A camera that can see around corners | David Lindell

92,740 views ・ 2020-04-21

TED


请双击下面的英文字幕来播放视频。

00:00
Transcriber: Ivana Korom Reviewer: Krystian Aparta
0
0
7000
翻译人员: Yizhuo He 校对人员: Wanting Zhong
00:12
In the future,
1
12937
1175
在将来,
无人驾驶汽车将比 人类驾驶的汽车更安全可靠。
00:14
self-driving cars will be safer and more reliable than humans.
2
14136
3654
00:18
But for this to happen,
3
18175
1222
但为了实现这点,
00:19
we need technologies that allow cars to respond
4
19421
2730
我们需要能使汽车
反应比人类更快的技术,
00:22
faster than humans,
5
22175
1267
00:23
we need algorithms that can drive better than humans
6
23466
3714
比人类更会驾驶的算法,
00:27
and we need cameras that can see more than humans can see.
7
27204
4103
和视野比人类更广阔的摄影机。
00:32
For example, imagine a self-driving car is about to make a blind turn,
8
32061
4730
比如说,想象有一辆 无人驾驶汽车将要在其盲区转弯,
00:36
and there's an oncoming car
9
36815
1334
此时有一辆车正在驶近路口,
00:38
or perhaps there's a child about to run into the street.
10
38173
2785
或是有个小孩快要跑到车道上。
00:41
Fortunately, our future car will have this superpower,
11
41458
3564
幸运的是,我们的未来汽车 将具有这样一种超能力——
00:45
a camera that can see around corners to detect these potential hazards.
12
45046
4099
一台能看到拐角后面、 察觉这些潜在危险的摄像机。
00:49
For the past few years as a PhD student
13
49876
2079
过去几年间,作为一名
00:51
in the Stanford Computational Imaging Lab,
14
51979
2277
斯坦福计算成像 实验室的博士生,
00:54
I've been working on a camera that can do just this --
15
54280
2754
我一直在研发 这样一台摄像机——
00:57
a camera that can image objects hidden around corners
16
57058
3398
它能显示藏在拐角后面的、
01:00
or blocked from direct line of sight.
17
60480
2772
或是被挡在直视 视线之外的物体。
01:03
So let me give you an example of what our camera can see.
18
63276
3452
让我来举例说明 这台摄像机能看见什么。
01:06
This is an outdoor experiment we conducted
19
66752
2563
这是我们进行的一项户外实验:
01:09
where our camera system is scanning the side of this building with a laser,
20
69339
3810
我们的摄像机系统正在 通过激光扫描此建筑的侧面,
01:13
and the scene that we want to capture
21
73173
1960
而我们想捕捉到的场景
01:15
is hidden around the corner behind this curtain.
22
75157
2960
藏在这块幕布背后的“拐角处”。
01:18
So our camera system can't actually see it directly.
23
78141
2977
我们的摄像机系统 并不能直接“看到”那些物体。
01:21
And yet, somehow,
24
81561
1168
然而,神奇的是,
01:22
our camera can still capture the 3D geometry of this scene.
25
82753
4548
它仍旧能捕捉到 这个场景的三维几何轮廓。
01:27
So how do we do this?
26
87704
1400
这是如何实现的?
01:29
The magic happens here in this camera system.
27
89498
2722
玄机就藏在这个摄像机系统中。
01:32
You can think of this as a type of high-speed camera.
28
92244
3325
你可以把它想象成 一种高速摄像机。
01:35
Not one that operates at 1,000 frames per second,
29
95593
3470
不同于那些每秒能 捕捉一千帧、
01:39
or even a million frames per second,
30
99087
2745
甚至百万帧图像的摄影机,
01:41
but a trillion frames per second.
31
101856
2253
它每秒能捕捉 一万亿帧的图像。
01:45
So fast that it can actually capture the movement of light itself.
32
105023
4835
它的速度如此之快, 甚至能捕捉到光的移动。
01:50
And to give you an example of just how fast light travels,
33
110652
3643
为了举例说明 光的传播速度有多快,
01:54
let's compare it to the speed of a fast-running comic book superhero
34
114319
4285
我们不妨把它和 能以三倍声速移动的
01:58
who can move at up to three times the speed of sound.
35
118628
2748
漫画超级英雄做个比较。
02:02
It takes a pulse of light about 3.3 billionths of a second,
36
122201
4199
一段光脉冲跨越一米距离
02:06
or 3.3 nanoseconds,
37
126424
1873
需要 33 亿分之 1 秒,
02:08
to travel the distance of a meter.
38
128321
2129
即 3.3 纳秒,
02:10
Well, in that same time,
39
130474
1935
与此同时,
02:12
our superhero has moved less than the width of a human hair.
40
132433
3874
我们的超级英雄移动的距离 还没到一根人类头发的宽度。
02:16
That's pretty fast.
41
136633
1267
看来这确实很快。
02:18
But actually, we need to image much faster
42
138306
2454
但实际上,想要捕捉到 在次厘米规模上移动的光线,
02:20
if we want to capture light moving at subcentimeter scales.
43
140784
3388
我们还需要能更快成像的摄影机。
02:24
So our camera system can capture photons
44
144784
2497
我们的摄影机系统能以 每帧 50 万亿分之 1 秒,
02:27
at time frames of just 50 trillionths of a second,
45
147305
3516
即 50 皮秒的帧率
02:30
or 50 picoseconds.
46
150845
1745
捕捉到移动的光子。
02:33
So we take this ultra-high-speed camera
47
153821
2502
接着我们将这台 超高速摄影机
02:36
and we pair it with a laser that sends out short pulses of light.
48
156347
3674
和能发出小段光脉冲的激光组合起来。
02:40
Each pulse travels to this visible wall
49
160553
2635
当每段光脉冲传播到 这面可看见的(白色)墙时,
02:43
and some light scatters back to our camera,
50
163212
2127
就会有光线被散射回 我们的摄影机这儿,
02:45
but we also use the wall to scatter light around the corner
51
165363
3216
不过我们还用这面墙 将光线散射到拐角后面、
02:48
to the hidden object and back.
52
168603
1933
被挡住的物体上, 然后再散射回来。
02:51
We repeat this measurement many times
53
171363
2238
我们通过多次重复 这种测量过程,
02:53
to capture the arrival times of many photons
54
173625
2540
来捕捉从墙上各个位置
02:56
from different locations on the wall.
55
176189
2087
散射的光子的到达时间。
02:58
And after we capture these measurements, we can create
56
178300
2856
得到这些测量结果后, 我们就能生成
03:01
a trillion-frame-per-second video of the wall.
57
181180
2635
这面墙每秒一万亿帧的一段影像。
03:04
While this wall may look ordinary to our own eyes,
58
184371
3008
在我们的肉眼看来, 这面墙或许再普通不过了,
03:07
at a trillion frames per second, we can see something truly incredible.
59
187403
4475
但以每秒一万亿帧的帧率, 我们却能看见神奇的景象。
03:12
We can actually see waves of light scattered back from the hidden scene
60
192275
4367
我们能看见从被遮挡的场景 散射回来的光波
03:16
and splashing against the wall.
61
196666
2067
在墙上溅开。
03:19
And each of these waves carries information
62
199063
2952
每段光波都携带着
将其散射回来的 被隐藏物体的信息。
03:22
about the hidden object that sent it.
63
202039
2278
03:24
So we can take these measurements
64
204341
1681
我们将这些测量结果
03:26
and pass them into a reconstruction algorithm
65
206046
2499
输入到一段能重建图像的算法中,
03:28
to then recover the 3D geometry of this hidden scene.
66
208569
3881
来重现被隐藏场景的 三维几何轮廓。
03:33
Now I want to show you one more example of an indoor scene that we captured,
67
213379
3810
我想再展现一个 捕捉室内场景的例子,
03:37
this time with a variety of different hidden objects.
68
217213
3110
这次被隐藏物体的种类更丰富。
03:40
And these objects have different appearances,
69
220347
2127
这些物体的外观各不相同,
03:42
so they reflect light differently.
70
222498
1833
所以它们反射光线的方式也不同。
03:44
For example, this glossy dragon statue reflects light differently
71
224355
3754
比如,这座富有光泽的龙雕像 与这颗镜面迪斯科球,
03:48
than the mirror disco ball
72
228133
1777
或是这座《掷铁饼者》雕像
03:49
or the white discus thrower statue.
73
229934
2611
反射光线的方式是不同的。
03:52
And we can actually see the differences in the reflected light
74
232998
3419
我们可以把视频帧堆叠在一起,
03:56
by visualizing it as this 3D volume,
75
236441
2841
将被反射的光线 可视化为三维立体,
03:59
where we've just taken the video frames and stacked them together.
76
239306
3310
从而观察到它们之间的区别。
04:02
And time here is represented as the depth dimension of this cube.
77
242640
4299
立方体的宽度则代表了时间。
04:07
These bright dots that you see are reflections of light
78
247914
3191
这些亮点是从迪斯科球的每个镜面
04:11
from each of the mirrored facets of the disco ball,
79
251129
2546
反射回来的光,
04:13
scattering against the wall over time.
80
253699
2191
随时间的推移被分散到 墙面的各个角落。
04:16
The bright streaks of light that you see arriving soonest in time
81
256422
3536
这些到达时间最早的亮条纹
04:19
are from the glossy dragon statue that's closest to the wall,
82
259982
3960
是被离墙面最近的 龙雕塑反射回来的,
04:23
and the other streaks of light come from reflections of light from the bookcase
83
263966
3801
其他的亮条纹则是从书架和
04:27
and from the statue.
84
267791
1333
《掷铁饼者》所反射回来的。
04:29
Now, we can also visualize these measurements frame by frame,
85
269727
3887
我们还可以将这些测量结果 一帧一帧地
04:33
as a video,
86
273638
1192
以录像的形式播放,
04:34
to directly see the scattered light.
87
274854
1882
以更直接地观察 这些被散射回来的光。
04:37
And again, here we see, first, reflections of light from the dragon,
88
277461
3619
这次,同样的, 我们最初看见的光反射是来自
离墙最近的龙雕塑,
04:41
closest to the wall,
89
281104
1246
04:42
followed by bright dots from the disco ball
90
282374
3389
接着是来自迪斯科球的亮点
04:45
and other reflections from the bookcase.
91
285787
2719
和其他来自书架的反射光。
04:48
And finally, we see the reflected waves of light from the statue.
92
288530
4452
最后,我们看见的是被 《掷铁饼者》雕塑反射回的光波。
04:53
These waves of light illuminating the wall
93
293840
2793
这些光波像是仅能绽放
04:56
are like fireworks that last for just trillionths of a second.
94
296657
4618
万亿分之一秒的烟花一样 照亮了这面墙。
05:05
And even though these objects reflect light differently,
95
305649
3246
尽管这些物体 反射光的方式不同,
05:08
we can still reconstruct their shapes.
96
308919
2634
我们依旧能重建它们的形状。
05:11
And this is what you can see from around the corner.
97
311577
2760
这就是你能从 被遮挡的拐角后看到的图像。
05:15
Now, I want to show you one more example that's slightly different.
98
315547
3429
现在,我想再演示一个 稍微不同的例子。
05:19
In this video, you see me dressed in this reflective suit
99
319000
3380
在这段录像中, 我穿着这件能反射光的连体衣,
05:22
and our camera system is scanning the wall at a rate of four times every second.
100
322404
4395
我们的摄像机系统 以每秒四次的速率扫描这面墙。
05:27
The suit is reflective,
101
327173
1214
因为这件连体衣能反射光,
05:28
so we can actually capture enough photons
102
328411
2658
所以尽管摄影机 并不能直接拍到我,
05:31
that we can see where I am and what I'm doing,
103
331093
3548
我们却能通过捕捉足够多的光子
05:34
without the camera actually directly imaging me.
104
334665
2897
来反映出我的位置与动作。
05:37
By capturing photons that scatter from the wall to my tracksuit,
105
337586
4539
通过捕捉从墙面被散射到 连体衣,再被散射回墙面,
05:42
back to the wall and back to the camera,
106
342149
2134
最后回到摄像机的光子,
05:44
we can capture this indirect video in real time.
107
344307
3596
我们能实时地捕捉这段间接录像。
05:48
And we think that this type of practical non-line-of-sight imaging
108
348954
3206
我们认为这种实用的 非视距成像技术
05:52
could be useful for applications including for self-driving cars,
109
352184
3726
能被应用于自动驾驶,
05:55
but also for biomedical imaging,
110
355934
2095
还有生物医学成像这样
05:58
where we need to see into the tiny structures of the body.
111
358053
3571
需要观察身体微小结构的技术。
06:01
And perhaps we could also put similar camera systems on the robots
112
361974
3501
也许我们还能将类似的 摄像机系统安装到
06:05
that we send to explore other planets.
113
365499
2665
被送去探索其他星球的机器人上。
06:08
Now you may have heard about seeing around corners before,
114
368839
2762
也许你曾听说过这种能 观察到拐角另一侧景象的技术,
06:11
but what I showed you today would have been impossible
115
371625
2574
但我今天所展示的内容
两年前还无法实现。
06:14
just two years ago.
116
374223
1164
06:15
For example, we can now image large, room-sized hidden scenes outdoors
117
375411
3857
比如,我们现在能实时地 将室外的房间大小的
大型被遮挡景象可视化,
06:19
and at real-time rates,
118
379292
1849
06:21
and we've made significant advancements towards making this a practical technology
119
381165
4357
我们在提高此技术实用性的方面 也取得了重大进展,
06:25
that you could actually see on a car someday.
120
385546
2293
将来你可能在 汽车上看到这种系统。
06:28
But of course, there's still challenges remaining.
121
388156
2580
当然,我们依旧 面临着诸多挑战。
06:30
For example, can we image hidden scenes at long distances
122
390760
4063
比如,我们能否在使用 低功率,确保对人眼安全的激光
06:34
where we're collecting very, very few photons,
123
394847
3143
采集极少数光子的情况下,
06:38
with lasers that are low-power and that are eye-safe.
124
398014
3277
将远距离的景象可视化?
06:41
Or can we create images from photons
125
401641
2335
或者,不同于 只被反射一次的光子,
06:44
that have scattered around many more times
126
404000
2029
我们能否通过被散射多次的光子
06:46
than just a single bounce around the corner?
127
406053
2603
将景象可视化?
06:48
Can we take our prototype system that's, well, currently large and bulky,
128
408680
4643
我们能否将这种 目前还体积庞大的样机
06:53
and miniaturize it into something that could be useful
129
413347
2540
缩小到能被用于
06:55
for biomedical imaging
130
415911
1199
生物医学成像的大小,
06:57
or perhaps a sort of improved home-security system,
131
417134
3086
或是将其应用于更先进的 家居安防系统,
07:00
or can we take this new imaging modality and use it for other applications?
132
420244
5512
亦或是将这种新型的成像形式 应用于其他领域?
07:05
I think it's an exciting new technology
133
425780
1889
我认为这是一项令人振奋的新技术,
07:07
and there could be other things that we haven't thought of yet
134
427693
2928
我们也许还能将其应用于其它 现在还想象不到的
07:10
to use it for.
135
430645
1174
情景之中。
07:11
And so, well, a future with self-driving cars
136
431843
2545
也许一个自动驾驶汽车 被普及的未来
07:14
may seem distant to us now --
137
434412
2166
在我们看来还很遥远——
07:16
we're already developing the technologies
138
436602
1977
但我们实际上已经在发展
07:18
that could make cars safer and more intelligent.
139
438603
2547
能使汽车更安全, 更智能的科技了。
07:21
And with the rapid pace of scientific discovery and innovation,
140
441698
3302
随着科学创新与发明的高速发展,
07:25
you never know what new and exciting capabilities
141
445024
3047
你永远都想象不到还会有 哪些新型的,令人振奋的技术
07:28
could be just around the corner.
142
448095
2134
出现在不远的拐角处(将来)。 (一语双关)
07:30
(Applause)
143
450810
2920
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7