A camera that can see around corners | David Lindell

92,808 views ・ 2020-04-21

TED


Please double-click on the English subtitles below to play the video.

00:00
Transcriber: Ivana Korom Reviewer: Krystian Aparta
0
0
7000
Prevodilac: Filip Eskić Lektor: Ivana Korom
00:12
In the future,
1
12937
1175
U budućnosti,
00:14
self-driving cars will be safer and more reliable than humans.
2
14136
3654
samovozeći automobili će biti bezbedniji i pouzdaniji od ljudi.
Ali, da bi se ovo desilo,
00:18
But for this to happen,
3
18175
1222
00:19
we need technologies that allow cars to respond
4
19421
2730
potrebne su nam tehnologije koje vozilima omogućavaju da reaguju
00:22
faster than humans,
5
22175
1267
brže od ljudi,
00:23
we need algorithms that can drive better than humans
6
23466
3714
potrebni su nam algoritmi koji mogu da voze bolje od ljudi
00:27
and we need cameras that can see more than humans can see.
7
27204
4103
i potrebne su nam kamere koje mogu videti više nego što čovek može da vidi.
00:32
For example, imagine a self-driving car is about to make a blind turn,
8
32061
4730
Na primer, zamislite da samovozeći auto želi da izvrši slepo skretanje,
00:36
and there's an oncoming car
9
36815
1334
a u susret mu nailazi auto
00:38
or perhaps there's a child about to run into the street.
10
38173
2785
ili će možda dete istrčati na ulicu.
00:41
Fortunately, our future car will have this superpower,
11
41458
3564
Na svu sreću, naš budući automobil će imati ovu supermoć,
00:45
a camera that can see around corners to detect these potential hazards.
12
45046
4099
kameru koja će moći da vidi oko uglova da bi otkrila ovakve potencijalne nesreće.
00:49
For the past few years as a PhD student
13
49876
2079
Nekoliko proteklih godina kao student na doktorskim studijama
00:51
in the Stanford Computational Imaging Lab,
14
51979
2277
u Stenfordovoj računarskoj laboratoriji,
00:54
I've been working on a camera that can do just this --
15
54280
2754
radim na kameri koja bi mogla da uradi to -
00:57
a camera that can image objects hidden around corners
16
57058
3398
kamera koja može da pronađe objekte koji su sakriveni u uglovima
01:00
or blocked from direct line of sight.
17
60480
2772
ili blokirani od direktne linije vidnog polja.
01:03
So let me give you an example of what our camera can see.
18
63276
3452
Dopustite da vam dam primer šta naša kamera može videti.
01:06
This is an outdoor experiment we conducted
19
66752
2563
Ovo je spoljašnji eksperiment koji smo sproveli
01:09
where our camera system is scanning the side of this building with a laser,
20
69339
3810
gde naš sistem kamere skenira ivicu zgrade laserom,
01:13
and the scene that we want to capture
21
73173
1960
i scena koju želimo da zabeležimo
01:15
is hidden around the corner behind this curtain.
22
75157
2960
je skrivena iza ugla, iza zavese.
01:18
So our camera system can't actually see it directly.
23
78141
2977
Naš sistem je ne može videti direktno.
01:21
And yet, somehow,
24
81561
1168
A ipak nekako,
01:22
our camera can still capture the 3D geometry of this scene.
25
82753
4548
naša kamera može da napravi 3D geometriju ove scene.
01:27
So how do we do this?
26
87704
1400
Kako to izvodimo?
01:29
The magic happens here in this camera system.
27
89498
2722
Magija nastaje u ovom sistemu kamere.
01:32
You can think of this as a type of high-speed camera.
28
92244
3325
Možete gledati na ovo kao na veoma brzu kameru.
01:35
Not one that operates at 1,000 frames per second,
29
95593
3470
Ne onu koja radi sa 1000 slika u sekundi,
01:39
or even a million frames per second,
30
99087
2745
ili čak milion slika u sekundi,
01:41
but a trillion frames per second.
31
101856
2253
već sa bilion slika u sekundi.
01:45
So fast that it can actually capture the movement of light itself.
32
105023
4835
Toliko je brza da zapravo može da slika kretanje same svetlosti.
01:50
And to give you an example of just how fast light travels,
33
110652
3643
A da bih vam dao primer koliko brzo svetlost putuje,
01:54
let's compare it to the speed of a fast-running comic book superhero
34
114319
4285
uporedimo to sa brzinom brzotrčećeg superheroja iz stripa
01:58
who can move at up to three times the speed of sound.
35
118628
2748
koji se može kretati tri puta većom brzinom od brzine zvuka.
02:02
It takes a pulse of light about 3.3 billionths of a second,
36
122201
4199
Pulsu svetlosti je potrebno oko 3.3 milijarditog dela sekunde
02:06
or 3.3 nanoseconds,
37
126424
1873
ili 3.3 nanosekunde,
02:08
to travel the distance of a meter.
38
128321
2129
da pređe udaljenost od jednog metra.
02:10
Well, in that same time,
39
130474
1935
Pa, za to isto vreme,
02:12
our superhero has moved less than the width of a human hair.
40
132433
3874
naš superheroj se pomerio manje od širine ljudske dlake.
02:16
That's pretty fast.
41
136633
1267
To je prilično brzo.
02:18
But actually, we need to image much faster
42
138306
2454
Ali, zapravo, potrebno nam je da stvaramo sliku mnogo brže
02:20
if we want to capture light moving at subcentimeter scales.
43
140784
3388
ako želimo da uhvatimo da se svetlost kreće subcentimetarskom razmerom.
02:24
So our camera system can capture photons
44
144784
2497
Dakle, naša kamera može da slika fotone
02:27
at time frames of just 50 trillionths of a second,
45
147305
3516
u vremenskim okvirima od samo 50 bilionitih delova sekunde,
02:30
or 50 picoseconds.
46
150845
1745
ili 50 pikosekundi.
02:33
So we take this ultra-high-speed camera
47
153821
2502
Dakle, uzimamo ovu ultra visoko brzu kameru
02:36
and we pair it with a laser that sends out short pulses of light.
48
156347
3674
i uparujemo je sa laserom koji šalje kratke impulse svetlosti.
02:40
Each pulse travels to this visible wall
49
160553
2635
Svaki puls putuje do ovog vidljivog zida
02:43
and some light scatters back to our camera,
50
163212
2127
i neka svetla se rasipaju nazad ka našoj kameri,
02:45
but we also use the wall to scatter light around the corner
51
165363
3216
ali mi takođe koristimo zid i da razbacamo svetlost iza ugla
02:48
to the hidden object and back.
52
168603
1933
ka skrivenom objektu i nazad.
02:51
We repeat this measurement many times
53
171363
2238
Ovaj postupak ponavljamo mnogo puta
02:53
to capture the arrival times of many photons
54
173625
2540
da bismo zabeležili pristizanje mnogo fotona
02:56
from different locations on the wall.
55
176189
2087
sa različitih lokacija zida.
02:58
And after we capture these measurements, we can create
56
178300
2856
Nakon što izvršimo merenja, možemo da napravimo
03:01
a trillion-frame-per-second video of the wall.
57
181180
2635
video od bilion slika po sekundi.
03:04
While this wall may look ordinary to our own eyes,
58
184371
3008
Iako ovaj zid može našim očima da izgleda obično,
03:07
at a trillion frames per second, we can see something truly incredible.
59
187403
4475
sa bilion slika po sekundi možemo videti nešto zaista neverovatno.
03:12
We can actually see waves of light scattered back from the hidden scene
60
192275
4367
Možemo zapravo videti svetlosne talase razbacane sa skrivene scene
03:16
and splashing against the wall.
61
196666
2067
kako se sudaraju sa zidom.
03:19
And each of these waves carries information
62
199063
2952
I svaki od ovih talasa nosi informaciju
03:22
about the hidden object that sent it.
63
202039
2278
o skrivenom objektu koji ga je poslao.
03:24
So we can take these measurements
64
204341
1681
Dakle, možemo uzeti ove mere
03:26
and pass them into a reconstruction algorithm
65
206046
2499
i preneti ih u algoritam za rekonstrukciju
03:28
to then recover the 3D geometry of this hidden scene.
66
208569
3881
da bismo zatim stvorili 3D geometriju skrivene scene.
03:33
Now I want to show you one more example of an indoor scene that we captured,
67
213379
3810
Želim da vam pokažem još jedan primer scene iz unutrašnjosti koju smo snimili,
03:37
this time with a variety of different hidden objects.
68
217213
3110
ovoga puta sa različitim skrivenim objektima.
03:40
And these objects have different appearances,
69
220347
2127
Ovi objekti drugačije izgledaju,
03:42
so they reflect light differently.
70
222498
1833
tako da drugačije odbijaju svetlost.
03:44
For example, this glossy dragon statue reflects light differently
71
224355
3754
Na primer, ova sjajna statua zmaja drugačije odbija svetlost
03:48
than the mirror disco ball
72
228133
1777
nego disko kugla
03:49
or the white discus thrower statue.
73
229934
2611
ili bela statua bacača diska.
03:52
And we can actually see the differences in the reflected light
74
232998
3419
I mi, zapravo, možemo videti razlike u odbijenom svetlu
03:56
by visualizing it as this 3D volume,
75
236441
2841
posmatrajući ga kao ovu 3D zapreminu,
03:59
where we've just taken the video frames and stacked them together.
76
239306
3310
gde smo samo uzeli slike iz videa i spakovali ih zajedno.
04:02
And time here is represented as the depth dimension of this cube.
77
242640
4299
Vreme je ovde predstavljeno kao dubina ove kocke.
04:07
These bright dots that you see are reflections of light
78
247914
3191
Ove sjajne tačke koje vidite su odrazi svetlosti,
04:11
from each of the mirrored facets of the disco ball,
79
251129
2546
od svakog aspekta disko kugle,
04:13
scattering against the wall over time.
80
253699
2191
šireći se po zidu tokom vremena.
04:16
The bright streaks of light that you see arriving soonest in time
81
256422
3536
Svetli tragovi svetlosti koje vidite da najbrže stižu u vremenu
04:19
are from the glossy dragon statue that's closest to the wall,
82
259982
3960
pripadaju sjajnoj zmajevoj statui koja je najbliža zidu,
04:23
and the other streaks of light come from reflections of light from the bookcase
83
263966
3801
a drugi tragovi svetlosti dolaze od odraza svetlosti od police za knjige
04:27
and from the statue.
84
267791
1333
i od statue.
04:29
Now, we can also visualize these measurements frame by frame,
85
269727
3887
Možemo takođe vizuelizovati ova merenja sliku po sliku,
04:33
as a video,
86
273638
1192
kao video,
04:34
to directly see the scattered light.
87
274854
1882
da bismo direktno videli rašireno svetlo.
04:37
And again, here we see, first, reflections of light from the dragon,
88
277461
3619
Ponovo, ovde vidimo, prvo, odraze svetla koji pripadaju zmaju,
04:41
closest to the wall,
89
281104
1246
koji je najbliži zidu,
04:42
followed by bright dots from the disco ball
90
282374
3389
zatim sjajne tačke od disko kugle
04:45
and other reflections from the bookcase.
91
285787
2719
i drugih odraza od police za knjige.
04:48
And finally, we see the reflected waves of light from the statue.
92
288530
4452
Konačno, vidimo odraze svetlosnih talasa od statue.
04:53
These waves of light illuminating the wall
93
293840
2793
Ovi svetlosni talasi koji osvetljavaju zid
04:56
are like fireworks that last for just trillionths of a second.
94
296657
4618
su poput vatrometa koji traju samo bilioniti deo sekunde.
05:05
And even though these objects reflect light differently,
95
305649
3246
I čak iako ovi objekti drugačije odbijaju svetlost,
05:08
we can still reconstruct their shapes.
96
308919
2634
mi i dalje možemo da rekonstruišemo njihove oblike.
05:11
And this is what you can see from around the corner.
97
311577
2760
Ovo možete videti iza ugla.
05:15
Now, I want to show you one more example that's slightly different.
98
315547
3429
Želim da vam pokažem još jedan primer koji je malo drugačiji.
05:19
In this video, you see me dressed in this reflective suit
99
319000
3380
U ovom videu, vidite mene obučenog u reflektivno odelo
05:22
and our camera system is scanning the wall at a rate of four times every second.
100
322404
4395
i naš sistem skenira zid četiri puta svake sekunde.
05:27
The suit is reflective,
101
327173
1214
Odelo je reflektivno,
05:28
so we can actually capture enough photons
102
328411
2658
tako da zapravo možemo da uhvatimo dovoljan broj fotona
05:31
that we can see where I am and what I'm doing,
103
331093
3548
tako da možemo videti gde sam i šta radim
05:34
without the camera actually directly imaging me.
104
334665
2897
bez da me kamera direktno snima.
05:37
By capturing photons that scatter from the wall to my tracksuit,
105
337586
4539
Beležeći fotone koji se šire od zida ka mom odelu,
05:42
back to the wall and back to the camera,
106
342149
2134
nazad do zida i nazad do kamere,
05:44
we can capture this indirect video in real time.
107
344307
3596
možemo da snimimo ovaj indirektni video u realnom vremenu.
05:48
And we think that this type of practical non-line-of-sight imaging
108
348954
3206
Mislimo da bi ovakva vrsta praktičnog stvaranja slike van vidnog polja
05:52
could be useful for applications including for self-driving cars,
109
352184
3726
mogla da bude korisna za primene, uključujući i samovozeće automobile,
05:55
but also for biomedical imaging,
110
355934
2095
ali takođe i za biomedicinsku obradu slike
05:58
where we need to see into the tiny structures of the body.
111
358053
3571
gde je potrebno da vidimo unutar malih struktura tela.
06:01
And perhaps we could also put similar camera systems on the robots
112
361974
3501
Možda bismo mogli da slične sisteme kamera postavimo na robote
06:05
that we send to explore other planets.
113
365499
2665
koje šaljemo da istražuju druge planete.
06:08
Now you may have heard about seeing around corners before,
114
368839
2762
Možda ste ranije čuli za gledanje iza ugla,
06:11
but what I showed you today would have been impossible
115
371625
2574
ali ono što sam vam danas pokazao bilo bi nemoguće
06:14
just two years ago.
116
374223
1164
pre samo dve godine.
06:15
For example, we can now image large, room-sized hidden scenes outdoors
117
375411
3857
Na primer, sada možemo da obradimo velike, skrivene scene veličine sobe
06:19
and at real-time rates,
118
379292
1849
napolju i u realnom vremenu,
06:21
and we've made significant advancements towards making this a practical technology
119
381165
4357
i napravili smo značajne napretke ka tome da ovo postane praktična tehnologija
06:25
that you could actually see on a car someday.
120
385546
2293
koju biste možda mogli da vidite jednog dana na automobilu.
06:28
But of course, there's still challenges remaining.
121
388156
2580
Naravno, još uvek preostaju izazovi.
06:30
For example, can we image hidden scenes at long distances
122
390760
4063
Na primer, možemo li obraditi skrivene scene na velikim udaljenostima
06:34
where we're collecting very, very few photons,
123
394847
3143
odakle sakupljamo veoma, veoma malo fotona,
06:38
with lasers that are low-power and that are eye-safe.
124
398014
3277
laserima koji su male snage i koji su bezbedni za vid.
06:41
Or can we create images from photons
125
401641
2335
Ili, možemo li napraviti slike od fotona
06:44
that have scattered around many more times
126
404000
2029
koji su se raširili mnogo više puta
06:46
than just a single bounce around the corner?
127
406053
2603
od jednog odskoka iza ugla?
06:48
Can we take our prototype system that's, well, currently large and bulky,
128
408680
4643
Možemo li uzeti naš prototip sistem koji je, pa, trenutno veliki i glomazan,
06:53
and miniaturize it into something that could be useful
129
413347
2540
i minijaturizovati ga u nešto što bi moglo biti korisno
06:55
for biomedical imaging
130
415911
1199
za biomedicinsku obradu slike
06:57
or perhaps a sort of improved home-security system,
131
417134
3086
ili možda na neki način poboljšan sistem kućne bezbednosti,
07:00
or can we take this new imaging modality and use it for other applications?
132
420244
5512
ili možemo li uzeti ovu novu modalnost obrade slike i naći joj druge primene?
07:05
I think it's an exciting new technology
133
425780
1889
Mislim da je to uzbudljiva nova tehnologija
07:07
and there could be other things that we haven't thought of yet
134
427693
2928
i da mogu postojati druge stvari za koje još nismo ni pomislili
07:10
to use it for.
135
430645
1174
da je iskoristimo.
07:11
And so, well, a future with self-driving cars
136
431843
2545
Tako da, budućnost sa samovozećim automobilima
07:14
may seem distant to us now --
137
434412
2166
nam sada može delovati daleko -
07:16
we're already developing the technologies
138
436602
1977
već razvijamo tehnologije
07:18
that could make cars safer and more intelligent.
139
438603
2547
koje bi mogle da automobile učine bezbednijim i inteligentnijim.
07:21
And with the rapid pace of scientific discovery and innovation,
140
441698
3302
A uz ubrzan tempo naučnih otkrića i inovacije,
07:25
you never know what new and exciting capabilities
141
445024
3047
nikada ne znate kakve nove i uzbudljive mogućnosti
07:28
could be just around the corner.
142
448095
2134
se kriju tik iza ugla.
07:30
(Applause)
143
450810
2920
(Aplauz)
About this website

This site will introduce you to YouTube videos that are useful for learning English. You will see English lessons taught by top-notch teachers from around the world. Double-click on the English subtitles displayed on each video page to play the video from there. The subtitles scroll in sync with the video playback. If you have any comments or requests, please contact us using this contact form.

https://forms.gle/WvT1wiN1qDtmnspy7