A camera that can see around corners | David Lindell

93,228 views ・ 2020-04-21

TED


請雙擊下方英文字幕播放視頻。

00:00
Transcriber: Ivana Korom Reviewer: Krystian Aparta
0
0
7000
譯者: Zoe Chang 審譯者: Helen Chang
00:12
In the future,
1
12937
1175
未來的自動駕駛汽車(自駕車), 將比人類駕駛的更安全、更可靠。
00:14
self-driving cars will be safer and more reliable than humans.
2
14136
3654
00:18
But for this to happen,
3
18175
1222
在那之前,
00:19
we need technologies that allow cars to respond
4
19421
2730
我們需要發展新的科技,
確保車子的反應速度比人類快,
00:22
faster than humans,
5
22175
1267
00:23
we need algorithms that can drive better than humans
6
23466
3714
其演算法的駕駛技術比人類好,
00:27
and we need cameras that can see more than humans can see.
7
27204
4103
還配備著視力 勝於人類肉眼的攝像鏡頭。
00:32
For example, imagine a self-driving car is about to make a blind turn,
8
32061
4730
例如,想像一輛自駕車即將要轉彎,
00:36
and there's an oncoming car
9
36815
1334
視線範圍外的路上 有輛車迎面而來,
00:38
or perhaps there's a child about to run into the street.
10
38173
2785
或是有小孩跑向馬路中間。
00:41
Fortunately, our future car will have this superpower,
11
41458
3564
還好,未來的車將擁有某種超能力──
00:45
a camera that can see around corners to detect these potential hazards.
12
45046
4099
配備著能偵測出視線外 潛在危機的攝像機。
00:49
For the past few years as a PhD student
13
49876
2079
我是博士生,過去這幾年,
00:51
in the Stanford Computational Imaging Lab,
14
51979
2277
我在史丹佛的電腦成像實驗室,
00:54
I've been working on a camera that can do just this --
15
54280
2754
研究這具有特殊能力的攝像機──
00:57
a camera that can image objects hidden around corners
16
57058
3398
能透視彎角的攝像機,
它能顯示視線正前方 被擋住而看不見的物體。
01:00
or blocked from direct line of sight.
17
60480
2772
01:03
So let me give you an example of what our camera can see.
18
63276
3452
讓我舉例說明這個攝像機的功能。
01:06
This is an outdoor experiment we conducted
19
66752
2563
這是一個我們做的戶外實驗,
01:09
where our camera system is scanning the side of this building with a laser,
20
69339
3810
這個攝像系統 用雷射掃描建築物的側面,
01:13
and the scene that we want to capture
21
73173
1960
而我們要捕捉的景象
01:15
is hidden around the corner behind this curtain.
22
75157
2960
則藏在布幕的後方。
01:18
So our camera system can't actually see it directly.
23
78141
2977
所以攝像系統其實無法直接拍到。
01:21
And yet, somehow,
24
81561
1168
可是,
01:22
our camera can still capture the 3D geometry of this scene.
25
82753
4548
它卻能拍出到布簾後方 物件的立體形狀。
01:27
So how do we do this?
26
87704
1400
這是怎麼辦到的?
01:29
The magic happens here in this camera system.
27
89498
2722
魔法就藏在這個攝像系統裡。
01:32
You can think of this as a type of high-speed camera.
28
92244
3325
你可以把它想成一種高速攝像機。
01:35
Not one that operates at 1,000 frames per second,
29
95593
3470
拍攝速度不是每秒一千張,
01:39
or even a million frames per second,
30
99087
2745
也不是每秒一百萬張,
01:41
but a trillion frames per second.
31
101856
2253
而是每秒一兆張之多。
01:45
So fast that it can actually capture the movement of light itself.
32
105023
4835
速度之快可以捕抓到光影。
01:50
And to give you an example of just how fast light travels,
33
110652
3643
讓我舉例說明光線移動的速度,
01:54
let's compare it to the speed of a fast-running comic book superhero
34
114319
4285
以漫畫中移動速度極快的超人來說,
01:58
who can move at up to three times the speed of sound.
35
118628
2748
超人號稱可以音速三倍的速度移動。
02:02
It takes a pulse of light about 3.3 billionths of a second,
36
122201
4199
可是光脈衝只需大約 33 億分之一秒,
02:06
or 3.3 nanoseconds,
37
126424
1873
或者說 3.3 奈秒,
02:08
to travel the distance of a meter.
38
128321
2129
就能行進一公尺的距離。
02:10
Well, in that same time,
39
130474
1935
也就是說,在同樣的時間內,
02:12
our superhero has moved less than the width of a human hair.
40
132433
3874
超人移動的距離還少於 人類一根頭髮的直徑。
02:16
That's pretty fast.
41
136633
1267
那夠快了吧。
02:18
But actually, we need to image much faster
42
138306
2454
可是,想要拍攝光線 移動不到一公分距離的畫面,
02:20
if we want to capture light moving at subcentimeter scales.
43
140784
3388
速度得要更快。
02:24
So our camera system can capture photons
44
144784
2497
這個攝像系統可以捕捉到光子,
02:27
at time frames of just 50 trillionths of a second,
45
147305
3516
因為拍攝速度達到每張 只需 50 兆之一秒,
02:30
or 50 picoseconds.
46
150845
1745
或者說 50 皮秒。
02:33
So we take this ultra-high-speed camera
47
153821
2502
我們將這個超高速攝像機,
02:36
and we pair it with a laser that sends out short pulses of light.
48
156347
3674
與一台能夠發射超短 光脈衝的雷射機搭配。
02:40
Each pulse travels to this visible wall
49
160553
2635
將光脈衝發射到這面牆壁上,
02:43
and some light scatters back to our camera,
50
163212
2127
有一部分的光會反射回攝像機來,
02:45
but we also use the wall to scatter light around the corner
51
165363
3216
牆面也同時將光線散射到彎角後方,
02:48
to the hidden object and back.
52
168603
1933
碰到隱藏物,再反射回來。
02:51
We repeat this measurement many times
53
171363
2238
多次重複操作後
02:53
to capture the arrival times of many photons
54
173625
2540
就能收集牆面不同區域 光子的抵達時間,
02:56
from different locations on the wall.
55
176189
2087
02:58
And after we capture these measurements, we can create
56
178300
2856
我們用收集到的所有數據,
把牆面上的光影拍成 每秒一兆張影像的影片。
03:01
a trillion-frame-per-second video of the wall.
57
181180
2635
03:04
While this wall may look ordinary to our own eyes,
58
184371
3008
以人類肉眼來看,牆就是一面牆,
03:07
at a trillion frames per second, we can see something truly incredible.
59
187403
4475
而每秒播放一兆張的影片 卻能顯示出肉眼看不見的東西。
03:12
We can actually see waves of light scattered back from the hidden scene
60
192275
4367
甚至能看到視線外的物件 散射回來的光波,
03:16
and splashing against the wall.
61
196666
2067
像海浪般潑濺在牆上。
03:19
And each of these waves carries information
62
199063
2952
每個光波都帶有該隱藏物的訊息。
03:22
about the hidden object that sent it.
63
202039
2278
03:24
So we can take these measurements
64
204341
1681
我們收集這些數據資料,
03:26
and pass them into a reconstruction algorithm
65
206046
2499
再用影像重建演算法
03:28
to then recover the 3D geometry of this hidden scene.
66
208569
3881
畫出該隱藏物件的 3D 幾何形狀。
03:33
Now I want to show you one more example of an indoor scene that we captured,
67
213379
3810
接下來是我們做的另一個 室內場景的範例,
03:37
this time with a variety of different hidden objects.
68
217213
3110
這次用到更多不同的物件。
03:40
And these objects have different appearances,
69
220347
2127
各自有不同的外觀,
03:42
so they reflect light differently.
70
222498
1833
反射光的方式也都不同。
03:44
For example, this glossy dragon statue reflects light differently
71
224355
3754
例如,這個有光澤的龍雕像反射的光
03:48
than the mirror disco ball
72
228133
1777
不同於那個迪斯可的鏡球吊燈,
03:49
or the white discus thrower statue.
73
229934
2611
也跟那個白色鐵餅投手雕像不同。
03:52
And we can actually see the differences in the reflected light
74
232998
3419
從它們各自反射的光, 也能看出其中的差異,
03:56
by visualizing it as this 3D volume,
75
236441
2841
只要將剛剛拍攝的 影片窗格堆疊起來,
03:59
where we've just taken the video frames and stacked them together.
76
239306
3310
就能做出這樣一個 視覺化的 3D 影像。
04:02
And time here is represented as the depth dimension of this cube.
77
242640
4299
立方體的深度代表時間軸。
04:07
These bright dots that you see are reflections of light
78
247914
3191
你看到的這些較亮的光點
是舞廳球燈上的小鏡面反射的光
04:11
from each of the mirrored facets of the disco ball,
79
251129
2546
04:13
scattering against the wall over time.
80
253699
2191
隨著時間的推移射到牆面上。
04:16
The bright streaks of light that you see arriving soonest in time
81
256422
3536
那些最明亮的光束, 也是最快反射到牆面的,
04:19
are from the glossy dragon statue that's closest to the wall,
82
259982
3960
則是來自最靠近牆壁的亮面龍雕像,
04:23
and the other streaks of light come from reflections of light from the bookcase
83
263966
3801
還有其他的光線則是從書櫃 及投手雕像反射回來的。
04:27
and from the statue.
84
267791
1333
04:29
Now, we can also visualize these measurements frame by frame,
85
269727
3887
我們也可以把所收集到的數據
用影像的方式一格一格地播放,
04:33
as a video,
86
273638
1192
04:34
to directly see the scattered light.
87
274854
1882
就能看到四散飛濺的光。
04:37
And again, here we see, first, reflections of light from the dragon,
88
277461
3619
最先看到的還是來自龍反射的光,
04:41
closest to the wall,
89
281104
1246
因為它離牆壁最近,
04:42
followed by bright dots from the disco ball
90
282374
3389
接下來就是來自迪斯可球鏡的光點,
04:45
and other reflections from the bookcase.
91
285787
2719
再來是書櫃,
最後看到的是反射自雕像的光波。
04:48
And finally, we see the reflected waves of light from the statue.
92
288530
4452
04:53
These waves of light illuminating the wall
93
293840
2793
這些光波照亮了牆壁,
04:56
are like fireworks that last for just trillionths of a second.
94
296657
4618
像煙火那樣,只持續了幾兆分之一秒。
05:05
And even though these objects reflect light differently,
95
305649
3246
雖然各物體反射光的方式不同,
05:08
we can still reconstruct their shapes.
96
308919
2634
我們仍能重建它們的形狀,
05:11
And this is what you can see from around the corner.
97
311577
2760
看到角落後面是這個樣子。
05:15
Now, I want to show you one more example that's slightly different.
98
315547
3429
讓我再展示另一個稍微不同的例子。
05:19
In this video, you see me dressed in this reflective suit
99
319000
3380
影片中的我身上穿著反光服,
05:22
and our camera system is scanning the wall at a rate of four times every second.
100
322404
4395
攝像系統每秒掃描牆壁四次。
05:27
The suit is reflective,
101
327173
1214
因為反光服的布料特性,
05:28
so we can actually capture enough photons
102
328411
2658
我們得以捕捉到足夠的光子,
即使攝像機並非正對著我, 仍能拍到我的位置及動作。
05:31
that we can see where I am and what I'm doing,
103
331093
3548
05:34
without the camera actually directly imaging me.
104
334665
2897
05:37
By capturing photons that scatter from the wall to my tracksuit,
105
337586
4539
光子從牆壁彈射到反光服上, 再從反光服彈回牆上,
05:42
back to the wall and back to the camera,
106
342149
2134
再從牆壁射到攝像機,
05:44
we can capture this indirect video in real time.
107
344307
3596
這些非直接的影像都是 以實時攝影捕捉的。
05:48
And we think that this type of practical non-line-of-sight imaging
108
348954
3206
我們認為這類實用的 「非視線」成像技術
05:52
could be useful for applications including for self-driving cars,
109
352184
3726
除了用在自駕車上,
05:55
but also for biomedical imaging,
110
355934
2095
還可用於生物醫學成像,
05:58
where we need to see into the tiny structures of the body.
111
358053
3571
拍攝身體中極其微小的結構。
06:01
And perhaps we could also put similar camera systems on the robots
112
361974
3501
甚至能將類似的攝像系統 裝在機器人上,
06:05
that we send to explore other planets.
113
365499
2665
送到外太空去探索其他星球。
06:08
Now you may have heard about seeing around corners before,
114
368839
2762
或許你們之前已經聽過 透視轉角的技術,
06:11
but what I showed you today would have been impossible
115
371625
2574
但我今天示範的 這兩年才被開發出來。
06:14
just two years ago.
116
374223
1164
06:15
For example, we can now image large, room-sized hidden scenes outdoors
117
375411
3857
例如我們現在可以在室外
實時拍攝房間大小的隱藏場景。
06:19
and at real-time rates,
118
379292
1849
06:21
and we've made significant advancements towards making this a practical technology
119
381165
4357
我們取得的長足進步 使其成為實用的技術,
06:25
that you could actually see on a car someday.
120
385546
2293
可被用在汽車上。
06:28
But of course, there's still challenges remaining.
121
388156
2580
當然目前仍有些挑戰。
06:30
For example, can we image hidden scenes at long distances
122
390760
4063
例如一旦距離拉大,
06:34
where we're collecting very, very few photons,
123
394847
3143
目前使用不傷眼的低功率雷射
所收集到的光子量可能不足以成像?
06:38
with lasers that are low-power and that are eye-safe.
124
398014
3277
06:41
Or can we create images from photons
125
401641
2335
那些不僅碰撞轉角一次,
06:44
that have scattered around many more times
126
404000
2029
而是多次反彈的光子,
還能被用來呈像嗎?
06:46
than just a single bounce around the corner?
127
406053
2603
06:48
Can we take our prototype system that's, well, currently large and bulky,
128
408680
4643
還有,目前這套 系統原型龐大又笨重,
06:53
and miniaturize it into something that could be useful
129
413347
2540
要怎樣將之縮小,
06:55
for biomedical imaging
130
415911
1199
用在生物醫學成像 或家庭保全系統呢?
06:57
or perhaps a sort of improved home-security system,
131
417134
3086
07:00
or can we take this new imaging modality and use it for other applications?
132
420244
5512
除了這些,還有其他的應用方式嗎?
07:05
I think it's an exciting new technology
133
425780
1889
我認為這是一項令人興奮的新技術,
07:07
and there could be other things that we haven't thought of yet
134
427693
2928
應該還有其他的應用方式 我們尚未想到。
07:10
to use it for.
135
430645
1174
07:11
And so, well, a future with self-driving cars
136
431843
2545
自駕車普及的未來 或許現今看似遙遠,
07:14
may seem distant to us now --
137
434412
2166
07:16
we're already developing the technologies
138
436602
1977
但我們正開發讓汽車 更安全、更智慧的技術。
07:18
that could make cars safer and more intelligent.
139
438603
2547
07:21
And with the rapid pace of scientific discovery and innovation,
140
441698
3302
科技創新日新月異,
07:25
you never know what new and exciting capabilities
141
445024
3047
令人驚艷的新功能或許指日可待。
07:28
could be just around the corner.
142
448095
2134
07:30
(Applause)
143
450810
2920
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog