A camera that can see around corners | David Lindell

93,228 views ・ 2020-04-21

TED


请双击下面的英文字幕来播放视频。

00:00
Transcriber: Ivana Korom Reviewer: Krystian Aparta
0
0
7000
翻译人员: Yizhuo He 校对人员: Wanting Zhong
00:12
In the future,
1
12937
1175
在将来,
无人驾驶汽车将比 人类驾驶的汽车更安全可靠。
00:14
self-driving cars will be safer and more reliable than humans.
2
14136
3654
00:18
But for this to happen,
3
18175
1222
但为了实现这点,
00:19
we need technologies that allow cars to respond
4
19421
2730
我们需要能使汽车
反应比人类更快的技术,
00:22
faster than humans,
5
22175
1267
00:23
we need algorithms that can drive better than humans
6
23466
3714
比人类更会驾驶的算法,
00:27
and we need cameras that can see more than humans can see.
7
27204
4103
和视野比人类更广阔的摄影机。
00:32
For example, imagine a self-driving car is about to make a blind turn,
8
32061
4730
比如说,想象有一辆 无人驾驶汽车将要在其盲区转弯,
00:36
and there's an oncoming car
9
36815
1334
此时有一辆车正在驶近路口,
00:38
or perhaps there's a child about to run into the street.
10
38173
2785
或是有个小孩快要跑到车道上。
00:41
Fortunately, our future car will have this superpower,
11
41458
3564
幸运的是,我们的未来汽车 将具有这样一种超能力——
00:45
a camera that can see around corners to detect these potential hazards.
12
45046
4099
一台能看到拐角后面、 察觉这些潜在危险的摄像机。
00:49
For the past few years as a PhD student
13
49876
2079
过去几年间,作为一名
00:51
in the Stanford Computational Imaging Lab,
14
51979
2277
斯坦福计算成像 实验室的博士生,
00:54
I've been working on a camera that can do just this --
15
54280
2754
我一直在研发 这样一台摄像机——
00:57
a camera that can image objects hidden around corners
16
57058
3398
它能显示藏在拐角后面的、
01:00
or blocked from direct line of sight.
17
60480
2772
或是被挡在直视 视线之外的物体。
01:03
So let me give you an example of what our camera can see.
18
63276
3452
让我来举例说明 这台摄像机能看见什么。
01:06
This is an outdoor experiment we conducted
19
66752
2563
这是我们进行的一项户外实验:
01:09
where our camera system is scanning the side of this building with a laser,
20
69339
3810
我们的摄像机系统正在 通过激光扫描此建筑的侧面,
01:13
and the scene that we want to capture
21
73173
1960
而我们想捕捉到的场景
01:15
is hidden around the corner behind this curtain.
22
75157
2960
藏在这块幕布背后的“拐角处”。
01:18
So our camera system can't actually see it directly.
23
78141
2977
我们的摄像机系统 并不能直接“看到”那些物体。
01:21
And yet, somehow,
24
81561
1168
然而,神奇的是,
01:22
our camera can still capture the 3D geometry of this scene.
25
82753
4548
它仍旧能捕捉到 这个场景的三维几何轮廓。
01:27
So how do we do this?
26
87704
1400
这是如何实现的?
01:29
The magic happens here in this camera system.
27
89498
2722
玄机就藏在这个摄像机系统中。
01:32
You can think of this as a type of high-speed camera.
28
92244
3325
你可以把它想象成 一种高速摄像机。
01:35
Not one that operates at 1,000 frames per second,
29
95593
3470
不同于那些每秒能 捕捉一千帧、
01:39
or even a million frames per second,
30
99087
2745
甚至百万帧图像的摄影机,
01:41
but a trillion frames per second.
31
101856
2253
它每秒能捕捉 一万亿帧的图像。
01:45
So fast that it can actually capture the movement of light itself.
32
105023
4835
它的速度如此之快, 甚至能捕捉到光的移动。
01:50
And to give you an example of just how fast light travels,
33
110652
3643
为了举例说明 光的传播速度有多快,
01:54
let's compare it to the speed of a fast-running comic book superhero
34
114319
4285
我们不妨把它和 能以三倍声速移动的
01:58
who can move at up to three times the speed of sound.
35
118628
2748
漫画超级英雄做个比较。
02:02
It takes a pulse of light about 3.3 billionths of a second,
36
122201
4199
一段光脉冲跨越一米距离
02:06
or 3.3 nanoseconds,
37
126424
1873
需要 33 亿分之 1 秒,
02:08
to travel the distance of a meter.
38
128321
2129
即 3.3 纳秒,
02:10
Well, in that same time,
39
130474
1935
与此同时,
02:12
our superhero has moved less than the width of a human hair.
40
132433
3874
我们的超级英雄移动的距离 还没到一根人类头发的宽度。
02:16
That's pretty fast.
41
136633
1267
看来这确实很快。
02:18
But actually, we need to image much faster
42
138306
2454
但实际上,想要捕捉到 在次厘米规模上移动的光线,
02:20
if we want to capture light moving at subcentimeter scales.
43
140784
3388
我们还需要能更快成像的摄影机。
02:24
So our camera system can capture photons
44
144784
2497
我们的摄影机系统能以 每帧 50 万亿分之 1 秒,
02:27
at time frames of just 50 trillionths of a second,
45
147305
3516
即 50 皮秒的帧率
02:30
or 50 picoseconds.
46
150845
1745
捕捉到移动的光子。
02:33
So we take this ultra-high-speed camera
47
153821
2502
接着我们将这台 超高速摄影机
02:36
and we pair it with a laser that sends out short pulses of light.
48
156347
3674
和能发出小段光脉冲的激光组合起来。
02:40
Each pulse travels to this visible wall
49
160553
2635
当每段光脉冲传播到 这面可看见的(白色)墙时,
02:43
and some light scatters back to our camera,
50
163212
2127
就会有光线被散射回 我们的摄影机这儿,
02:45
but we also use the wall to scatter light around the corner
51
165363
3216
不过我们还用这面墙 将光线散射到拐角后面、
02:48
to the hidden object and back.
52
168603
1933
被挡住的物体上, 然后再散射回来。
02:51
We repeat this measurement many times
53
171363
2238
我们通过多次重复 这种测量过程,
02:53
to capture the arrival times of many photons
54
173625
2540
来捕捉从墙上各个位置
02:56
from different locations on the wall.
55
176189
2087
散射的光子的到达时间。
02:58
And after we capture these measurements, we can create
56
178300
2856
得到这些测量结果后, 我们就能生成
03:01
a trillion-frame-per-second video of the wall.
57
181180
2635
这面墙每秒一万亿帧的一段影像。
03:04
While this wall may look ordinary to our own eyes,
58
184371
3008
在我们的肉眼看来, 这面墙或许再普通不过了,
03:07
at a trillion frames per second, we can see something truly incredible.
59
187403
4475
但以每秒一万亿帧的帧率, 我们却能看见神奇的景象。
03:12
We can actually see waves of light scattered back from the hidden scene
60
192275
4367
我们能看见从被遮挡的场景 散射回来的光波
03:16
and splashing against the wall.
61
196666
2067
在墙上溅开。
03:19
And each of these waves carries information
62
199063
2952
每段光波都携带着
将其散射回来的 被隐藏物体的信息。
03:22
about the hidden object that sent it.
63
202039
2278
03:24
So we can take these measurements
64
204341
1681
我们将这些测量结果
03:26
and pass them into a reconstruction algorithm
65
206046
2499
输入到一段能重建图像的算法中,
03:28
to then recover the 3D geometry of this hidden scene.
66
208569
3881
来重现被隐藏场景的 三维几何轮廓。
03:33
Now I want to show you one more example of an indoor scene that we captured,
67
213379
3810
我想再展现一个 捕捉室内场景的例子,
03:37
this time with a variety of different hidden objects.
68
217213
3110
这次被隐藏物体的种类更丰富。
03:40
And these objects have different appearances,
69
220347
2127
这些物体的外观各不相同,
03:42
so they reflect light differently.
70
222498
1833
所以它们反射光线的方式也不同。
03:44
For example, this glossy dragon statue reflects light differently
71
224355
3754
比如,这座富有光泽的龙雕像 与这颗镜面迪斯科球,
03:48
than the mirror disco ball
72
228133
1777
或是这座《掷铁饼者》雕像
03:49
or the white discus thrower statue.
73
229934
2611
反射光线的方式是不同的。
03:52
And we can actually see the differences in the reflected light
74
232998
3419
我们可以把视频帧堆叠在一起,
03:56
by visualizing it as this 3D volume,
75
236441
2841
将被反射的光线 可视化为三维立体,
03:59
where we've just taken the video frames and stacked them together.
76
239306
3310
从而观察到它们之间的区别。
04:02
And time here is represented as the depth dimension of this cube.
77
242640
4299
立方体的宽度则代表了时间。
04:07
These bright dots that you see are reflections of light
78
247914
3191
这些亮点是从迪斯科球的每个镜面
04:11
from each of the mirrored facets of the disco ball,
79
251129
2546
反射回来的光,
04:13
scattering against the wall over time.
80
253699
2191
随时间的推移被分散到 墙面的各个角落。
04:16
The bright streaks of light that you see arriving soonest in time
81
256422
3536
这些到达时间最早的亮条纹
04:19
are from the glossy dragon statue that's closest to the wall,
82
259982
3960
是被离墙面最近的 龙雕塑反射回来的,
04:23
and the other streaks of light come from reflections of light from the bookcase
83
263966
3801
其他的亮条纹则是从书架和
04:27
and from the statue.
84
267791
1333
《掷铁饼者》所反射回来的。
04:29
Now, we can also visualize these measurements frame by frame,
85
269727
3887
我们还可以将这些测量结果 一帧一帧地
04:33
as a video,
86
273638
1192
以录像的形式播放,
04:34
to directly see the scattered light.
87
274854
1882
以更直接地观察 这些被散射回来的光。
04:37
And again, here we see, first, reflections of light from the dragon,
88
277461
3619
这次,同样的, 我们最初看见的光反射是来自
离墙最近的龙雕塑,
04:41
closest to the wall,
89
281104
1246
04:42
followed by bright dots from the disco ball
90
282374
3389
接着是来自迪斯科球的亮点
04:45
and other reflections from the bookcase.
91
285787
2719
和其他来自书架的反射光。
04:48
And finally, we see the reflected waves of light from the statue.
92
288530
4452
最后,我们看见的是被 《掷铁饼者》雕塑反射回的光波。
04:53
These waves of light illuminating the wall
93
293840
2793
这些光波像是仅能绽放
04:56
are like fireworks that last for just trillionths of a second.
94
296657
4618
万亿分之一秒的烟花一样 照亮了这面墙。
05:05
And even though these objects reflect light differently,
95
305649
3246
尽管这些物体 反射光的方式不同,
05:08
we can still reconstruct their shapes.
96
308919
2634
我们依旧能重建它们的形状。
05:11
And this is what you can see from around the corner.
97
311577
2760
这就是你能从 被遮挡的拐角后看到的图像。
05:15
Now, I want to show you one more example that's slightly different.
98
315547
3429
现在,我想再演示一个 稍微不同的例子。
05:19
In this video, you see me dressed in this reflective suit
99
319000
3380
在这段录像中, 我穿着这件能反射光的连体衣,
05:22
and our camera system is scanning the wall at a rate of four times every second.
100
322404
4395
我们的摄像机系统 以每秒四次的速率扫描这面墙。
05:27
The suit is reflective,
101
327173
1214
因为这件连体衣能反射光,
05:28
so we can actually capture enough photons
102
328411
2658
所以尽管摄影机 并不能直接拍到我,
05:31
that we can see where I am and what I'm doing,
103
331093
3548
我们却能通过捕捉足够多的光子
05:34
without the camera actually directly imaging me.
104
334665
2897
来反映出我的位置与动作。
05:37
By capturing photons that scatter from the wall to my tracksuit,
105
337586
4539
通过捕捉从墙面被散射到 连体衣,再被散射回墙面,
05:42
back to the wall and back to the camera,
106
342149
2134
最后回到摄像机的光子,
05:44
we can capture this indirect video in real time.
107
344307
3596
我们能实时地捕捉这段间接录像。
05:48
And we think that this type of practical non-line-of-sight imaging
108
348954
3206
我们认为这种实用的 非视距成像技术
05:52
could be useful for applications including for self-driving cars,
109
352184
3726
能被应用于自动驾驶,
05:55
but also for biomedical imaging,
110
355934
2095
还有生物医学成像这样
05:58
where we need to see into the tiny structures of the body.
111
358053
3571
需要观察身体微小结构的技术。
06:01
And perhaps we could also put similar camera systems on the robots
112
361974
3501
也许我们还能将类似的 摄像机系统安装到
06:05
that we send to explore other planets.
113
365499
2665
被送去探索其他星球的机器人上。
06:08
Now you may have heard about seeing around corners before,
114
368839
2762
也许你曾听说过这种能 观察到拐角另一侧景象的技术,
06:11
but what I showed you today would have been impossible
115
371625
2574
但我今天所展示的内容
两年前还无法实现。
06:14
just two years ago.
116
374223
1164
06:15
For example, we can now image large, room-sized hidden scenes outdoors
117
375411
3857
比如,我们现在能实时地 将室外的房间大小的
大型被遮挡景象可视化,
06:19
and at real-time rates,
118
379292
1849
06:21
and we've made significant advancements towards making this a practical technology
119
381165
4357
我们在提高此技术实用性的方面 也取得了重大进展,
06:25
that you could actually see on a car someday.
120
385546
2293
将来你可能在 汽车上看到这种系统。
06:28
But of course, there's still challenges remaining.
121
388156
2580
当然,我们依旧 面临着诸多挑战。
06:30
For example, can we image hidden scenes at long distances
122
390760
4063
比如,我们能否在使用 低功率,确保对人眼安全的激光
06:34
where we're collecting very, very few photons,
123
394847
3143
采集极少数光子的情况下,
06:38
with lasers that are low-power and that are eye-safe.
124
398014
3277
将远距离的景象可视化?
06:41
Or can we create images from photons
125
401641
2335
或者,不同于 只被反射一次的光子,
06:44
that have scattered around many more times
126
404000
2029
我们能否通过被散射多次的光子
06:46
than just a single bounce around the corner?
127
406053
2603
将景象可视化?
06:48
Can we take our prototype system that's, well, currently large and bulky,
128
408680
4643
我们能否将这种 目前还体积庞大的样机
06:53
and miniaturize it into something that could be useful
129
413347
2540
缩小到能被用于
06:55
for biomedical imaging
130
415911
1199
生物医学成像的大小,
06:57
or perhaps a sort of improved home-security system,
131
417134
3086
或是将其应用于更先进的 家居安防系统,
07:00
or can we take this new imaging modality and use it for other applications?
132
420244
5512
亦或是将这种新型的成像形式 应用于其他领域?
07:05
I think it's an exciting new technology
133
425780
1889
我认为这是一项令人振奋的新技术,
07:07
and there could be other things that we haven't thought of yet
134
427693
2928
我们也许还能将其应用于其它 现在还想象不到的
07:10
to use it for.
135
430645
1174
情景之中。
07:11
And so, well, a future with self-driving cars
136
431843
2545
也许一个自动驾驶汽车 被普及的未来
07:14
may seem distant to us now --
137
434412
2166
在我们看来还很遥远——
07:16
we're already developing the technologies
138
436602
1977
但我们实际上已经在发展
07:18
that could make cars safer and more intelligent.
139
438603
2547
能使汽车更安全, 更智能的科技了。
07:21
And with the rapid pace of scientific discovery and innovation,
140
441698
3302
随着科学创新与发明的高速发展,
07:25
you never know what new and exciting capabilities
141
445024
3047
你永远都想象不到还会有 哪些新型的,令人振奋的技术
07:28
could be just around the corner.
142
448095
2134
出现在不远的拐角处(将来)。 (一语双关)
07:30
(Applause)
143
450810
2920
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog