A camera that can see around corners | David Lindell

92,808 views ใƒป 2020-04-21

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

00:00
Transcriber: Ivana Korom Reviewer: Krystian Aparta
0
0
7000
ืชืจื’ื•ื: Shimon Rottenberg ืขืจื™ื›ื”: Sigal Tifferet
00:12
In the future,
1
12937
1175
ื‘ืขืชื™ื“,
00:14
self-driving cars will be safer and more reliable than humans.
2
14136
3654
ืžื›ื•ื ื™ื•ืช ืœืœื ื ื”ื’ ื™ื”ื™ื• ื‘ื˜ื•ื—ื•ืช ื™ื•ืชืจ ื•ืืžื™ื ื•ืช ื™ื•ืชืจ ืžื‘ื ื™ ืื“ื.
00:18
But for this to happen,
3
18175
1222
ืืš ื›ื“ื™ ืฉื–ื” ื™ืชืืคืฉืจ,
00:19
we need technologies that allow cars to respond
4
19421
2730
ืื ื—ื ื• ื–ืงื•ืงื™ื ืœื˜ื›ื ื•ืœื•ื’ื™ื•ืช ืฉื™ืืคืฉืจื• ืœืžื›ื•ื ื™ื•ืช ืœื”ื’ื™ื‘
00:22
faster than humans,
5
22175
1267
ืžื”ืจ ื™ื•ืชืจ ืžื‘ื ื™ ืื“ื,
00:23
we need algorithms that can drive better than humans
6
23466
3714
ืื ื—ื ื• ื–ืงื•ืงื™ื ืœืืœื’ื•ืจื™ืชืžื™ื ืฉื ื•ื”ื’ื™ื ื˜ื•ื‘ ื™ื•ืชืจ ืžื‘ื ื™ ืื“ื,
00:27
and we need cameras that can see more than humans can see.
7
27204
4103
ื•ืื ื—ื ื• ื–ืงื•ืงื™ื ืœืžืฆืœืžื•ืช ืฉืจื•ืื•ืช ื™ื•ืชืจ ืžืฉืจื•ืื™ื ื‘ื ื™ ืื“ื.
00:32
For example, imagine a self-driving car is about to make a blind turn,
8
32061
4730
ืœืžืฉืœ, ื“ืžื™ื™ื ื• ืžื›ื•ื ื™ืช ืœืœื ื ื”ื’ ืฉืขื•ืžื“ืช ืœืคื ื•ืช "ืคื ื™ื™ื” ืขื™ื•ื•ืจืช",
00:36
and there's an oncoming car
9
36815
1334
ื•ืžื›ื•ื ื™ืช ืื—ืจืช ืžืชืงืจื‘ืช
00:38
or perhaps there's a child about to run into the street.
10
38173
2785
ืื• ืื•ืœื™ ื™ืœื“ ืฉืขื•ืžื“ ืœืจื•ืฅ ืœื›ื‘ื™ืฉ.
00:41
Fortunately, our future car will have this superpower,
11
41458
3564
ืœืžืจื‘ื” ื”ืžื–ืœ, ืœืžื›ื•ื ื™ืช ื”ืขืชื™ื“ ืฉืœื ื• ื™ื”ื™ื” ื›ื•ื—-ืขืœ,
00:45
a camera that can see around corners to detect these potential hazards.
12
45046
4099
ืžืฆืœืžื” ืฉืจื•ืื” ืžืขื‘ืจ ืœืคื™ื ื•ืช ื•ืžื‘ื—ื™ื ื” ื‘ืกื™ื›ื•ื ื™ื ืคื•ื˜ื ืฆื™ืืœื™ื™ื.
00:49
For the past few years as a PhD student
13
49876
2079
ื‘ืฉื ื™ื ื”ืื—ืจื•ื ื•ืช, ื‘ืžืกื’ืจืช ื”ื“ื•ืงื˜ื•ืจื˜ ืฉืœื™
00:51
in the Stanford Computational Imaging Lab,
14
51979
2277
ื‘ืžืขื‘ื“ื” ืœื”ื“ืžื™ื™ื” ืžืžื•ื—ืฉื‘ืช ื‘ืกื˜ื ืคื•ืจื“,
00:54
I've been working on a camera that can do just this --
15
54280
2754
ืขื‘ื“ืชื™ ืขืœ ืžืฆืœืžื” ืฉืชืขืฉื” ื‘ื“ื™ื•ืง ืืช ื–ื” --
00:57
a camera that can image objects hidden around corners
16
57058
3398
ืžืฆืœืžื” ืฉืชืจืื” ืขืฆืžื™ื ืฉืžื•ืกืชืจื™ื ืžืขื‘ืจ ืœืคื™ื ื•ืช
01:00
or blocked from direct line of sight.
17
60480
2772
ืื• ื—ืกื•ืžื™ื ืžืžื‘ื˜ ื™ืฉื™ืจ.
01:03
So let me give you an example of what our camera can see.
18
63276
3452
ืื“ื’ื™ื ืœื›ื ืžื” ื”ืžืฆืœืžื” ืฉืœื ื• ื™ื›ื•ืœื” ืœืจืื•ืช.
01:06
This is an outdoor experiment we conducted
19
66752
2563
ื–ื” ื ื™ืกื•ื™ ืฉืขืจื›ื ื• ื‘ื—ื•ืฅ
01:09
where our camera system is scanning the side of this building with a laser,
20
69339
3810
ืฉื‘ื• ื”ืžืฆืœืžื” ืกื•ืจืงืช ื‘ืขื–ืจืช ืœื™ื™ื–ืจ ืืช ื”ืฆื“ ืฉืœ ื”ื‘ื ื™ื™ืŸ ื”ื–ื”,
01:13
and the scene that we want to capture
21
73173
1960
ื•ื”ืกืฆื ื” ืฉืื ื—ื ื• ืจื•ืฆื™ื ืœืฆืœื
01:15
is hidden around the corner behind this curtain.
22
75157
2960
ืžื•ืกืชืจืช ืžืขื‘ืจ ืœืคื™ื ื” ืžืื—ื•ืจื™ ื”ืžืกืš ื”ื–ื”.
01:18
So our camera system can't actually see it directly.
23
78141
2977
ื›ืš ืฉื”ืžืฆืœืžื” ืฉืœื ื• ืœื ื™ื›ื•ืœื” ืœืงืœื•ื˜ ืื•ืชื” ื‘ืื•ืคืŸ ื™ืฉื™ืจ.
01:21
And yet, somehow,
24
81561
1168
ืื‘ืœ ืื™ื›ืฉื”ื•,
01:22
our camera can still capture the 3D geometry of this scene.
25
82753
4548
ื”ืžืฆืœืžื” ื‘ื›ืœ ื–ืืช ืœื•ื›ื“ืช ืืช ื”ื’ื™ืื•ืžื˜ืจื™ื” ื”ืชืœืช-ืžื™ืžื“ื™ืช ืฉืœ ื”ืกืฆื ื”.
01:27
So how do we do this?
26
87704
1400
ืื– ืื™ืš ืื ื—ื ื• ืขื•ืฉื™ื ื–ืืช?
01:29
The magic happens here in this camera system.
27
89498
2722
ื”ืงืกื ืงื•ืจื” ื›ืืŸ ื‘ืžืขืจื›ืช ื”ืฆื™ืœื•ื ื”ื–ืืช.
01:32
You can think of this as a type of high-speed camera.
28
92244
3325
ืชื—ืฉื‘ื• ืขืœ ื–ื” ื›ืขืœ ืกื•ื’ ืฉืœ ืžืฆืœืžื” ื‘ืžื”ื™ืจื•ืช ื’ื‘ื•ื”ื”.
01:35
Not one that operates at 1,000 frames per second,
29
95593
3470
ืœื ื›ื–ื• ืฉืžืฆืœืžืช 1000 ืคืจื™ื™ืžื™ื ื‘ืฉื ื™ื”,
01:39
or even a million frames per second,
30
99087
2745
ืื• ืืคื™ืœื• ืžื™ืœื™ื•ืŸ ืคืจื™ื™ืžื™ื ื‘ืฉื ื™ื”,
01:41
but a trillion frames per second.
31
101856
2253
ืืœื ื˜ืจื™ืœื™ื•ืŸ ืคืจื™ื™ืžื™ื ื‘ืฉื ื™ื”.
01:45
So fast that it can actually capture the movement of light itself.
32
105023
4835
ื›ืœ ื›ืš ืžื”ืจ ืฉื”ื™ื ื™ื›ื•ืœื” ืœืœื›ื•ื“ ืืช ืชื ื•ืขืช ื”ืื•ืจ ืขืฆืžื•.
01:50
And to give you an example of just how fast light travels,
33
110652
3643
ื•ื›ื“ื™ ืœื”ื“ื’ื™ื ื›ืžื” ืžื”ืจ ื”ืื•ืจ ื ืข,
01:54
let's compare it to the speed of a fast-running comic book superhero
34
114319
4285
ื ืฉื•ื•ื” ืื•ืชื• ืœืžื”ื™ืจื•ืช ืฉืœ ื’ื™ื‘ื•ืจ-ืขืœ ื‘ืกืคืจ ืงื•ืžื™ืงืก
01:58
who can move at up to three times the speed of sound.
35
118628
2748
ืฉื™ื›ื•ืœ ืœืจื•ืฅ ืขื“ ืคื™ ืฉืœื•ืฉื” ืžืžื”ื™ืจื•ืช ื”ืงื•ืœ.
02:02
It takes a pulse of light about 3.3 billionths of a second,
36
122201
4199
ืœืงืจืŸ ืื•ืจ ืœื•ืงื— ื‘ืขืจืš 3.3 ืžื™ืœื™ืืจื“ื™ื•ืช ืฉื ื™ื”,
02:06
or 3.3 nanoseconds,
37
126424
1873
ืื• 3.3 ื ื ื•-ืฉื ื™ื•ืช,
02:08
to travel the distance of a meter.
38
128321
2129
ืœืขื‘ื•ืจ ืžืจื—ืง ืฉืœ ืžื˜ืจ ืื—ื“.
02:10
Well, in that same time,
39
130474
1935
ื‘ืื•ืชื• ื–ืžืŸ,
02:12
our superhero has moved less than the width of a human hair.
40
132433
3874
ื’ื™ื‘ื•ืจ ื”ืขืœ ืฉืœื ื• ื”ืชืงื“ื ืคื—ื•ืช ืžืขื•ื‘ื™ ืฉืขืจื”.
02:16
That's pretty fast.
41
136633
1267
ื–ื” ื“ื™ ืžื”ื™ืจ.
02:18
But actually, we need to image much faster
42
138306
2454
ืื‘ืœ ืœืžืขืฉื”, ืื ื—ื ื• ืฆืจื™ื›ื™ื ื”ื“ืžื™ื” ืžื”ื™ืจื” ื‘ื”ืจื‘ื”
02:20
if we want to capture light moving at subcentimeter scales.
43
140784
3388
ืื ื‘ืจืฆื•ื ื ื• ืœืœื›ื•ื“ ืื•ืจ ืฉื ืข ื‘ืžืจื—ืงื™ื ืงื˜ื ื™ื ืžืกื ื˜ื™ืžื˜ืจ.
02:24
So our camera system can capture photons
44
144784
2497
ื”ืžืขืจื›ืช ืฉืœื ื• ื™ื›ื•ืœื” ืœืœื›ื•ื“ ืคื•ื˜ื•ื ื™ื
02:27
at time frames of just 50 trillionths of a second,
45
147305
3516
ื‘ืงื˜ืขื™ ื–ืžืŸ ืฉืœ 50 ื˜ืจื™ืœื™ื•ื ื™ื•ืช ืฉื ื™ื” ื‘ืœื‘ื“,
02:30
or 50 picoseconds.
46
150845
1745
ืื• 50 ืคื™ืงื•-ืฉื ื™ื•ืช.
02:33
So we take this ultra-high-speed camera
47
153821
2502
ืื– ืื ื—ื ื• ืœื•ืงื—ื™ื ืืช ื”ืžืฆืœืžื” ื”ืื•ืœื˜ืจื”-ืžื”ื™ืจื” ื”ื–ืืช
02:36
and we pair it with a laser that sends out short pulses of light.
48
156347
3674
ื•ืžืฆืžื™ื“ื™ื ืœื” ืœื™ื™ื–ืจ ืฉืฉื•ืœื— ืคื•ืœืกื™ ืื•ืจ ืงืฆืจื™ื.
02:40
Each pulse travels to this visible wall
49
160553
2635
ื›ืœ ืคื•ืœืก ื ืข ืœืขื‘ืจ ื”ืงื™ืจ ื”ื ืจืื” ื”ื–ื”
02:43
and some light scatters back to our camera,
50
163212
2127
ื•ื—ืœืง ืžื”ืื•ืจ ืžื•ื—ื–ืจ ืœืžืฆืœืžื”,
02:45
but we also use the wall to scatter light around the corner
51
165363
3216
ืื‘ืœ ืื ื—ื ื• ืžืฉืชืžืฉื™ื ื‘ืงื™ืจ ื’ื ื›ื“ื™ ืœืคื–ืจ ืื•ืจ ืžืขื‘ืจ ืœืคื™ื ื”
02:48
to the hidden object and back.
52
168603
1933
ืืœ ื”ืขืฆื ื”ืžื•ืกืชืจ ื•ื—ื–ืจื”.
02:51
We repeat this measurement many times
53
171363
2238
ืื ื—ื ื• ื—ื•ื–ืจื™ื ืขืœ ื”ืžื“ื™ื“ื” ื”ื–ืืช ืคืขืžื™ื ืจื‘ื•ืช
02:53
to capture the arrival times of many photons
54
173625
2540
ื›ื“ื™ ืœืงืœื•ื˜ ืืช ื–ืžืŸ ื”ื”ื’ืขื” ืฉืœ ืคื•ื˜ื•ื ื™ื ืจื‘ื™ื
02:56
from different locations on the wall.
55
176189
2087
ืžืžื™ืงื•ืžื™ื ืฉื•ื ื™ื ืขืœ ื”ืงื™ืจ.
02:58
And after we capture these measurements, we can create
56
178300
2856
ื•ืื—ืจื™ ืฉืงืœื˜ื ื• ืืช ื”ืžื“ื™ื“ื•ืช ื”ืืœื•, ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื™ืฆื•ืจ
03:01
a trillion-frame-per-second video of the wall.
57
181180
2635
ืกืจื˜ื•ืŸ ืฉืœ ื”ืงื™ืจ ื‘ืขืœ ื˜ืจื™ืœื™ื•ืŸ ืคืจื™ื™ืžื™ื ื‘ืฉื ื™ื”.
03:04
While this wall may look ordinary to our own eyes,
58
184371
3008
ื”ืงื™ืจ ื”ื–ื” ื ืจืื” ืจื’ื™ืœ ืœื’ืžืจื™ ืœืขื™ื ื™ื™ื ืฉืœื ื•,
03:07
at a trillion frames per second, we can see something truly incredible.
59
187403
4475
ืื‘ืœ ื‘ื˜ืจื™ืœื™ื•ืŸ ืคืจื™ื™ืžื™ื ื‘ืฉื ื™ื”, ืจื•ืื™ื ืžืฉื”ื• ืžืžืฉ ืžื“ื”ื™ื.
03:12
We can actually see waves of light scattered back from the hidden scene
60
192275
4367
ืื ื—ื ื• ืžืžืฉ ื™ื›ื•ืœื™ื ืœืจืื•ืช ื’ืœื™ ืื•ืจ ืžื•ื—ื–ืจื™ื ืžื”ืกืฆื ื” ื”ืžื•ืกืชืจืช
03:16
and splashing against the wall.
61
196666
2067
ื•ืžื•ืชื–ื™ื ืขืœ ื”ืงื™ืจ.
03:19
And each of these waves carries information
62
199063
2952
ื•ื›ืœ ื’ืœ ื›ื–ื” ื ื•ืฉื ืžื™ื“ืข
03:22
about the hidden object that sent it.
63
202039
2278
ืขืœ ื”ืขืฆื ื”ืžื•ืกืชืจ ืฉืฉืœื— ืื•ืชื•.
03:24
So we can take these measurements
64
204341
1681
ื•ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืงื—ืช ืืช ื”ืžื“ื™ื“ื•ืช ื”ืืœื”
03:26
and pass them into a reconstruction algorithm
65
206046
2499
ื•ืœื”ืขื‘ื™ืจ ืื•ืชืŸ ืืœ ืืœื’ื•ืจื™ืชื ืฉื™ื—ื–ื•ืจ
03:28
to then recover the 3D geometry of this hidden scene.
66
208569
3881
ืฉื™ื‘ื ื” ืžื—ื“ืฉ ืืช ื”ื’ื™ืื•ืžื˜ืจื™ื” ื”ืชืœืช-ืžื™ืžื“ื™ืช ืฉืœ ื”ืกืฆื ื” ื”ืžื•ืกืชืจืช.
03:33
Now I want to show you one more example of an indoor scene that we captured,
67
213379
3810
ืืจืื” ืœื›ื ื“ื•ื’ืžื” ื ื•ืกืคืช ืฉืœ ืกืฆื ืช ืคื ื™ื ืฉืฆื™ืœืžื ื•,
03:37
this time with a variety of different hidden objects.
68
217213
3110
ื”ืคืขื ืขื ืžื’ื•ื•ืŸ ืฉืœ ืขืฆืžื™ื ืžื•ืกืชืจื™ื.
03:40
And these objects have different appearances,
69
220347
2127
ื”ืขืฆืžื™ื ื”ืืœื” ื”ื ื‘ืขืœื™ ืžืจืื” ืฉื•ื ื” ืื—ื“ ืžื”ืฉื ื™,
03:42
so they reflect light differently.
70
222498
1833
ื›ืš ืฉื”ื ืžื—ื–ื™ืจื™ื ืื•ืจ ื‘ืื•ืคืŸ ืฉื•ื ื”.
03:44
For example, this glossy dragon statue reflects light differently
71
224355
3754
ืœืžืฉืœ, ืคืกืœ ื”ื“ืจืงื•ืŸ ื”ืžื‘ืจื™ืง ื”ื–ื” ืžื—ื–ื™ืจ ืื•ืจ ื‘ืื•ืคืŸ ืฉื•ื ื”
03:48
than the mirror disco ball
72
228133
1777
ืžืืฉืจ ื›ื“ื•ืจ ื”ื“ื™ืกืงื• ื”ืžื›ื•ืกื” ืžืจืื•ืช
03:49
or the white discus thrower statue.
73
229934
2611
ืื• ืคืกืœ ื–ื•ืจืง ื”ื“ื™ืกืงื•ืก ื”ืœื‘ืŸ.
03:52
And we can actually see the differences in the reflected light
74
232998
3419
ื•ืื›ืŸ ื ื™ืชืŸ ืœืจืื•ืช ืืช ื”ื”ื‘ื“ืœื™ื ื‘ืื•ืจ ื”ืžื•ื—ื–ืจ
03:56
by visualizing it as this 3D volume,
75
236441
2841
ืขืœ ื™ื“ื™ ื”ื“ืžื™ื™ืช ื”ืชืœืช-ืžื™ืžื“ ื”ื–ืืช,
03:59
where we've just taken the video frames and stacked them together.
76
239306
3310
ืฉื‘ื” ืคืฉื•ื˜ ื”ืขืจืžื ื• ื™ื—ื“ ืืช ื”ืคืจื™ื™ืžื™ื.
04:02
And time here is represented as the depth dimension of this cube.
77
242640
4299
ืฆื™ืจ ื”ื–ืžืŸ ืคื” ืžื™ื•ืฆื’ ืขืœ ื™ื“ื™ ืžื™ืžื“ ื”ืขื•ืžืง ืฉืœ ื”ืงื•ื‘ื™ื”.
04:07
These bright dots that you see are reflections of light
78
247914
3191
ื”ื ืงื•ื“ื•ืช ื”ื‘ื”ื™ืจื•ืช ืฉืจื•ืื™ื ื›ืืŸ ื”ืŸ ื”ื—ื–ืจื•ืช ืื•ืจ
04:11
from each of the mirrored facets of the disco ball,
79
251129
2546
ืžื›ืœ ืื—ืช ืžื”ืžืจืื•ืช ืฉืขืœ ืคื ื™ ื›ื“ื•ืจ ื”ื“ื™ืกืงื•,
04:13
scattering against the wall over time.
80
253699
2191
ืžืชืคื–ืจื•ืช ืขืœ ืคื ื™ ื”ืงื™ืจ ื‘ืžืฉืš ื”ื–ืžืŸ.
04:16
The bright streaks of light that you see arriving soonest in time
81
256422
3536
ืคืกื™ ื”ืื•ืจ ืฉืžื’ื™ืขื™ื ื”ื›ื™ ืžื•ืงื“ื ื‘ื–ืžืŸ
04:19
are from the glossy dragon statue that's closest to the wall,
82
259982
3960
ื”ื ืžืคืกืœ ื”ื“ืจืงื•ืŸ ื”ืžื‘ืจื™ืง ืฉืงืจื•ื‘ ื‘ื™ื•ืชืจ ืœืงื™ืจ,
04:23
and the other streaks of light come from reflections of light from the bookcase
83
263966
3801
ื•ื”ืคืกื™ื ื”ืื—ืจื™ื ื”ื ื”ื—ื–ืจื•ืช ืื•ืจ ืžื›ื•ื ื ื™ืช ื”ืกืคืจื™ื
04:27
and from the statue.
84
267791
1333
ื•ืžื”ืคืกืœ.
04:29
Now, we can also visualize these measurements frame by frame,
85
269727
3887
ืื ื—ื ื• ื™ื›ื•ืœื™ื ื’ื ืœื”ืจืื•ืช ืืช ื”ืžื“ื™ื“ื•ืช ื”ืืœื” ืคืจื™ื™ื ืื—ืจื™ ืคืจื™ื™ื,
04:33
as a video,
86
273638
1192
ื›ืกืจื˜ื•ืŸ ื•ื™ื“ืื•,
04:34
to directly see the scattered light.
87
274854
1882
ื›ื“ื™ ืœืจืื•ืช ืืช ื”ืื•ืจ ื”ืžืชืคื–ืจ ื‘ืื•ืคืŸ ื™ืฉื™ืจ.
04:37
And again, here we see, first, reflections of light from the dragon,
88
277461
3619
ืฉื•ื‘, ืื ื—ื ื• ืจื•ืื™ื ืงื•ื“ื ืืช ื”ื—ื–ืจื•ืช ื”ืื•ืจ ืžื”ื“ืจืงื•ืŸ,
04:41
closest to the wall,
89
281104
1246
ื”ืงืจื•ื‘ ื‘ื™ื•ืชืจ ืœืงื™ืจ,
04:42
followed by bright dots from the disco ball
90
282374
3389
ื•ืื—ืจื™ื”ืŸ ื ืงื•ื“ื•ืช ื‘ื”ื™ืจื•ืช ืžื›ื“ื•ืจ ื”ื“ื™ืกืงื•
04:45
and other reflections from the bookcase.
91
285787
2719
ื•ื”ื—ื–ืจื•ืช ื ื•ืกืคื•ืช ืžื›ื•ื ื ื™ืช ื”ืกืคืจื™ื,
04:48
And finally, we see the reflected waves of light from the statue.
92
288530
4452
ื•ืœื‘ืกื•ืฃ ืจื•ืื™ื ืืช ื’ืœื™ ื”ืื•ืจ ื”ืžื•ื—ื–ืจื™ื ืžื”ืคืกืœ.
04:53
These waves of light illuminating the wall
93
293840
2793
ื’ืœื™ ืื•ืจ ืืœื” ื”ืžืื™ืจื™ื ืืช ื”ืงื™ืจ
04:56
are like fireworks that last for just trillionths of a second.
94
296657
4618
ื”ื ื›ืžื• ื–ื™ืงื•ืงื™ื ืฉื ืžืฉื›ื™ื ื˜ืจื™ืœื™ื•ื ื™ืช ืฉื ื™ื” ื‘ืœื‘ื“.
05:05
And even though these objects reflect light differently,
95
305649
3246
ื•ืœืžืจื•ืช ืฉืขืฆืžื™ื ืืœื” ืžื—ื–ื™ืจื™ื ืื•ืจ ื‘ืื•ืคืŸ ืฉื•ื ื”,
05:08
we can still reconstruct their shapes.
96
308919
2634
ืื ื—ื ื• ืขื“ื™ื™ืŸ ื™ื›ื•ืœื™ื ืœืฉื—ื–ืจ ืืช ืฆื•ืจืชื.
05:11
And this is what you can see from around the corner.
97
311577
2760
ื•ื–ื” ืžื” ืฉืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืžืขื‘ืจ ืœืคื™ื ื”.
05:15
Now, I want to show you one more example that's slightly different.
98
315547
3429
ืืจืื” ืœื›ื ืขื›ืฉื™ื• ื“ื•ื’ืžื” ื ื•ืกืคืช, ืฉื•ื ื” ื‘ืžืงืฆืช.
05:19
In this video, you see me dressed in this reflective suit
99
319000
3380
ื‘ืกืจื˜ื•ืŸ ื”ื–ื”, ืจื•ืื™ื ืื•ืชื™ ืœื‘ื•ืฉ ื‘ื—ืœื™ืคื” ืžื—ื–ื™ืจืช ืื•ืจ
05:22
and our camera system is scanning the wall at a rate of four times every second.
100
322404
4395
ื•ื”ืžืฆืœืžื” ืฉืœื ื• ืกื•ืจืงืช ืืช ื”ืงื™ืจ ื‘ืงืฆื‘ ืฉืœ ืืจื‘ืข ืคืขืžื™ื ื‘ืฉื ื™ื”.
05:27
The suit is reflective,
101
327173
1214
ื”ื—ืœื™ืคื” ืžื—ื–ื™ืจื” ืื•ืจ,
05:28
so we can actually capture enough photons
102
328411
2658
ื›ืš ืฉืืคืฉืจ ืœืงืœื•ื˜ ืžืกืคื™ืง ืคื•ื˜ื•ื ื™ื
05:31
that we can see where I am and what I'm doing,
103
331093
3548
ื›ื“ื™ ืœืจืื•ืช ืื™ืคื” ืื ื™ ื ืžืฆื ื•ืžื” ืื ื™ ืขื•ืฉื”,
05:34
without the camera actually directly imaging me.
104
334665
2897
ื‘ืœื™ ืฉื”ืžืฆืœืžื” ืžืžืฉ ืžื›ื•ื•ื ืช ืืœื™.
05:37
By capturing photons that scatter from the wall to my tracksuit,
105
337586
4539
ืขืœ ื™ื“ื™ ืงืœื™ื˜ืช ืคื•ื˜ื•ื ื™ื ืฉื—ื•ื–ืจื™ื ืžื”ืงื™ืจ ืืœ ื”ื—ืœื™ืคื” ืฉืœื™,
05:42
back to the wall and back to the camera,
106
342149
2134
ื•ืžืžื ื” ื—ื–ืจื” ืœืงื™ืจ ื•ื—ื–ืจื” ืœืžืฆืœืžื”,
05:44
we can capture this indirect video in real time.
107
344307
3596
ืืคืฉืจ ืœืฆืœื ืืช ื”ืกืจื˜ื•ืŸ ื”ืขืงื™ืฃ ื”ื–ื” ื‘ื–ืžืŸ ืืžื™ืชื™.
05:48
And we think that this type of practical non-line-of-sight imaging
108
348954
3206
ืื ื—ื ื• ืžืืžื™ื ื™ื ืฉื”ื“ืžื™ื” ืžืขืฉื™ืช ื›ื–ืืช ืฉืœ ืขืฆืžื™ื ืฉืื™ื ื ื‘ืฉื“ื” ื”ืจืื™ื”
05:52
could be useful for applications including for self-driving cars,
109
352184
3726
ื™ื›ื•ืœื” ืœื”ื™ื•ืช ืฉื™ืžื•ืฉื™ืช ืœื™ืฉื•ืžื™ื ื›ืžื• ืžื›ื•ื ื™ื•ืช ืœืœื ื ื”ื’,
05:55
but also for biomedical imaging,
110
355934
2095
ื•ื’ื ืœื”ื“ืžื™ื” ื‘ื™ื•-ืจืคื•ืื™ืช,
05:58
where we need to see into the tiny structures of the body.
111
358053
3571
ืฉื ืฆืจื™ืš ืœื”ืชื‘ื•ื ืŸ ืœืชื•ืš ื”ืžื‘ื ื™ื ื”ื–ืขื™ืจื™ื ืฉืœ ื”ื’ื•ืฃ.
06:01
And perhaps we could also put similar camera systems on the robots
112
361974
3501
ื•ื™ืชื›ืŸ ืฉื ื•ื›ืœ ืœื”ืชืงื™ืŸ ืžืฆืœืžื•ืช ื“ื•ืžื•ืช ื‘ืจื•ื‘ื•ื˜ื™ื
06:05
that we send to explore other planets.
113
365499
2665
ืฉื ืฉืœื— ืœื—ืงื•ืจ ื›ื•ื›ื‘ื™ ืœื›ืช ืื—ืจื™ื.
06:08
Now you may have heard about seeing around corners before,
114
368839
2762
ื™ื›ื•ืœ ืœื”ื™ื•ืช ืฉื›ื‘ืจ ืฉืžืขืชื ืขืœ ืจืื™ื” ืžืขื‘ืจ ืœืคื™ื ื”,
06:11
but what I showed you today would have been impossible
115
371625
2574
ืื‘ืœ ืžื” ืฉื”ืจืื™ืชื™ ื”ื™ื•ื ื”ื™ื” ื‘ืœืชื™-ืืคืฉืจื™
06:14
just two years ago.
116
374223
1164
ืขื“ ืœืคื ื™ ืฉื ืชื™ื™ื.
06:15
For example, we can now image large, room-sized hidden scenes outdoors
117
375411
3857
ืœืžืฉืœ, ืื ื—ื ื• ื™ื›ื•ืœื™ื ื”ื™ื•ื ืœื‘ืฆืข ื”ื“ืžื™ืช ื—ื•ืฅ ืฉืœ ืกืฆื ื•ืช ื‘ื’ื•ื“ืœ ื—ื“ืจ
06:19
and at real-time rates,
118
379292
1849
ื•ื‘ืงืฆื‘ื™ื ืฉืœ ื–ืžืŸ ืืžื™ืชื™,
06:21
and we've made significant advancements towards making this a practical technology
119
381165
4357
ื•ื”ืฉื’ื ื• ื”ืชืงื“ืžื•ื™ื•ืช ืžืฉืžืขื•ืชื™ื•ืช ื‘ื“ืจืš ืœื”ืคื•ืš ืืช ื–ื” ืœื˜ื›ื ื•ืœื•ื’ื™ื” ืฉื™ืžื•ืฉื™ืช
06:25
that you could actually see on a car someday.
120
385546
2293
ืฉื‘ืืžืช ืชื™ืจืื• ื™ื•ื ืื—ื“ ื‘ืžื›ื•ื ื™ืช.
06:28
But of course, there's still challenges remaining.
121
388156
2580
ืื‘ืœ ื›ืžื•ื‘ืŸ ืฉื™ืฉื ื ืืชื’ืจื™ื ื ื•ืกืคื™ื.
06:30
For example, can we image hidden scenes at long distances
122
390760
4063
ืœืžืฉืœ, ื”ืื ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื“ืžื•ืช ืกืฆื ื•ืช ืžื•ืกืชืจื•ืช ืžืžืจื—ืงื™ื ื’ื“ื•ืœื™ื
06:34
where we're collecting very, very few photons,
123
394847
3143
ื‘ื”ื ืื ื• ืื•ืกืคื™ื ืžืขื˜ ืžืื“ ืคื•ื˜ื•ื ื™ื,
06:38
with lasers that are low-power and that are eye-safe.
124
398014
3277
ืขื ืœื™ื™ื–ืจื™ื ื‘ืขืœื™ ื”ืกืคืง ื ืžื•ืš ื•ื‘ื˜ื™ื—ื•ืชื™ื™ื ืœืขื™ื ื™ื™ื.
06:41
Or can we create images from photons
125
401641
2335
ื•ื”ืื ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื™ืฆื•ืจ ืชืžื•ื ื•ืช ืžืคื•ื˜ื•ื ื™ื
06:44
that have scattered around many more times
126
404000
2029
ืฉื”ืชืคื–ืจื• ื‘ืกื‘ื™ื‘ื” ืคืขืžื™ื ืจื‘ื•ืช ื™ื•ืชืจ
06:46
than just a single bounce around the corner?
127
406053
2603
ืžืืฉืจ ื”ื—ื–ืจื” ืื—ืช ืžืขื‘ืจ ืœืคื™ื ื”?
06:48
Can we take our prototype system that's, well, currently large and bulky,
128
408680
4643
ื”ืื ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืงื—ืช ืืช ื”ืื‘-ื˜ื™ืคื•ืก ืฉืœื ื•, ืฉื”ื•ื ื›ืจื’ืข ื’ื“ื•ืœ ื•ืžื’ื•ืฉื,
06:53
and miniaturize it into something that could be useful
129
413347
2540
ื•ืœืžื–ืขืจ ืื•ืชื• ืœืžืฉื”ื• ืฉื™ื›ื•ืœ ืœื”ื™ื•ืช ืฉื™ืžื•ืฉื™
06:55
for biomedical imaging
130
415911
1199
ื‘ื”ื“ืžื™ื” ื‘ื™ื•-ืจืคื•ืื™ืช
06:57
or perhaps a sort of improved home-security system,
131
417134
3086
ืื• ืื•ืœื™ ืกื•ื’ ืฉืœ ืžืขืจื›ืช ืื‘ื˜ื—ื” ื‘ื™ืชื™ืช ืžืฉื•ืคืจืช,
07:00
or can we take this new imaging modality and use it for other applications?
132
420244
5512
ื•ืื•ืœื™ ืืคืฉืจ ืœืงื—ืช ืืช ืจืขื™ื•ืŸ ื”ื”ื“ืžื™ื” ื”ื—ื“ืฉ ื”ื–ื” ื•ืœื”ืฉืชืžืฉ ื‘ื• ื‘ื™ืฉื•ืžื™ื ืื—ืจื™ื?
07:05
I think it's an exciting new technology
133
425780
1889
ืื ื™ ืžืืžื™ืŸ ืฉื–ืืช ื˜ื›ื ื•ืœื•ื’ื™ื” ื—ื“ืฉื” ื•ืžืœื”ื™ื‘ื”
07:07
and there could be other things that we haven't thought of yet
134
427693
2928
ื•ื™ื›ื•ืœ ืœื”ื™ื•ืช ืฉื™ืฉื ื ืขื•ื“ ื“ื‘ืจื™ื ืฉืขื“ื™ื™ืŸ ืœื ื—ืฉื‘ื ื• ืขืœื™ื”ื
07:10
to use it for.
135
430645
1174
ืฉื‘ื”ื ื ื™ืชืŸ ืœื”ืฉืชืžืฉ ื‘ื”.
07:11
And so, well, a future with self-driving cars
136
431843
2545
ืื– ืขืชื™ื“ ืขื ืžื›ื•ื ื™ื•ืช ืœืœื ื ื”ื’
07:14
may seem distant to us now --
137
434412
2166
ื ืจืื” ืื•ืœื™ ืจื—ื•ืง ืขื›ืฉื™ื• --
07:16
we're already developing the technologies
138
436602
1977
ืื ื—ื ื• ื›ื‘ืจ ืžืคืชื—ื™ื ืืช ื”ื˜ื›ื ื•ืœื•ื’ื™ื•ืช
07:18
that could make cars safer and more intelligent.
139
438603
2547
ืฉื™ื”ืคื›ื• ืืช ื”ืžื›ื•ื ื™ื•ืช ืœื‘ื˜ื•ื—ื•ืช ื•ื—ื›ืžื•ืช ื™ื•ืชืจ.
07:21
And with the rapid pace of scientific discovery and innovation,
140
441698
3302
ื•ืขื ื”ืงืฆื‘ ื”ืžื”ื™ืจ ืฉืœ ืชื’ืœื™ื•ืช ืžื“ืขื™ื•ืช ื•ื—ื“ืฉื ื•ืช,
07:25
you never know what new and exciting capabilities
141
445024
3047
ืื™ืŸ ืœื“ืขืช ืื™ืœื• ื™ื›ื•ืœื•ืช ื—ื“ืฉื•ืช ื•ืžืœื”ื™ื‘ื•ืช
07:28
could be just around the corner.
142
448095
2134
ืžืกืชืชืจื•ืช ืžืžืฉ ืžืขื‘ืจ ืœืคื™ื ื”.
07:30
(Applause)
143
450810
2920
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7