idea how he thinks about "pull."
136
331260
3000
์™œ๋ƒํ•˜๋ฉด ์ด ์‹œ์Šคํ…œ์ด '๋‹น๊ธฐ๊ธฐ'์— ๊ด€ํ•ด ๊ทธ๊ฐ€ ์–ด๋–ป๊ฒŒ ์ƒ๊ฐํ•˜๋Š”์ง€ ๋ชจ๋ฅด๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
05:34
But maintain that thought
137
334260
2000
ํ•˜์ง€๋งŒ 8์ดˆ ๋™์•ˆ
05:36
for the entire duration of the eight seconds.
138
336260
2000
๋‹น๊ธฐ๊ธฐ ์ƒ๊ฐ์„ ์œ ์ง€ํ•˜์„ธ์š”.
05:38
So: one, two, three, go.
139
338260
3000
๊ทธ๋Ÿผ, ํ•˜๋‚˜, ๋‘˜, ์…‹, ์‹œ์ž‘.
05:49
Okay.
140
349260
2000
์ข‹์•„์š”.
05:51
So once we accept this,
141
351260
2000
์ด๋ ‡๊ฒŒ ํ•œ๋ฒˆ ๋” ์ด๊ฒƒ์„ ์Šน์ธํ•˜๋ฉด,
05:53
the cube is live.
142
353260
2000
ํ๋ธŒ๋Š” ์‚ด์•„์žˆ์Šต๋‹ˆ๋‹ค.
05:55
So let's see if Evan
143
355260
2000
๊ทธ๋Ÿผ, ์—๋ธ์ด ์‹ค์ œ๋กœ
05:57
can actually try and imagine pulling.
144
357260
3000
๋‹น๊ธฐ๊ธฐ๋ฅผ ์ƒ์ƒํ•˜๊ณ  ์‹œ๋„ํ•˜๋Š”์ง€ ๋ด…์‹œ๋‹ค.
06:00
Ah, good job!
145
360260
2000
์•„, ์ž˜ํ•˜์…จ์–ด์š”!
06:02
(Applause)
146
362260
3000
(๋ฐ•์ˆ˜)
06:05
That's really amazing.
147
365260
2000
๋งค์šฐ ๋†€๋ž์Šต๋‹ˆ๋‹ค.
06:07
(Applause)
148
367260
4000
(๋ฐ•์ˆ˜)
06:11
So we have a little bit of time available,
149
371260
2000
์ด๋ ‡๊ฒŒ ์•ฝ๊ฐ„์˜ ์‹œ๊ฐ„์ด ๊ฑธ๋ฆฝ๋‹ˆ๋‹ค,
06:13
so I'm going to ask Evan
150
373260
2000
์ด์ œ ์ €๋Š” ์—๋ธ์—๊ฒŒ
06:15
to do a really difficult task.
151
375260
2000
์ข€ ๋” ์–ด๋ ค์šด ์ž‘์—…์„ ์‹œํ‚ค๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค.
06:17
And this one is difficult
152
377260
2000
์ด ์ž‘์—…์€ ์–ด๋ ต์Šต๋‹ˆ๋‹ค
06:19
because it's all about being able to visualize something
153
379260
3000
์šฐ๋ฆฌ์˜ ๋ฌผ์งˆ์ ์ธ ์„ธ์ƒ์— ์กด์žฌํ•˜์ง€ ์•Š๋Š”
06:22
that doesn't exist in our physical world.
154
382260
2000
๋ฌด์–ธ๊ฐ€๋ฅผ ์‹œ๊ฐํ™” ํ•ด์•ผ ๋˜๊ธฐ ๋•Œ๋ฌธ์ด์ฃ .
06:24
This is "disappear."
155
384260
2000
"์‚ฌ๋ผ์ง€๊ธฐ"์ž…๋‹ˆ๋‹ค.
06:26
So what you want to do -- at least with movement-based actions,
156
386260
2000
์ ์–ด๋„ ์šด๋™์„ ๊ธฐ๋ฐ˜ํ•œ ํ–‰๋™์„,
06:28
we do that all the time, so you can visualize it.
157
388260
3000
์ด๊ฒƒ์„ ํ•ญ์ƒ ์‹คํ–‰ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ด๊ฒƒ์„ ์‹œ๊ฐํ™” ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
06:31
But with "disappear," there's really no analogies --
158
391260
2000
ํ•˜์ง€๋งŒ ์‚ฌ๋ผ์ง€๊ธฐ๋Š”, ์‹ค์ œ๋กœ ์œ ์‚ฌ์„ฑ์ด ์กด์žฌํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
06:33
so Evan, what you want to do here
159
393260
2000
๊ทธ๋Ÿผ ์—๋ธ, ์—ฌ๊ธฐ์„œ ํ•˜๊ณ ์ž ํ•˜๋Š” ๊ฒƒ์€
06:35
is to imagine the cube slowly fading out, okay.
160
395260
3000
ํ๋ธŒ๊ฐ€ ์ ์ฐจ ์‚ฌ๋ผ์ง€๋Š” ๊ฒƒ์„ ์ƒ์ƒํ•˜์‹œ๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค, ์•„์‹œ๊ฒ ์ฃ .
06:38
Same sort of drill. So: one, two, three, go.
161
398260
3000
๋“œ๋ฆด ์ข…๋ฅ˜์™€ ์œ ์‚ฌํ•ฉ๋‹ˆ๋‹ค. ํ•˜๋‚˜, ๋‘˜, ์…‹, ์‹œ์ž‘.
06:50
Okay. Let's try that.
162
410260
3000
์ข‹์•„์š”, ์‹œ๋„ํ•ด๋ณด์ฃ .
06:53
Oh, my goodness. He's just too good.
163
413260
3000
์˜ค, ๋ง™์†Œ์‚ฌ. ๋„ˆ๋ฌด ์ž˜ ํ•˜์‹œ๋„ค์š”.
06:57
Let's try that again.
164
417260
2000
๋‹ค์‹œ ํ•œ๋ฒˆ ๋” ์‹œ๋„ํ•˜์ฃ .
07:04
EG: Losing concentration.
165
424260
2000
EG: ์ง‘์ค‘๋ ฅ์ด ๋–จ์–ด์กŒ์–ด์š”.
07:06
(Laughter)
166
426260
2000
(์›ƒ์Œ)
07:08
TL: But we can see that it actually works,
167
428260
2000
TL: ํ•˜์ง€๋งŒ ์‹ค์ œ๋กœ ์ž‘๋™ํ•˜๋Š” ๊ฒƒ์„ ๋ณด์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค,
07:10
even though you can only hold it
168
430260
2000
๋น„๋ก ์ด ์ƒํƒœ๋ฅผ ์งง์€ ์‹œ๊ฐ„
07:12
for a little bit of time.
169
432260
2000
์œ ์ง€ํ•  ์ˆ˜ ์žˆ์ง€๋งŒ
07:14
As I said, it's a very difficult process
170
434260
3000
์ œ๊ฐ€ ๋งํ–ˆ๋˜ ๊ฒƒ์ฒ˜๋Ÿผ, ์ด๊ฒƒ์„ ์ƒ์ƒํ•˜๋Š” ๊ฒƒ์€
07:17
to imagine this.
171
437260
2000
๋งค์šฐ ์–ด๋ ค์šด ๊ณผ์ •์ž…๋‹ˆ๋‹ค.
07:19
And the great thing about it is that
172
439260
2000
์ด ๊ธฐ๊ธฐ์˜ ํ›Œ๋ฅญํ•œ์ ์€
07:21
we've only given the software one instance
173
441260
2000
์šฐ๋ฆฌ๊ฐ€ ์˜ค์ง '์‚ฌ๋ผ์ง€๊ธฐ'์— ๊ด€ํ•ด ๊ทธ๊ฐ€
07:23
of how he thinks about "disappear."
174
443260
3000
์–ด๋–ป๊ฒŒ ์ƒ๊ฐํ•˜๋Š”์ง€ ์†Œํ”„ํŠธ์›จ์–ดํ™” ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์ž…๋‹ˆ๋‹ค.
07:26
As there is a machine learning algorithm in this --
175
446260
3000
์ด๊ฒƒ์— ๊ด€ํ•œ ๊ธฐ๊ณ„ ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์กด์žฌํ•  ๋•Œ --
07:29
(Applause)
176
449260
4000
(๋ฐ•์ˆ˜)
07:33
Thank you.
177
453260
2000
๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค.
07:35
Good job. Good job.
178
455260
3000
์ž˜ ํ–ˆ์–ด์š”. ์ž˜ ํ–ˆ์–ด์š”.
07:38
(Applause)
179
458260
2000
(๋ฐ•์ˆ˜)
07:40
Thank you, Evan, you're a wonderful, wonderful
180
460260
3000
๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค, ์—๋ธ, ํ›Œ๋ฅญํ•ฉ๋‹ˆ๋‹ค.
07:43
example of the technology.
181
463260
3000
๊ธฐ์ˆ ์˜ ๋ฐœ์ „์˜ ์˜ˆ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
07:46
So, as you can see, before,
182
466260
2000
์ „์— ๋ณด์…จ๋˜ ๊ฒƒ์ฒ˜๋Ÿผ,
07:48
there is a leveling system built into this software
183
468260
3000
ํ‰์ค€ํ™” ์‹œ์Šคํ…œ์ด ์ด ์†Œํ”„ํŠธ์›จ์–ด์— ๋งŒ๋“ค์–ด์กŒ์Šต๋‹ˆ๋‹ค
07:51
so that as Evan, or any user,
184
471260
2000
๊ทธ๋ž˜์„œ ์—๋ธ์ฒ˜๋Ÿผ, ํ˜น์€ ๋‹ค๋ฅธ ์‚ฌ์šฉ์ž๋“ค์€
07:53
becomes more familiar with the system,
185
473260
2000
์ด ์‹œ์Šคํ…œ์— ์ข€ ๋” ์ต์ˆ™ํ•ด์งˆ ๋•Œ,
07:55
they can continue to add more and more detections,
186
475260
3000
๊ณ„์† ์ถ”๊ฐ€ํ•  ์ˆ˜ ์žˆ๊ณ  ์ถ”์ ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค,
07:58
so that the system begins to differentiate
187
478260
2000
๊ทธ๋ž˜์„œ ์ด ์‹œ์Šคํ…œ์€ ๋ถ„๋ช…ํžˆ ๋‹ค๋ฅธ ์ƒ๊ฐ ์‚ฌ์ด์—์„œ
08:00
between different distinct thoughts.
188
480260
3000
๊ตฌ๋ถ„์ง“๊ธฐ ์‹œ์ž‘ํ•ฉ๋‹ˆ๋‹ค.
08:04
And once you've trained up the detections,
189
484260
2000
์ถ”์  ํ”„๋กœ๊ทธ๋žจ์„ ํ›ˆ๋ จํ–ˆ๋‹ค๋ฉด,
08:06
these thoughts can be assigned or mapped
190
486260
2000
์ด ์ƒ๊ฐ๋“ค์€ ํ• ๋‹น๋˜๋ฉด ์ง€๋„ํ™” ๋ฉ๋‹ˆ๋‹ค
08:08
to any computing platform,
191
488260
2000
๊ณ„์‚ฐ๋œ ํ”Œ๋žจํผ๊ณผ
08:10
application or device.
192
490260
2000
์–ดํ”Œ๋ฆฌ์ผ€์ธ์…˜ ํ˜น์€ ์žฅ์น˜์— ๋ง์ด์ฃ .
08:12
So I'd like to show you a few examples,
193
492260
2000
์—ฌ๋Ÿฌ๋ถ„๊ป˜ ๋ช‡๋ช‡ ์˜ˆ๋ฅผ ๋ณด์—ฌ์ฃผ๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค,
08:14
because there are many possible applications
194
494260
2000
์‹ค์šฉํ™” ๋˜๋Š” ๋งŽ์€ ์–ดํ”Œ๋ฆฌ์ผ€์ธ์…˜์ด ์žˆ๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค
08:16
for this new interface.
195
496260
2000
์ƒˆ๋กœ์šด ์ธํ„ฐํŽ˜์ด์Šค๋ฅผ ์œ„ํ•œ ๊ฒƒ์ด์ฃ .
08:19
In games and virtual worlds, for example,
196
499260
2000
๊ฒŒ์ž„ ๊ทธ๋ฆฌ๊ณ  ์‹ค์ œ ์„ธ์ƒ์—์„œ, ์˜ˆ๋ฅผ๋“ค์–ด,
08:21
your facial expressions
197
501260
2000
์•ˆ๋ฉด ํ‘œํ˜„์€
08:23
can naturally and intuitively be used
198
503260
2000
์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ์•„๋ฐ”ํƒ€ ํ˜น์€ ์‹ค์ œ ์บ๋ฆญํ„ฐ๋ฅผ
08:25
to control an avatar or virtual character.
199
505260
3000
ํ†ต์ œํ•˜๋Š”๋ฐ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค.
08:29
Obviously, you can experience the fantasy of magic
200
509260
2000
๋ถ„๋ช…ํ•˜๊ฒŒ, ๋งˆ์ˆ ๊ณผ ๊ฐ™์€ ํŒํƒ€์ง€๋ฅผ ๊ฒฝํ—˜ํ•˜๊ณ 
08:31
and control the world with your mind.
201
511260
3000
๋งˆ์Œ์œผ๋กœ ์„ธ์ƒ์„ ํ†ต์ œํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
08:36
And also, colors, lighting,
202
516260
3000
๋˜ํ•œ ์ƒ‰๊น”, ๋น›,
08:39
sound and effects
203
519260
2000
์†Œ๋ฆฌ ๊ทธ๋ฆฌ๊ณ  ํšจ๊ณผ๋Š”
08:41
can dynamically respond to your emotional state
204
521260
2000
ํฌ๊ฒŒ ๊ฐ์ •์ƒํƒœ์— ๋‹ต๋ณ€ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค
08:43
to heighten the experience that you're having, in real time.
205
523260
3000
์‹ค์ œ๋กœ ๊ฐ€์ง€๋Š” ๊ฒฝํ—˜์„ ๊ณ ์ทจ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๋ง์ด์ฃ .
08:47
And moving on to some applications
206
527260
2000
๊ทธ๋ฆฌ๊ณ  ๋ช‡๋ช‡ ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜์œผ๋กœ ๊ฐ€๋ฉด
08:49
developed by developers and researchers around the world,
207
529260
3000
์ „ ์„ธ๊ณ„์˜ ๊ฐœ๋ฐœ์ž ๊ทธ๋ฆฌ๊ณ  ์—ฐ๊ตฌ์›์— ์˜ํ•ด ๋กœ๋ด‡ ๊ทธ๋ฆฌ๊ณ 
08:52
with robots and simple machines, for example --
208
532260
3000
๊ฐ„๋‹จํ•œ ๊ธฐ๊ณ„์™€ ํ•จ๊ป˜ ๋ฐœ์ „ ํ–ˆ์Šต๋‹ˆ๋‹ค, ์˜ˆ๋ฅผ ๋“ค์–ด --
08:55
in this case, flying a toy helicopter
209
535260
2000
์—ฌ๊ธฐ์„œ๋Š”, ๊ฐ„๋‹จํ•˜๊ฒŒ ์˜ฌ๋ฆฌ๋Š” ์ƒ๊ฐ์œผ๋กœ
08:57
simply by thinking "lift" with your mind.
210
537260
3000
ํ—ฌ๋ฆฌ์ฝฅํ„ฐ๋ฅผ ๋‚ ๋ฆฌ๋Š” ์žฅ๋ฉด์ž…๋‹ˆ๋‹ค.
09:00
The technology can also be applied
211
540260
2000
์ด ๊ธฐ์ˆ ์€ ๋˜ํ•œ ์‹ค์ œ ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜์—
09:02
to real world applications --
212
542260
2000
์ ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค --
09:04
in this example, a smart home.
213
544260
2000
์˜ˆ๋ฅผ ๋“ค๋ฉด, ์ž‘์€ ์ง‘์ž…๋‹ˆ๋‹ค.
09:06
You know, from the user interface of the control system
214
546260
3000
์•Œ๋‹ค์‹œํ”ผ, ํ†ต์ œ ์‹œ์Šคํ…œ์˜ ์‚ฌ์šฉ์ž ์ธํ„ฐํŽ˜์ด์Šค์—์„œ
09:09
to opening curtains
215
549260
2000
์ปคํŠผ์„ ์—ด๊ฑฐ๋‚˜ ํ˜น์€
09:11
or closing curtains.
216
551260
3000
๋‹ซ์Šต๋‹ˆ๋‹ค.
09:22
And of course, also to the lighting --
217
562260
3000
๋ฌผ๋ก  ๋ถˆ์„ ํ‚ค๋Š”๋ฐ๋„ ์ ์šฉ๋˜์ฃ  --
09:25
turning them on
218
565260
3000
๋ถˆ์„ ํ‚ค๊ณ 
09:28
or off.
219
568260
2000
๋„์ฃ .
09:30
And finally,
220
570260
2000
๊ทธ๋ฆฌ๊ณ  ๋งˆ์ง€๋ง‰์œผ๋กœ,
09:32
to real life-changing applications,
221
572260
2000
์‹ค์ œ ์‚ถ์„ ๋ณ€ํ™”์‹œํ‚ค๋Š” ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜์€
09:34
such as being able to control an electric wheelchair.
222
574260
3000
์ „๊ธฐ ํœ ์ฒด์–ด๋ฅผ ์กฐ์ข…ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
09:37
In this example,
223
577260
2000
์˜ˆ๋ฅผ ๋“ค์–ด,
09:39
facial expressions are mapped to the movement commands.
224
579260
3000
์•ˆ๋ฉด ํ‘œํ˜„๋“ค์€ ์šด๋™ ๋ช…๋ น์— ์ง€๋„ํ™” ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
09:42
Man: Now blink right to go right.
225
582260
3000
๋‚จ์„ฑ: ์˜ค๋ฅธ์ชฝ ๋ˆˆ์„ ๊นœ๋นก์ด๋ฉด ์˜ค๋ฅธ์ชฝ์œผ๋กœ ๊ฐ‘๋‹ˆ๋‹ค.
09:50
Now blink left to turn back left.
226
590260
3000
์™ผ์ชฝ์€ ๋’ค๋Œ์•„ ์™ผ์ชฝ์œผ๋กœ ๊ฐ‘๋‹ˆ๋‹ค.
10:02
Now smile to go straight.
227
602260
3000
์ด์ œ ์›ƒ์œผ๋ฉด ์ง์ง„ํ•ฉ๋‹ˆ๋‹ค.
10:08
TL: We really -- Thank you.
228
608260
2000
TL: ์šฐ๋ฆฌ๋Š” ์ •๋ง๋กœ -- ๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค.
10:10
(Applause)
229
610260
5000
(๋ฐ•์ˆ˜)
10:15
We are really only scratching the surface of what is possible today,
230
615260
3000
์šฐ๋ฆฌ๋Š” ์˜ค๋Š˜๋‚  ๋ฌด์—‡์ด ๊ฐ€๋Šฅํ•œ์ง€ ์•„์ฃผ ์ž‘์€ ๋‹จ๋ฉด๋งŒ์„ ์—ฐ๊ตฌํ–ˆ์Šต๋‹ˆ๋‹ค.
10:18
and with the community's input,
231
618260
2000
์‚ฌํšŒ์˜ ์กฐ์–ธ,
10:20
and also with the involvement of developers
232
620260
2000
์—ฐ๊ณ„๋œ ๊ฐœ๋ฐœ์ž,
10:22
and researchers from around the world,
233
622260
3000
๊ทธ๋ฆฌ๊ณ  ์ „์„ธ๊ณ„์˜ ์—ฐ๊ตฌ์ž๋“ค๊ณผ ํ•จ๊ป˜,
10:25
we hope that you can help us to shape
234
625260
2000
์šฐ๋ฆฌ๋Š” ์—ฌ๋Ÿฌ๋ถ„๊ป˜์„œ ์ด ๊ธฐ์ˆ ์ด ์—ฌ๊ธฐ์—์„œ
10:27
where the technology goes from here. Thank you so much.
235
627260
3000
์–ด๋””๋กœ ๋‚˜์•„๊ฐ€๋Š”์ง€์— ๋Œ€ํ•œ ์ง€ํ‘œ๋ฅผ ๋„์™€์ฃผ์‹œ๊ธฐ๋ฅผ ๋ฐ”๋ž๋‹ˆ๋‹ค. ๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค.
์ด ์›น์‚ฌ์ดํŠธ ์ •๋ณด

์ด ์‚ฌ์ดํŠธ๋Š” ์˜์–ด ํ•™์Šต์— ์œ ์šฉํ•œ YouTube ๋™์˜์ƒ์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ „ ์„ธ๊ณ„ ์ตœ๊ณ ์˜ ์„ ์ƒ๋‹˜๋“ค์ด ๊ฐ€๋ฅด์น˜๋Š” ์˜์–ด ์ˆ˜์—…์„ ๋ณด๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ฐ ๋™์˜์ƒ ํŽ˜์ด์ง€์— ํ‘œ์‹œ๋˜๋Š” ์˜์–ด ์ž๋ง‰์„ ๋”๋ธ” ํด๋ฆญํ•˜๋ฉด ๊ทธ๊ณณ์—์„œ ๋™์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค. ๋น„๋””์˜ค ์žฌ์ƒ์— ๋งž์ถฐ ์ž๋ง‰์ด ์Šคํฌ๋กค๋ฉ๋‹ˆ๋‹ค. ์˜๊ฒฌ์ด๋‚˜ ์š”์ฒญ์ด ์žˆ๋Š” ๊ฒฝ์šฐ ์ด ๋ฌธ์˜ ์–‘์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฌธ์˜ํ•˜์‹ญ์‹œ์˜ค.

https://forms.gle/WvT1wiN1qDtmnspy7