A camera that can see around corners | David Lindell

92,808 views ・ 2020-04-21

TED


μ•„λž˜ μ˜λ¬Έμžλ§‰μ„ λ”λΈ”ν΄λ¦­ν•˜μ‹œλ©΄ μ˜μƒμ΄ μž¬μƒλ©λ‹ˆλ‹€.

00:00
Transcriber: Ivana Korom Reviewer: Krystian Aparta
0
0
7000
λ²ˆμ—­: YOONA SON κ²€ν† : Jihyeon J. Kim
00:12
In the future,
1
12937
1175
λ―Έλž˜μ—λŠ”
00:14
self-driving cars will be safer and more reliable than humans.
2
14136
3654
자율 μ£Όν–‰μ°¨κ°€ 더 μ•ˆμ „ν•΄μ§€κ³  λ―ΏμŒμ§ν•΄μ§ˆ κ²ƒμž…λ‹ˆλ‹€.
00:18
But for this to happen,
3
18175
1222
이λ₯Ό μœ„ν•΄μ„œλŠ”
00:19
we need technologies that allow cars to respond
4
19421
2730
μžλ™μ°¨κ°€ 인간보닀 λΉ λ₯΄κ²Œ λ°˜μ‘ν•  수 μžˆλŠ”
00:22
faster than humans,
5
22175
1267
기술이 ν•„μš”ν•©λ‹ˆλ‹€.
00:23
we need algorithms that can drive better than humans
6
23466
3714
인간보닀 μš΄μ „μ„ μž˜ν•˜λŠ” μ•Œκ³ λ¦¬μ¦˜μ΄ ν•„μš”ν•˜λ©°
00:27
and we need cameras that can see more than humans can see.
7
27204
4103
인간보닀 λ”μš± 잘 λ³Ό 수 μžˆλŠ” 카메라가 ν•„μš”ν•©λ‹ˆλ‹€.
00:32
For example, imagine a self-driving car is about to make a blind turn,
8
32061
4730
μžμœ¨μ£Όν–‰μ°¨κ°€ λ¬΄μž‘μ • μ½”λ„ˆλ₯Ό λˆλ‹€κ³  κ°€μ •ν–ˆμ„ λ•Œ,
00:36
and there's an oncoming car
9
36815
1334
λ‹€λ₯Έ μ°¨κ°€ λ‹€κ°€μ˜€κ±°λ‚˜
00:38
or perhaps there's a child about to run into the street.
10
38173
2785
μ–΄λ¦° 아이가 λ„λ‘œλ‘œ λ›°μ–΄λ“œλŠ” 일이 μžˆκΈ°λ„ ν•˜μ£ .
00:41
Fortunately, our future car will have this superpower,
11
41458
3564
λ‹€ν–‰νžˆλ„, 미래의 μ°¨λŠ” λ›°μ–΄λ‚œ μ„±λŠ₯을 κ°–κ³  μžˆλŠ”λ°
00:45
a camera that can see around corners to detect these potential hazards.
12
45046
4099
λͺ¨ν‰μ΄λ₯Ό λ³Ό 수 μžˆλŠ” μΉ΄λ©”λΌλ‘œ 잠재적 μœ„ν—˜μ„ λ°œκ²¬ν•©λ‹ˆλ‹€.
00:49
For the past few years as a PhD student
13
49876
2079
μ§€λ‚œ μˆ˜λ…„κ°„ μŠ€νƒ ν¬λ“œ λŒ€ν•™μ˜
00:51
in the Stanford Computational Imaging Lab,
14
51979
2277
컴퓨터 μ˜μƒ μ—°κ΅¬μ‹€μ—μ„œ 박사 과정을 밟으며
00:54
I've been working on a camera that can do just this --
15
54280
2754
μΉ΄λ©”λΌμ˜ μ„±λŠ₯에 λŒ€ν•΄ μ—°κ΅¬ν•΄μ™”μŠ΅λ‹ˆλ‹€.
00:57
a camera that can image objects hidden around corners
16
57058
3398
카메라가 λͺ¨ν‰μ΄μ— 감좰진 물체λ₯Ό κ°μ§€ν•˜κ±°λ‚˜
01:00
or blocked from direct line of sight.
17
60480
2772
μ‹œμ•Όλ₯Ό λ²—μ–΄λ‚œ 물체λ₯Ό 감지할 수 μžˆλŠ”μ§€ 말이죠.
01:03
So let me give you an example of what our camera can see.
18
63276
3452
μΉ΄λ©”λΌλ‘œ 무엇을 λ³Ό 수 μžˆλŠ”μ§€ ν•˜λ‚˜μ˜ μ˜ˆμ‹œλ₯Ό λ“€κ² μŠ΅λ‹ˆλ‹€.
01:06
This is an outdoor experiment we conducted
19
66752
2563
μ‹€ν—˜μ€ μ•Όμ™Έμ—μ„œ μ§„ν–‰λ˜μ—ˆλŠ”λ°
01:09
where our camera system is scanning the side of this building with a laser,
20
69339
3810
카메라 λ ˆμ΄μ €λ‘œ 건물의 벽을 μŠ€μΊ”ν•˜κ³  있으며
01:13
and the scene that we want to capture
21
73173
1960
ν¬μ°©ν•˜λ €λŠ” μž₯면은
01:15
is hidden around the corner behind this curtain.
22
75157
2960
컀튼 λ’€ λͺ¨ν‰μ΄μ— κ°€λ €μ Έ μžˆμŠ΅λ‹ˆλ‹€.
01:18
So our camera system can't actually see it directly.
23
78141
2977
κ·Έλž˜μ„œ 카메라 μ‹œμŠ€ν…œμœΌλ‘œλŠ” μ§μ ‘μ μœΌλ‘œ λ³Ό 수 μ—†μŠ΅λ‹ˆλ‹€.
01:21
And yet, somehow,
24
81561
1168
κ·Έλ ‡μ§€λ§Œ μ–΄λ–»κ²Œλ“ 
01:22
our camera can still capture the 3D geometry of this scene.
25
82753
4548
μΉ΄λ©”λΌλŠ” 이 μž₯면을 3차원 μž…μ²΄λ‘œ λ³Ό 수 있죠.
01:27
So how do we do this?
26
87704
1400
μ–΄λ–»κ²Œ κ°€λŠ₯ν–ˆμ„κΉŒμš”?
01:29
The magic happens here in this camera system.
27
89498
2722
μ—¬κΈ° 카메라 μ‹œμŠ€ν…œμ— κ·Έ 비밀이 μžˆμŠ΅λ‹ˆλ‹€.
01:32
You can think of this as a type of high-speed camera.
28
92244
3325
λ³΄μ‹œλ©΄ 고속 μΉ΄λ©”λΌμ˜ ν•œ μ’…λ₯˜λΌκ³  μƒκ°ν•˜μ‹€ 텐데,
01:35
Not one that operates at 1,000 frames per second,
29
95593
3470
μ΄ˆλ‹Ή 1000개의 ν”„λ ˆμž„μ΄λ‚˜
01:39
or even a million frames per second,
30
99087
2745
μ΄ˆλ‹Ή 100만 개의 ν”„λ ˆμž„μ΄ μ•„λ‹ˆλΌ
01:41
but a trillion frames per second.
31
101856
2253
μ΄ˆλ‹Ή 1μ‘° 개의 ν”„λ ˆμž„μ„ μž‘λ™μ‹œν‚΅λ‹ˆλ‹€.
01:45
So fast that it can actually capture the movement of light itself.
32
105023
4835
ꡉμž₯히 λΉ¨λΌμ„œ λΉ› 자체의 μ›€μ§μž„λ„ νŒŒμ•…ν•  수 있죠.
01:50
And to give you an example of just how fast light travels,
33
110652
3643
빛이 μ–Όλ§ˆλ‚˜ λΉ λ₯΄κ²Œ μ›€μ§μ΄λŠ”μ§€ μ˜ˆμ‹œλ₯Ό λ³΄μ—¬λ“œλ¦΄κ²Œμš”.
01:54
let's compare it to the speed of a fast-running comic book superhero
34
114319
4285
μŒμ†μ˜ 속도보닀 3λ°°λ‚˜ 더 λΉ λ₯΄κ²Œ 움직일 수 μžˆλŠ”
01:58
who can move at up to three times the speed of sound.
35
118628
2748
λ§Œν™” 속 재빠λ₯Έ μˆ˜νΌνžˆμ–΄λ‘œμ™€ κ·Έ 속도λ₯Ό 비ꡐ해보죠.
02:02
It takes a pulse of light about 3.3 billionths of a second,
36
122201
4199
λΉ›μ˜ μ§„λ™μˆ˜λŠ” 1μ΄ˆμ— 33μ–΅ 개 λ˜λŠ”
02:06
or 3.3 nanoseconds,
37
126424
1873
33μ–΅ λΆ„μ˜ 1초 인데
02:08
to travel the distance of a meter.
38
128321
2129
1λ―Έν„°λ₯Ό μ΄λ™ν•˜λŠ” 속도죠.
02:10
Well, in that same time,
39
130474
1935
λ™μ‹œμ—
02:12
our superhero has moved less than the width of a human hair.
40
132433
3874
μˆ˜νΌνžˆμ–΄λ‘œκ°€ 움직인 κ±°λ¦¬λŠ” 인간 머리카락 λ„ˆλΉ„λ³΄λ‹€ 짧죠.
02:16
That's pretty fast.
41
136633
1267
맀우 λΉ λ₯Έ μ†λ„μž…λ‹ˆλ‹€.
02:18
But actually, we need to image much faster
42
138306
2454
κ·ΈλŸ¬λ‚˜ μ„Όν‹°λ―Έν„° 미만으둜 μ›€μ§μ΄λŠ” λΉ›μ˜ 속도λ₯Ό
02:20
if we want to capture light moving at subcentimeter scales.
43
140784
3388
νŒŒμ•…ν•˜κ³  μ‹Άλ‹€λ©΄ 더 λΉ λ₯΄κ²Œ 이미지화 ν•΄μ•Όμ£ .
02:24
So our camera system can capture photons
44
144784
2497
우리 카메라 μ‹œμŠ€ν…œμ€ 50μ‘° λΆ„μ˜ 1초 λ˜λŠ”
02:27
at time frames of just 50 trillionths of a second,
45
147305
3516
1μ΄ˆμ— 50쑰개의 ν”„λ ˆμž„μœΌλ‘œ
02:30
or 50 picoseconds.
46
150845
1745
κ΄‘μžλ₯Ό 포착할 수 μžˆμŠ΅λ‹ˆλ‹€.
02:33
So we take this ultra-high-speed camera
47
153821
2502
이 울트라 κ³ μ†μΉ΄λ©”λΌλ‘œ
02:36
and we pair it with a laser that sends out short pulses of light.
48
156347
3674
짧은 λΉ›μ˜ 진동을 λ³΄λ‚΄λŠ” λ ˆμ΄μ €μ™€ 비ꡐ해 보면
02:40
Each pulse travels to this visible wall
49
160553
2635
각 진동은 이 벽으둜 μ΄λ™ν•˜κ³ 
02:43
and some light scatters back to our camera,
50
163212
2127
μΌλΆ€λŠ” 카메라λ₯Ό ν–₯ν•΄ λ’€λ‘œ ν©μ–΄μ§‘λ‹ˆλ‹€.
02:45
but we also use the wall to scatter light around the corner
51
165363
3216
λ˜ν•œ λͺ¨ν‰μ΄μ— μˆ¨κ²¨μ§„ 물체둜 빛을 흩어 λ˜λŒμ•„μ˜€κ²Œ ν•˜λ €κ³ 
02:48
to the hidden object and back.
52
168603
1933
벽을 μ΄μš©ν•˜κΈ°λ„ ν•˜μ£ .
02:51
We repeat this measurement many times
53
171363
2238
λ²½λ©΄ μœ„ 각각 λ‹€λ₯Έ μœ„μΉ˜λ‘œλΆ€ν„°
02:53
to capture the arrival times of many photons
54
173625
2540
각 κ΄‘μžμ˜ 도착 횟수λ₯Ό ν¬μ°©ν•˜κΈ° μœ„ν•΄
02:56
from different locations on the wall.
55
176189
2087
츑정을 μˆ˜μ—†μ΄ λ°˜λ³΅ν•˜μ—¬
02:58
And after we capture these measurements, we can create
56
178300
2856
λ§ˆμΉ¨λ‚΄ 이 수치λ₯Ό μ•Œμ•„λƒˆκ³ , μ΄ˆλ‹Ή 1μ‘° 개의 ν”„λ ˆμž„μ˜
03:01
a trillion-frame-per-second video of the wall.
57
181180
2635
μ˜μƒμ„ λ§Œλ“€ 수 μžˆμ—ˆμ£ .
03:04
While this wall may look ordinary to our own eyes,
58
184371
3008
우리 λˆˆμ—λŠ” ν‰λ²”ν•œ 벽으둜 λ³΄μ΄μ§€λ§Œ
03:07
at a trillion frames per second, we can see something truly incredible.
59
187403
4475
μ΄ˆλ‹Ή 1μ‘° 개의 ν”„λ ˆμž„μœΌλ‘œ ꡉμž₯ν•œ κ±Έ λ³Ό 수 μžˆμŠ΅λ‹ˆλ‹€.
03:12
We can actually see waves of light scattered back from the hidden scene
60
192275
4367
μˆ¨κ²¨μ§„ μ‚¬λ¬Όμ—μ„œ 흩어지고 λ‹€μ‹œ 벽면으둜 λΏŒλ €μ§€λŠ”
03:16
and splashing against the wall.
61
196666
2067
λΉ›μ˜ νŒŒλ™μ„ λ°œκ²¬ν•  수 있죠.
03:19
And each of these waves carries information
62
199063
2952
λ˜ν•œ 각 νŒŒλ™μ€ μˆ¨κ²¨μ§„ 사물이 보낸
03:22
about the hidden object that sent it.
63
202039
2278
정보λ₯Ό μ „λ‹¬ν•©λ‹ˆλ‹€.
03:24
So we can take these measurements
64
204341
1681
이λ₯Ό 톡해 수치λ₯Ό νŒŒμ•…ν•˜κ³ 
03:26
and pass them into a reconstruction algorithm
65
206046
2499
μž¬ν˜„ μ•Œκ³ λ¦¬μ¦˜μœΌλ‘œ 보내어
03:28
to then recover the 3D geometry of this hidden scene.
66
208569
3881
μˆ¨κ²¨μ§„ μž₯면을 3D μž…μ²΄λ‘œ 볡원할 수 μžˆμŠ΅λ‹ˆλ‹€.
03:33
Now I want to show you one more example of an indoor scene that we captured,
67
213379
3810
λ‹€μŒμœΌλ‘œ 포착된 μ‹€λ‚΄ μž₯면의 μ˜ˆμ‹œλ₯Ό λ³΄μ—¬λ“œλ¦΄ ν…λ°μš”,
03:37
this time with a variety of different hidden objects.
68
217213
3110
μ΄λ²ˆμ—λŠ” λ‹€μ–‘ν•œ μˆ¨κ²¨μ§„ μ‚¬λ¬Όμ˜ λͺ¨μŠ΅μž…λ‹ˆλ‹€.
03:40
And these objects have different appearances,
69
220347
2127
μ‚¬λ¬Όλ“€μ˜ ν˜•νƒœλŠ” 각기 λ‹€λ₯΄κΈ° λ•Œλ¬Έμ—
03:42
so they reflect light differently.
70
222498
1833
λΉ› λ˜ν•œ λ‹€λ₯΄κ²Œ λ°˜μ‚¬λ©λ‹ˆλ‹€.
03:44
For example, this glossy dragon statue reflects light differently
71
224355
3754
μ—¬κΈ° λΉ›λ‚˜λŠ” 용 동상은 미러 λ””μŠ€μ½” λ³Όκ³Ό
03:48
than the mirror disco ball
72
228133
1777
빛이 λ‹€λ₯΄κ²Œ λ°˜μ‚¬λ©λ‹ˆλ‹€.
03:49
or the white discus thrower statue.
73
229934
2611
μ›λ°˜μ„ λ“  μ‚¬λžŒ 동상 λ˜ν•œ λ‹€λ₯΄κ²Œ λ°˜μ‚¬λ©λ‹ˆλ‹€.
03:52
And we can actually see the differences in the reflected light
74
232998
3419
3차원 μž…μ²΄λ‘œ μ‹œκ°ν™”ν•˜μ—¬ λ°˜μ‚¬λœ 빛에 λ”°λ₯Έ
03:56
by visualizing it as this 3D volume,
75
236441
2841
차이λ₯Ό λ°œκ²¬ν•  수 μžˆμ—ˆμ–΄μš”.
03:59
where we've just taken the video frames and stacked them together.
76
239306
3310
λΉ„λ””μ˜€ ν”„λ ˆμž„μ„ μ΄¬μ˜ν•˜κ³  각 ν”„λ ˆμž„μ„ ν•©μ³λ³΄μ•˜μ£ .
04:02
And time here is represented as the depth dimension of this cube.
77
242640
4299
μ—¬κΈ°μ—μ„œ μ‹œκ°„μ€ 이 큐브의 깊이의 차원을 μ˜λ―Έν•˜μ£ .
04:07
These bright dots that you see are reflections of light
78
247914
3191
이 λΉ›λ‚˜λŠ” 점듀은 λ””μŠ€μ½” 볼의 각 츑면에
04:11
from each of the mirrored facets of the disco ball,
79
251129
2546
비좰진 λΉ›μ˜ λ°˜μ‚¬μ μ΄λ©°,
04:13
scattering against the wall over time.
80
253699
2191
μ‹œκ°„μ΄ 지남에 따라 벽면에 ν©μ–΄μ‘Œμ£ .
04:16
The bright streaks of light that you see arriving soonest in time
81
256422
3536
κ°€μž₯ 빨리 λ„μ°©ν•œ λΉ›μ˜ μ€„κΈ°λŠ”
04:19
are from the glossy dragon statue that's closest to the wall,
82
259982
3960
벽면에 κ°€μž₯ κ°€κΉŒμš΄ 용 λ™μƒμ—μ„œ λ‚˜μ™”κ³ ,
04:23
and the other streaks of light come from reflections of light from the bookcase
83
263966
3801
μ±…μž₯κ³Ό λ‹€λ₯Έ λ™μƒμ—μ„œ λ°˜μ‚¬λœ λΉ›μœΌλ‘œλΆ€ν„°
04:27
and from the statue.
84
267791
1333
λ‹€λ₯Έ 빛쀄기가 λ‚˜μ™”μ£ .
04:29
Now, we can also visualize these measurements frame by frame,
85
269727
3887
이제 이 수치λ₯Ό ν”„λ ˆμž„ λ‹¨μœ„μ˜ μ˜μƒμœΌλ‘œ
04:33
as a video,
86
273638
1192
μ‹œκ°ν™” ν•  수 μžˆμŠ΅λ‹ˆλ‹€.
04:34
to directly see the scattered light.
87
274854
1882
λΆ„μ‚°λœ 빛을 λ°”λ‘œ 확인할 수 있죠.
04:37
And again, here we see, first, reflections of light from the dragon,
88
277461
3619
λ‹€μ‹œ, λ²½μ—μ„œ κ°€μž₯ κ°€κΉŒμš΄ μš©μ—μ„œ μ΄λ£¨μ–΄μ§€λŠ” λΉ›λ°˜μ‚¬λ₯Ό 보죠.
04:41
closest to the wall,
89
281104
1246
04:42
followed by bright dots from the disco ball
90
282374
3389
또 λ””μŠ€μ½” λ³Όκ³Ό μ±…μž₯의 λ‹€λ₯Έ λ¬Όμ²΄μ—μ„œ
04:45
and other reflections from the bookcase.
91
285787
2719
λ‚˜μ˜€λŠ” 밝은 점듀도 λ³΄μž…λ‹ˆλ‹€.
04:48
And finally, we see the reflected waves of light from the statue.
92
288530
4452
그리고 λ™μƒμ—μ„œ λ°˜μ‚¬λœ λΉ›μ˜ νŒŒλ™μ„ λ³Ό 수 μžˆμ–΄μš”.
04:53
These waves of light illuminating the wall
93
293840
2793
벽면을 λΉ„μΆ”λŠ” λΉ›μ˜ 각 νŒŒλ™μ€
04:56
are like fireworks that last for just trillionths of a second.
94
296657
4618
μ΄ˆλ‹Ή 1μ‘° 번 μ§€μ†λ˜λŠ” λΆˆκ½ƒκ³Όλ„ κ°™μŠ΅λ‹ˆλ‹€.
05:05
And even though these objects reflect light differently,
95
305649
3246
이 사물듀이 빛을 각 λ‹€λ₯΄κ²Œ λ°˜μ‚¬ν•˜λ”λΌλ„
05:08
we can still reconstruct their shapes.
96
308919
2634
μ—¬μ „νžˆ ν˜•νƒœλ₯Ό μž¬κ±΄ν•  수 μžˆμŠ΅λ‹ˆλ‹€.
05:11
And this is what you can see from around the corner.
97
311577
2760
이것이 λͺ¨ν‰μ΄μ—μ„œ λ³΄μ΄λŠ” λͺ¨μŠ΅μΈλ°μš”,
05:15
Now, I want to show you one more example that's slightly different.
98
315547
3429
κ²°κ³Όκ°€ 쑰금 λ‹€λ₯΄κ²Œ λ‚˜μ˜¨ μ˜ˆμ‹œλ₯Ό λ³΄μ—¬λ“œλ¦¬κ³ μž ν•©λ‹ˆλ‹€.
05:19
In this video, you see me dressed in this reflective suit
99
319000
3380
이 μ˜μƒμ—μ„œ μ €λŠ” 빛을 λ°˜μ‚¬ν•˜λŠ” 수트λ₯Ό μž…κ³ 
05:22
and our camera system is scanning the wall at a rate of four times every second.
100
322404
4395
μΉ΄λ©”λΌλŠ” μ΄ˆλ‹Ή 4번의 λΉ„μœ¨λ‘œ 벽을 μŠ€μΊ”ν•˜κ³  μžˆμŠ΅λ‹ˆλ‹€.
05:27
The suit is reflective,
101
327173
1214
μ € μ˜·μ€ 빛을 λ°˜μ‚¬ν•˜λ―€λ‘œ
05:28
so we can actually capture enough photons
102
328411
2658
μ‹€μ œλ‘œ λ§Žμ€ 수의 κ΄‘μžλ₯Ό 포착할 수 μžˆμ–΄μ„œ
05:31
that we can see where I am and what I'm doing,
103
331093
3548
μ œκ°€ 어디에 있고 무엇을 ν•˜λŠ”μ§€ μ•Œ 수 있죠.
05:34
without the camera actually directly imaging me.
104
334665
2897
카메라가 μ‹€μ œλ‘œ μ €λ₯Ό ν¬μ°©ν•˜μ§€ λͺ»ν•˜λ”라도 말이죠.
05:37
By capturing photons that scatter from the wall to my tracksuit,
105
337586
4539
λ²½μ—μ„œ 제 수트둜 흩어지고 λ‹€μ‹œ λ²½κ³Ό μΉ΄λ©”λΌλ‘œ
05:42
back to the wall and back to the camera,
106
342149
2134
흩어진 κ΄‘μžλ“€μ„ ν¬μ°©ν•˜λ©΄μ„œ
05:44
we can capture this indirect video in real time.
107
344307
3596
μ‹€μ‹œκ°„μœΌλ‘œ 간접적인 μ˜μƒμ„ μΊ‘μ²˜ν•  수 μžˆμŠ΅λ‹ˆλ‹€.
05:48
And we think that this type of practical non-line-of-sight imaging
108
348954
3206
μ΄λŸ¬ν•œ μ‹€μ œμ μΈ λΉ„κ°€μ‹œμ  이미지화가
05:52
could be useful for applications including for self-driving cars,
109
352184
3726
μžμœ¨μ£Όν–‰μ°¨ λ“±μ˜ 뢄야에 μœ μš©ν•˜κ²Œ 쓰일 κ²λ‹ˆλ‹€.
05:55
but also for biomedical imaging,
110
355934
2095
λ˜ν•œ 우리 λͺΈμ˜ μž‘μ€ 뢀뢄듀을
05:58
where we need to see into the tiny structures of the body.
111
358053
3571
μ‚΄νŽ΄λ³΄λŠ” μƒμ˜ν•™ λΆ„μ•Όμ—μ„œλ„ λ§ˆμ°¬κ°€μ§€μ£ .
06:01
And perhaps we could also put similar camera systems on the robots
112
361974
3501
λ˜ν•œ λ‹€λ₯Έ 행성을 νƒμ‚¬ν•˜κ³ μž μ΄μš©λ˜λŠ” λ‘œλ΄‡μ—
06:05
that we send to explore other planets.
113
365499
2665
μœ μ‚¬ν•œ 카메라 μ‹œμŠ€ν…œμ„ μ μš©ν•  수 μžˆμŠ΅λ‹ˆλ‹€.
06:08
Now you may have heard about seeing around corners before,
114
368839
2762
μ²˜μŒμ— λͺ¨ν‰μ΄ λ„ˆλ¨Έλ₯Ό λ³΄λŠ” 것에 λŒ€ν•΄ λ§μ”€λ“œλ ΈλŠ”λ°
06:11
but what I showed you today would have been impossible
115
371625
2574
였늘 μ—¬λŸ¬λΆ„κ»˜ λ³΄μ—¬λ“œλ¦° κΈ°μˆ μ€ 뢈과 2λ…„ μ „μ—λŠ”
06:14
just two years ago.
116
374223
1164
λΆˆκ°€λŠ₯ν–ˆλ˜ κ²ƒμ΄μ—ˆμ£ .
06:15
For example, we can now image large, room-sized hidden scenes outdoors
117
375411
3857
ν•œ 예둜, μš°λ¦¬λŠ” 밖에 μˆ¨κ²¨μ§„ λ°©λ§Œν•œ 크기의 κ±°λŒ€ν•œ μž₯면을
06:19
and at real-time rates,
118
379292
1849
μ‹€μ‹œκ°„μœΌλ‘œ 이미지화할 수 있죠.
06:21
and we've made significant advancements towards making this a practical technology
119
381165
4357
이λ₯Ό μ‹€μ œμ  기술둜 μ œμž‘ν•΄ μ»€λ‹€λž€ λ°œμ „μ„ μ΄λ£¨μ—ˆλŠ”λ°
06:25
that you could actually see on a car someday.
120
385546
2293
μ–Έμ  κ°€ μ°¨μ—μ„œλ„ λ³Ό 수 μžˆμ„ κ²λ‹ˆλ‹€.
06:28
But of course, there's still challenges remaining.
121
388156
2580
κ·ΈλŸ¬λ‚˜ μ—¬μ „νžˆ κ³Όμ œκ°€ λ‚¨μ•„μžˆμŠ΅λ‹ˆλ‹€.
06:30
For example, can we image hidden scenes at long distances
122
390760
4063
예λ₯Ό λ“€λ©΄ 맀우 적은 κ΄‘μžλ‘œ 거리가 λ¨Ό
06:34
where we're collecting very, very few photons,
123
394847
3143
μˆ¨κ²¨μ§„ μž₯면을 μ•½ν•˜κ³  λˆˆμ— μ•ˆμ „ν•œ λ ˆμ΄μ € λΉ›μœΌλ‘œ
06:38
with lasers that are low-power and that are eye-safe.
124
398014
3277
μ‹œκ°ν™”ν•˜λŠ” 것이 κ°€λŠ₯ν• κΉŒμš”?
06:41
Or can we create images from photons
125
401641
2335
λ˜ν•œ λͺ¨ν‰μ΄μ—μ„œ ν•œ 번이 μ•„λ‹ˆλΌ
06:44
that have scattered around many more times
126
404000
2029
더 λ§Žμ€ 횟수둜 ν©μ–΄μ§€λŠ”
06:46
than just a single bounce around the corner?
127
406053
2603
κ΄‘μžμ—μ„œ 이미지λ₯Ό νŒŒμ•…ν•  수 μžˆμ„κΉŒ?
06:48
Can we take our prototype system that's, well, currently large and bulky,
128
408680
4643
우리의 크고 무거운 카메라 μ‹œμ œν’ˆμ„
06:53
and miniaturize it into something that could be useful
129
413347
2540
μž‘κ²Œ μΆ•μ†Œν•˜μ—¬ μƒμ˜ν•™ λΆ„μ•Όλ‚˜
06:55
for biomedical imaging
130
415911
1199
주택 λ°©λ²” μ‹œμŠ€ν…œμ˜
06:57
or perhaps a sort of improved home-security system,
131
417134
3086
λ°œμ „μ— μœ μš©ν•˜κ²Œ 쓰일 수 μžˆμ„κΉŒμš”?
07:00
or can we take this new imaging modality and use it for other applications?
132
420244
5512
μ•„λ‹ˆλ©΄ 이 μƒˆλ‘œμš΄ μ˜μƒκΈ°λ²•μ„ λ‹€λ₯Έ 곳에 μ μš©ν•  수 μžˆμ„κΉŒμš”?
07:05
I think it's an exciting new technology
133
425780
1889
μ €λŠ” 이 ν₯미둜운 기술이
07:07
and there could be other things that we haven't thought of yet
134
427693
2928
아직 μƒμ†Œν•œ λ‹€λ₯Έ 뢄야에도 μœ μš©ν•˜κ²Œ μ“°μ—¬μ§ˆ 것이라고
07:10
to use it for.
135
430645
1174
μƒκ°ν•˜κ³  μžˆμŠ΅λ‹ˆλ‹€.
07:11
And so, well, a future with self-driving cars
136
431843
2545
λ˜ν•œ ν˜„μž¬ 미래의 μžμœ¨μ£Όν–‰μ°¨λŠ”
07:14
may seem distant to us now --
137
434412
2166
μš°λ¦¬μ—κ²Œ λ¨Ό μ΄μ•ΌκΈ°λ‘œ λŠκ»΄μ§€κ² μ§€λ§Œ
07:16
we're already developing the technologies
138
436602
1977
이미 기술이 λ°œμ „λ˜μ–΄
07:18
that could make cars safer and more intelligent.
139
438603
2547
λ”μš± μ•ˆμ „ν•˜κ³  λ˜‘λ˜‘ν•œ μ°¨λ₯Ό μ œμž‘ν•  수 μžˆμŠ΅λ‹ˆλ‹€.
07:21
And with the rapid pace of scientific discovery and innovation,
140
441698
3302
λ˜ν•œ 과학적 발견과 혁λͺ…은 λΉ λ₯Έ μ†λ„λ‘œ μ΄λ£¨μ–΄μ§€λ―€λ‘œ
07:25
you never know what new and exciting capabilities
141
445024
3047
μš°λ¦¬κ°€ λͺ¨λ₯΄λŠ” μƒˆλ‘­κ³  ν₯미둜운 κΈ°μˆ μ„
07:28
could be just around the corner.
142
448095
2134
λͺ¨ν‰μ΄ λ„ˆλ¨Έμ—μ„œ λ°œκ²¬ν•  μˆ˜λ„ μžˆμŠ΅λ‹ˆλ‹€.
07:30
(Applause)
143
450810
2920
(λ°•μˆ˜)
이 μ›Ήμ‚¬μ΄νŠΈ 정보

이 μ‚¬μ΄νŠΈλŠ” μ˜μ–΄ ν•™μŠ΅μ— μœ μš©ν•œ YouTube λ™μ˜μƒμ„ μ†Œκ°œν•©λ‹ˆλ‹€. μ „ 세계 졜고의 μ„ μƒλ‹˜λ“€μ΄ κ°€λ₯΄μΉ˜λŠ” μ˜μ–΄ μˆ˜μ—…μ„ 보게 될 κ²ƒμž…λ‹ˆλ‹€. 각 λ™μ˜μƒ νŽ˜μ΄μ§€μ— ν‘œμ‹œλ˜λŠ” μ˜μ–΄ μžλ§‰μ„ 더블 ν΄λ¦­ν•˜λ©΄ κ·Έκ³³μ—μ„œ λ™μ˜μƒμ΄ μž¬μƒλ©λ‹ˆλ‹€. λΉ„λ””μ˜€ μž¬μƒμ— 맞좰 μžλ§‰μ΄ μŠ€ν¬λ‘€λ©λ‹ˆλ‹€. μ˜κ²¬μ΄λ‚˜ μš”μ²­μ΄ μžˆλŠ” 경우 이 문의 양식을 μ‚¬μš©ν•˜μ—¬ λ¬Έμ˜ν•˜μ‹­μ‹œμ˜€.

https://forms.gle/WvT1wiN1qDtmnspy7