Why curiosity is the key to science and medicine | Kevin B. Jones

72,547 views ใƒป 2017-01-11

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

00:00
Translator: Joseph Geni Reviewer: Joanna Pietrulewicz
0
0
7000
ืžืชืจื’ื: Zeeva Livshitz ืžื‘ืงืจ: Ido Dekkers
00:12
Science.
1
12840
1200
ืžื“ืข.
00:14
The very word for many of you conjures unhappy memories of boredom
2
14760
3416
ื”ืžื™ืœื” ืขืฆืžื”, ืขื‘ื•ืจ ืจื‘ื™ื ืžื›ื ืžืขืœื” ื–ื›ืจื•ื ื•ืช ืœื ื ืขื™ืžื™ื ืฉืœ ืฉื™ืขืžื•ื
00:18
in high school biology or physics class.
3
18200
2896
ื‘ืฉื™ืขื•ืจื™ ื‘ื™ื•ืœื•ื’ื™ื”, ืื• ืคื™ืกื™ืงื” ื‘ืชื™ื›ื•ืŸ.
ืืš ื”ืจืฉื• ืœื™ ืœื”ื‘ื˜ื™ื— ืœื›ื ืฉืœื“ื‘ืจื™ื ืฉืขืฉื™ืชื ืฉื
00:21
But let me assure that what you did there
4
21120
3096
00:24
had very little to do with science.
5
24240
2176
ื”ื™ื” ืงืฉืจ ืžื•ืขื˜ ืžืื•ื“ ืœืžื“ืข.
00:26
That was really the "what" of science.
6
26440
2296
ืœืžืขืฉื” ื–ื” ื”ื™ื” ื”"ืžื”" ืฉืœ ื”ืžื“ืข
00:28
It was the history of what other people had discovered.
7
28760
2720
ื–ื• ื”ื™ืชื” ื”ื”ื™ืกื˜ื•ืจื™ื” ืฉืœ ืชื’ืœื™ื•ืชื™ื”ื ืฉืœ ื‘ื ื™ ืื“ื ืื—ืจื™ื.
00:32
What I'm most interested in as a scientist
8
32720
2336
ืžื” ืฉื”ื›ื™ ืžืขื ื™ื™ืŸ ืื•ืชื™ ื›ืžื“ืขืŸ
ื”ื•ื ื”"ืื™ืš" ืฉืœ ื”ืžื“ืข.
00:35
is the "how" of science.
9
35080
2136
00:37
Because science is knowledge in process.
10
37240
3816
ื›ื™ ื”ืžื“ืข ื”ื•ื ื™ื“ืข ื‘ืชื”ืœื™ืš.
ืื ื—ื ื• ืขื•ืจื›ื™ื ืชืฆืคื™ืช, ืžืฉืขืจื™ื ื”ืกื‘ืจ ื›ืœืฉื”ื• ืœืชืฆืคื™ืช ื–ื•,
00:41
We make an observation, guess an explanation for that observation,
11
41080
3456
00:44
and then make a prediction that we can test
12
44560
2056
ื•ืื– ื—ื•ื–ื™ื ื“ื‘ืจ ืžื” ืฉื ื•ื›ืœ ืœื‘ื“ื•ืง
00:46
with an experiment or other observation.
13
46640
1920
ื‘ืขื–ืจืช ื ื™ืกื•ื™ ืื• ืชืฆืคื™ืช ืื—ืจืช.
ื›ืžื” ื“ื•ื’ืžืื•ืช.
00:49
A couple of examples.
14
49080
1336
00:50
First of all, people noticed that the Earth was below, the sky above,
15
50440
3576
ื‘ืจืืฉ ื•ื‘ืจืืฉื•ื ื”, ืื ืฉื™ื ื”ื‘ื—ื™ื ื• ืฉื›ื“ื•ืจ ื”ืืจืฅ ื”ื™ื” ืžืชื—ืช, ื”ืฉืžื™ื ืžืขืœ,
ื•ื”ืฉืžืฉ ื•ื”ื™ืจื— ื ื“ืžื• ื›ืกื•ื‘ื‘ื™ื ืกื‘ื™ื‘ื.
00:54
and both the Sun and the Moon seemed to go around them.
16
54040
3880
00:58
Their guessed explanation
17
58720
1536
ื”ื”ืกื‘ืจ ื”ืžืฉื•ืขืจ ืฉืœื”ื
01:00
was that the Earth must be the center of the universe.
18
60280
3080
ื”ื™ื” ืฉื›ื“ื•ืจ ื”ืืจืฅ ื—ื™ื™ื‘ ืœื”ื™ื•ืช ืžืจื›ื–ื• ืฉืœ ื”ื™ืงื•ื.
01:04
The prediction: everything should circle around the Earth.
19
64240
3200
ื”ื—ื™ื–ื•ื™ ื”ื™ื” ืฉื”ื›ืœ ืฆืจื™ืš ืœืกื•ื‘ ืกื‘ื™ื‘ ื›ื“ื•ืจ ื”ืืจืฅ.
ื–ื” ื ื‘ื“ืง ืœืžืขืฉื” ืœืจืืฉื•ื ื”
01:08
This was first really tested
20
68120
1656
01:09
when Galileo got his hands on one of the first telescopes,
21
69800
2816
ื›ืฉื’ืœื™ืœืื• ื”ื ื™ื— ืืช ื™ื“ื™ื• ืขืœ ืื—ื“ ื”ื˜ืœืกืงื•ืคื™ื ื”ืจืืฉื•ื ื™ื,
01:12
and as he gazed into the night sky,
22
72640
2376
ื•ื‘ืขื•ื“ ื”ื•ื ืฆื•ืคื” ื‘ืฉืžื™ ื”ืœื™ืœื”,
ื”ื“ื‘ืจ ืฉื’ื™ืœื” ืฉื ื”ื™ื” ื›ื•ื›ื‘ ื”ืœื›ืช ืฆื“ืง,
01:15
what he found there was a planet, Jupiter,
23
75040
3696
01:18
with four moons circling around it.
24
78760
4000
ืขื ืืจื‘ืขื” ื™ืจื—ื™ื ืฉื—ื’ื™ื ืกื‘ื™ื‘ื•.
01:23
He then used those moons to follow the path of Jupiter
25
83760
4376
ื”ื•ื ื”ืฉืชืžืฉ ื‘ื™ืจื—ื™ื ืืœื” ืœืœื›ืช ื‘ื“ืจื›ื• ืฉืœ ืฆื“ืง,
ื•ืžืฆื ื›ื™ ืฆื“ืง ืืฃ ื”ื•ื ืื™ื ื• ืกื•ื‘ื‘ ืกื‘ื™ื‘ ื›ื“ื•ืจ ื”ืืจืฅ
01:28
and found that Jupiter also was not going around the Earth
26
88160
3736
01:31
but around the Sun.
27
91920
1960
ืืœื ืกื‘ื™ื‘ ื”ืฉืžืฉ.
ืื– ืžื‘ื—ืŸ ื”ื—ื™ื–ื•ื™ ื ื›ืฉืœ.
01:35
So the prediction test failed.
28
95160
2280
01:38
And this led to the discarding of the theory
29
98400
2096
ื•ื–ื” ื”ื•ื‘ื™ืœ ืœื“ื—ื™ื™ืช ื”ืชื™ืื•ืจื™ื”
01:40
that the Earth was the center of the universe.
30
100520
2176
ืฉื›ื“ื•ืจ ื”ืืจืฅ ื”ื™ื” ืžืจื›ื– ื”ื™ืงื•ื.
01:42
Another example: Sir Isaac Newton noticed that things fall to the Earth.
31
102720
4096
ื“ื•ื’ืžื” ื ื•ืกืคืช: ืกืจ ืื™ื™ื–ื™ืง ื ื™ื•ื˜ื•ืŸ ื”ื‘ื—ื™ืŸ ืฉื“ื‘ืจื™ื ื ื•ืคืœื™ื ืœืืจืฅ.
01:46
The guessed explanation was gravity,
32
106840
2920
ื”ื”ืกื‘ืจ ื”ืžืฉื•ืขืจ ื”ื™ื” ื›ื•ื— ื”ื›ื‘ื™ื“ื”,
01:50
the prediction that everything should fall to the Earth.
33
110520
3136
ื”ื—ื™ื–ื•ื™ ื”ื•ื ืฉื”ื›ืœ ืฆืจื™ืš ืœื™ืคื•ืœ ืœื›ื“ื•ืจ ื”ืืจืฅ.
01:53
But of course, not everything does fall to the Earth.
34
113680
3560
ืื‘ืœ ื›ืžื•ื‘ืŸ, ืœื ื”ื›ืœ ื ื•ืคืœ ืœื›ื“ื•ืจ ื”ืืจืฅ.
01:58
So did we discard gravity?
35
118200
1560
ืื– ื”ืื ื“ื—ื™ื ื• ืืช ืจืขื™ื•ืŸ ื”ื›ื‘ื™ื“ื”?
02:00
No. We revised the theory and said, gravity pulls things to the Earth
36
120920
4416
ืœื. ืขื™ื“ื›ื ื• ืืช ื”ืชื™ืื•ืจื™ื” ื•ืืžืจื ื•, ื”ื›ื‘ื™ื“ื” ืžื•ืฉื›ืช ื“ื‘ืจื™ื ืืœ ื”ืืจืฅ
02:05
unless there is an equal and opposite force in the other direction.
37
125360
4200
ืืœื ืื ื™ืฉ ื›ื•ื— ืฉื•ื•ื” ื•ืžื ื•ื’ื“, ื‘ื›ื™ื•ื•ืŸ ื”ื”ืคื•ืš.
ื–ื” ื”ื•ื‘ื™ืœ ืื•ืชื ื• ืœืœืžื•ื“ ืžืฉื”ื• ื—ื“ืฉ.
02:10
This led us to learn something new.
38
130160
2160
02:12
We began to pay more attention to the bird and the bird's wings,
39
132920
3256
ื”ืชื—ืœื ื• ืœื”ืงื“ื™ืฉ ื™ื•ืชืจ ืชืฉื•ืžืช ืœื‘ ืœืฆื™ืคื•ืจ, ื•ืœื›ื ืคื™ื™ื ืฉืœ ื”ืฆื™ืคื•ืจ,
02:16
and just think of all the discoveries
40
136200
2376
ื•ืคืฉื•ื˜ ื—ื™ืฉื‘ื• ืขืœ ื›ืœ ื”ืชื’ืœื™ื•ืช
02:18
that have flown from that line of thinking.
41
138600
2039
ืฉื ื‘ืขื• ืžืงื• ื–ื” ืฉืœ ืžื—ืฉื‘ื”.
02:21
So the test failures, the exceptions, the outliers
42
141639
5137
ืื– ื›ืฉืœื•ื ื•ืช ื”ื ื™ืกื•ื™, ื”ื™ื•ืฆืื™ื ืžืŸ ื”ื›ืœืœ, ื”ื—ืจื™ื’ื™ื ื—ืฉื•ื“ื™ ื”ื˜ืขื•ืช,
02:26
teach us what we don't know and lead us to something new.
43
146800
4560
ืžืœืžื“ื™ื ืื•ืชื ื• ืืช ืžื” ืฉืื™ื ื ื• ื™ื•ื“ืขื™ื ื•ืžื•ื‘ื™ืœื™ื ืื•ืชื ื• ืœืžืฉื”ื• ื—ื“ืฉ.
ื–ื” ื”ืื•ืคืŸ ื‘ื• ื”ืžื“ืข ื ืข ืงื“ื™ืžื”, ื–ื• ื”ื“ืจืš ื‘ื” ื”ื•ื ืœื•ืžื“.
02:32
This is how science moves forward. This is how science learns.
44
152000
3200
02:35
Sometimes in the media, and even more rarely,
45
155840
2256
ืœืคืขืžื™ื ื‘ืชืงืฉื•ืจืช, ื•ืืฃ ื ื“ื™ืจ ื™ื•ืชืจ,
ืœืคืขืžื™ื ืืคื™ืœื• ืžื“ืขื ื™ื ื™ืืžืจื•
02:38
but sometimes even scientists will say
46
158120
2416
02:40
that something or other has been scientifically proven.
47
160560
2760
ืฉื“ื‘ืจ ื–ื” ืื• ืื—ืจ ื”ื•ื›ื— ืžื“ืขื™ืช.
02:43
But I hope that you understand that science never proves anything
48
163880
4576
ืืš ืื ื™ ืžืงื•ื•ื” ืฉืืชื ืžื‘ื™ื ื™ื ืฉืžื“ืข ืœืขื•ืœื ืื™ื ื• ืžื•ื›ื™ื— ืฉื•ื ื“ื‘ืจ
02:48
definitively forever.
49
168480
1880
ืœื ืฆื—, ื‘ืื•ืคืŸ ืกื•ืคื™.
02:51
Hopefully science remains curious enough
50
171520
3816
ื™ืฉ ืœืงื•ื•ืช ืฉื”ืžื“ืข ื™ืฉืืจ ืกืงืจืŸ ืžืกืคื™ืง
02:55
to look for
51
175360
1416
ื›ื“ื™ ืœื—ืคืฉ,
02:56
and humble enough to recognize
52
176800
1976
ื•ืขื ื•ื• ื“ื™ื• ื›ื“ื™ ืœื–ื”ื•ืช
02:58
when we have found
53
178800
1496
ื›ืืฉืจ ืžืฆืื ื•
03:00
the next outlier,
54
180320
1696
ืืช ื”ื“ื‘ืจ ื”ื—ืจื™ื’ ื”ื‘ื,
ืืช ื™ื•ืฆื ื”ื“ื•ืคืŸ ื”ื‘ื,
03:02
the next exception,
55
182040
1496
03:03
which, like Jupiter's moons,
56
183560
2296
ืืฉืจ ื›ืžื• ื”ื™ืจื—ื™ื ืฉืœ ืฆื“ืง,
03:05
teaches us what we don't actually know.
57
185880
2600
ืžืœืžื“ ืื•ืชื ื• ืืช ืžื” ืฉืื ื—ื ื• ื‘ืืžืช ืœื ื™ื•ื“ืขื™ื.
ืื ื—ื ื• ื”ื•ืœื›ื™ื ืœื”ื—ืœื™ืฃ ื›ืืŸ ื”ื™ืœื•ืš, ืœืจื’ืข.
03:09
We're going to change gears here for a second.
58
189160
2536
03:11
The caduceus, or the symbol of medicine,
59
191720
1936
ื”ืงื“ื•ืงืื•ืก (ืžื˜ื” ื”ืจืžืก), ืื• ืกืžืœ ื”ืจืคื•ืื”,
03:13
means a lot of different things to different people,
60
193680
2456
ืžืฉืžืขื• ื”ืจื‘ื” ื“ื‘ืจื™ื ืฉื•ื ื™ื ืœืื ืฉื™ื ืฉื•ื ื™ื,
ืื‘ืœ ืจื•ื‘ ื”ืฉื™ื— ื”ืฆื™ื‘ื•ืจื™ ืฉืœื ื• ืขืœ ืจืคื•ืื”
03:16
but most of our public discourse on medicine
61
196160
2256
03:18
really turns it into an engineering problem.
62
198440
2776
ื‘ืืžืช ื”ื•ืคืš ืื•ืชื• ืœื‘ืขื™ื” ื”ื ื“ืกื™ืช.
03:21
We have the hallways of Congress,
63
201240
1736
ื™ืฉ ืœื ื• ืืช ืžืกื“ืจื•ื ื•ืช ื”ืงื•ื ื’ืจืก,
ื•ืืช ื—ื“ืจื™ ื”ื™ืฉื™ื‘ื•ืช ืฉืœ ื—ื‘ืจื•ืช ื”ื‘ื™ื˜ื•ื— ืฉืžื ืกื™ื ืœื”ื‘ื™ืŸ ืื™ืš ืœืฉืœื ืขื‘ื•ืจ ื›ืœ ืืœื”.
03:23
and the boardrooms of insurance companies that try to figure out how to pay for it.
64
203000
4000
03:27
The ethicists and epidemiologists
65
207680
1616
ืื ืฉื™ ื”ืืชื™ืงื” ื•ื”ืืคื™ื“ืžื™ื•ืœื•ื’ื™ื
03:29
try to figure out how best to distribute medicine,
66
209320
2696
ืžื ืกื™ื ืœื”ื‘ื™ืŸ ืžื”ื™ ื”ื“ืจืš ื”ื˜ื•ื‘ื” ื‘ื™ื•ืชืจ ืœื”ืคื™ืฅ ืจืคื•ืื”,
ื•ื‘ืชื™ ื”ื—ื•ืœื™ื ื•ื”ืจื•ืคืื™ื ืœื—ืœื•ื˜ื™ืŸ ืื•ื‘ืกืกื™ื‘ื™ื™ื
03:32
and the hospitals and physicians are absolutely obsessed
67
212040
2656
03:34
with their protocols and checklists,
68
214720
1936
ืขื ื”ืคืจื•ื˜ื•ืงื•ืœื™ื ื•ื”ืจืฉื™ืžื•ืช ืฉืœื”ื,
03:36
trying to figure out how best to safely apply medicine.
69
216680
3536
ืžื ืกื™ื ืœื”ื‘ื™ืŸ ืžื”ื™ ื”ื“ืจืš ื”ื˜ื•ื‘ื” ื‘ื™ื•ืชืจ ืœื™ื™ืฉื ืจืคื•ืื” ื‘ื‘ื˜ื—ื”.
03:40
These are all good things.
70
220240
2120
ื›ืœ ืืœื” ื”ื ื“ื‘ืจื™ื ื˜ื•ื‘ื™ื.
03:42
However, they also all assume
71
222960
2736
ืขื ื–ืืช, ื›ื•ืœื ื’ื ืžื ื™ื—ื™ื
03:45
at some level
72
225720
1976
ื‘ืจืžื” ืžืกื•ื™ืžืช
03:47
that the textbook of medicine is closed.
73
227720
2520
ืฉืกืคืจ ืœื™ืžื•ื“ ื”ืจืคื•ืื” ื—ืชื•ื.
ืื ื—ื ื• ืžืชื—ื™ืœื™ื ืœืžื“ื•ื“ ืืช ืื™ื›ื•ืช ื”ื˜ื™ืคื•ืœ ื”ืจืคื•ืื™ ืฉืœื ื•
03:51
We start to measure the quality of our health care
74
231160
2496
03:53
by how quickly we can access it.
75
233680
2536
ื‘ื”ืชืื ืœืžื”ื™ืจื•ืช ื”ื’ื™ืฉื” ืืœื™ื•.
03:56
It doesn't surprise me that in this climate,
76
236240
2096
ื–ื” ืœื ืžืคืชื™ืข ืื•ืชื™ ืฉื‘ืื•ื•ื™ืจื” ื”ื–ื•,
03:58
many of our institutions for the provision of health care
77
238360
2816
ืจื‘ื™ื ืžืžื•ืกื“ื•ืชื™ื ื• ืœืžืชืŸ ื˜ื™ืคื•ืœ ืจืคื•ืื™
04:01
start to look a heck of a lot like Jiffy Lube.
78
241200
2496
ืžืชื—ื™ืœื™ื ืœื”ื™ืจืื•ืช ืžืื•ื“ ื›ืžื• ืฉืจื•ืช ืœื”ื—ืœืคืช ืฉืžื ื™ื ื‘ืจื›ื‘.
04:03
(Laughter)
79
243720
2576
(ืฆื—ื•ืง)
04:06
The only problem is that when I graduated from medical school,
80
246320
3936
ื”ื‘ืขื™ื” ื”ื™ื—ื™ื“ื” ื”ื™ื ืฉื›ืฉืื ื™ ืกื™ื™ืžืชื™ ืืช ืœื™ืžื•ื“ื™ ื”ืจืคื•ืื”,
04:10
I didn't get one of those little doohickeys
81
250280
2056
ืœื ืงื™ื‘ืœืชื™ ืืช ืื•ืชื ืื‘ื™ื–ืจื™ื ืงื˜ื ื™ื ื•ืœื ืžื•ื›ืจื™ื
04:12
that your mechanic has to plug into your car
82
252360
2376
ืฉื”ืžื•ืกื›ื ื™ืง ืฉืœื›ื ืฆืจื™ืš ืœื—ื‘ืจ ืœืชื•ืš ืžื›ื•ื ื™ืชื›ื
04:14
and find out exactly what's wrong with it,
83
254760
2376
ื•ืžื•ืฆื ื‘ื“ื™ื•ืง ืžื” ืœื ื‘ืกื“ืจ ืื™ืชื”,
ื›ื™ ืกืคืจ ืœื™ืžื•ื“ ื”ืจืคื•ืื”
04:17
because the textbook of medicine
84
257160
2096
04:19
is not closed.
85
259280
1520
ืื™ื ื• ื—ืชื•ื.
04:21
Medicine is science.
86
261320
1840
ืจืคื•ืื” ื”ื™ื ืžื“ืข.
04:23
Medicine is knowledge in process.
87
263560
2680
ืจืคื•ืื” ื”ื™ื ื™ื“ืข ื‘ืชื”ืœื™ืš.
04:27
We make an observation,
88
267280
1376
ืื ื• ืขื•ืฉื™ื ืชืฆืคื™ืช,
04:28
we guess an explanation of that observation,
89
268680
2135
ืื ื• ืžืฉืขืจื™ื ื”ืกื‘ืจ ืœืชืฆืคื™ืช ื–ื•,
04:30
and then we make a prediction that we can test.
90
270839
2617
ื•ืื– ืžื ื‘ืื™ื ื—ื™ื–ื•ื™ ืฉื ื•ื›ืœ ืœื‘ื—ื•ืŸ.
04:33
Now, the testing ground of most predictions in medicine
91
273480
3576
ื›ืขืช, ืฉื“ื” ื”ื ื™ืกื•ื™ื™ื ืฉืœ ืจื•ื‘ ื”ื—ื™ื–ื•ื™ื™ื ื‘ืจืคื•ืื”
ื”ื•ื ืื•ื›ืœื•ืกื™ื•ืช.
04:37
is populations.
92
277080
1536
04:38
And you may remember from those boring days in biology class
93
278640
3576
ื•ืืชื ืขืฉื•ื™ื™ื ืœื–ื›ื•ืจ ืžืื•ืชื ื™ืžื™ื ืžืฉืขืžืžื™ื ื‘ืฉื™ืขื•ืจื™ ื‘ื™ื•ืœื•ื’ื™ื”
04:42
that populations tend to distribute
94
282240
2176
ืฉืื•ื›ืœื•ืกื™ื•ืช ื ื•ื˜ื•ืช ืœื”ืชื—ืœืง
04:44
around a mean
95
284440
1216
ืกื‘ื™ื‘ ืžืžื•ืฆืข
04:45
as a Gaussian or a normal curve.
96
285680
1856
ื›ืžื• ืขืงื•ืžืช ื’ืื•ืก ืื• ื ื•ืจืžืœื™ืช.
04:47
Therefore, in medicine,
97
287560
1656
ืœื›ืŸ, ื‘ืจืคื•ืื”
04:49
after we make a prediction from a guessed explanation,
98
289240
3216
ืœืื—ืจ ืฉืื ื• ืžื ื‘ืื™ื ื—ื™ื–ื•ื™ ืžื”ืกื‘ืจ ืžืฉื•ืขืจ,
04:52
we test it in a population.
99
292480
1880
ืื ื• ื‘ื•ื—ื ื™ื ืื•ืชื• ื‘ืื•ื›ืœื•ืกื™ื”.
04:55
That means that what we know in medicine,
100
295320
2936
ื–ื” ืื•ืžืจ ืฉืžื” ืฉืื ื• ื™ื•ื“ืขื™ื ื‘ืจืคื•ืื”,
04:58
our knowledge and our know-how,
101
298280
2256
ื”ื™ื“ืข ืฉืœื ื•,
05:00
comes from populations
102
300560
2256
ืžื’ื™ืข ืžืื•ื›ืœื•ืกื™ื•ืช
05:02
but extends only as far
103
302840
2776
ืื‘ืœ ืžืฉืชืจืข ืจืง ืขื“
05:05
as the next outlier,
104
305640
1736
ื”ื—ืจื™ื’ ื”ื‘ื,
05:07
the next exception,
105
307400
1216
ื”ื™ื•ืฆื ืžืŸ ื”ื›ืœืœ ื”ื‘ื,
05:08
which, like Jupiter's moons,
106
308640
1736
ืืฉืจ, ื›ืžื• ื”ื™ืจื—ื™ื ืฉืœ ืฆื“ืง,
05:10
will teach us what we don't actually know.
107
310400
2400
ื™ืœืžื“ ืื•ืชื ื• ืžื” ืฉืื ื—ื ื• ืœืžืขืฉื” ืœื ื™ื•ื“ืขื™ื.
ื•ื‘ื›ืŸ, ืื ื™ ืจื•ืคื ืžื ืชื—
05:14
Now, I am a surgeon
108
314080
1336
05:15
who looks after patients with sarcoma.
109
315440
2416
ืฉืžื˜ืคืœ ื‘ื—ื•ืœื™ ืกืจืงื•ืžื”.
05:17
Sarcoma is a very rare form of cancer.
110
317880
2200
ืกืจืงื•ืžื” ื”ื™ื ืกื•ื’ ื ื“ื™ืจ ืžืื•ื“ ืฉืœ ืกืจื˜ืŸ.
05:20
It's the cancer of flesh and bones.
111
320720
2040
ื–ื”ื• ืกืจื˜ืŸ ืฉืœ ื‘ืฉืจ ื•ืขืฆืžื•ืช.
05:23
And I would tell you that every one of my patients is an outlier,
112
323240
4336
ื•ื”ื™ื™ืชื™ ืื•ืžืจ ืœื›ื ืฉื›ืœ ืื—ื“ ืžื”ืžื˜ื•ืคืœื™ื ืฉืœื™ ื”ื•ื ื—ืจื™ื’,
05:27
is an exception.
113
327600
1200
ื”ื•ื ื™ื•ืฆื ืžืŸ ื”ื›ืœืœ.
ืื™ืŸ ื ื™ืชื•ื— ืฉืื™ ืคืขื ื‘ื™ืฆืขืชื™ ื‘ื—ื•ืœื” ืกืจืงื•ืžื”
05:30
There is no surgery I have ever performed for a sarcoma patient
114
330000
3216
05:33
that has ever been guided by a randomized controlled clinical trial,
115
333240
4256
ืฉื”ื•ื“ืจืš ืขืœ ื™ื“ื™ ื ื™ืกื•ื™ ืงืœื™ื ื™ ืืงืจืื™ ืžื‘ื•ืงืจ,
05:37
what we consider the best kind of population-based evidence in medicine.
116
337520
3720
ืฉื ื—ืฉื‘ ื‘ืขื™ื ื™ื ื• ืจืื™ื™ื” ืจืคื•ืื™ืช ืžื‘ื•ืกืกืช ืื•ื›ืœื•ืกื™ื”, ื”ื˜ื•ื‘ื” ื‘ื™ื•ืชืจ.
05:42
People talk about thinking outside the box,
117
342400
2296
ืื ืฉื™ื ืžื“ื‘ืจื™ื ืขืœ ื—ืฉื™ื‘ื” ืžื—ื•ืฅ ืœืงื•ืคืกื”,
05:44
but we don't even have a box in sarcoma.
118
344720
2736
ืื‘ืœ ื‘ืกืจืงื•ืžื” ืื™ืŸ ืœื ื• ืืคื™ืœื• ืงื•ืคืกื”.
05:47
What we do have as we take a bath in the uncertainty
119
347480
3336
ืžื” ืฉื™ืฉ ืœื ื• ื›ืฉืื ื• ื˜ื•ื‘ืœื™ื ื‘ืืžื‘ื˜ ื—ื•ืกืจ ื”ื•ื“ืื•ืช
05:50
and unknowns and exceptions and outliers that surround us in sarcoma
120
350840
4136
ื•ื”ื ืขืœืžื™ื, ื•ื”ื™ื•ืฆืื™ื ืžื’ื“ืจ ื”ืจื’ื™ืœ, ื•ื”ื—ืจื™ื’ื™ื, ืฉืžืงื™ืคื™ื ืื•ืชื ื• ื‘ืกืจืงื•ืžื”
ื”ื•ื ื’ื™ืฉื” ื ื•ื—ื” ืœืžื” ืฉืื ื™ ืžื—ืฉื™ื‘ ื›ืฉื ื™ ื”ืขืจื›ื™ื ื”ื—ืฉื•ื‘ื™ื ื‘ื™ื•ืชืจ
05:55
is easy access to what I think are those two most important values
121
355000
4536
05:59
for any science:
122
359560
1536
ื‘ื›ืœ ืžื“ืข:
ืขื ื•ื•ื” ื•ืกืงืจื ื•ืช.
06:01
humility and curiosity.
123
361120
2200
ื‘ื’ืœืœ ืฉืื ืื ื™ ืขื ื™ื• ื•ืกืงืจืŸ,
06:04
Because if I am humble and curious,
124
364000
2296
06:06
when a patient asks me a question,
125
366320
2296
ื›ืฉืžื˜ื•ืคืœ ืฉื•ืืœ ืื•ืชื™ ืฉืืœื”,
06:08
and I don't know the answer,
126
368640
1440
ื•ืื™ื ื™ ื™ื•ื“ืข ืืช ื”ืชืฉื•ื‘ื”,
06:10
I'll ask a colleague
127
370920
1216
ืืฉืืœ ืขืžื™ืช
ืฉื™ืฉ ืœื• ืื•ืœื™ ืžื˜ื•ืคืœ ื“ื•ืžื”, ืื ื›ื™ ืฉื•ื ื”, ืขื ืกืจืงื•ืžื”.
06:12
who may have a similar albeit distinct patient with sarcoma.
128
372160
3016
06:15
We'll even establish international collaborations.
129
375200
2696
ืื ื—ื ื• ืืคื™ืœื• ื ื›ื•ื ืŸ ืฉื™ืชื•ืคื™ ืคืขื•ืœื” ื‘ื™ื ืœืื•ืžื™ื™ื.
06:17
Those patients will start to talk to each other through chat rooms
130
377920
3136
ืžื˜ื•ืคืœื™ื ืืœื” ื™ืชื—ื™ืœื• ืœื“ื‘ืจ ืื—ื“ ืขื ื”ืฉื ื™ ื‘ืืžืฆืขื•ืช ื—ื“ืจื™ ืฆ'ืื˜
ื•ืงื‘ื•ืฆื•ืช ืชืžื™ื›ื”.
06:21
and support groups.
131
381080
1200
06:22
It's through this kind of humbly curious communication
132
382800
3576
ื‘ืืžืฆืขื•ืช ืกื•ื’ ื–ื” ืฉืœ ืชืงืฉื•ืจืช ืฆื ื•ืขื” ื•ืกืงืจื ื™ืช
06:26
that we begin to try and learn new things.
133
386400
3560
ืื ื—ื ื• ืžืชื—ื™ืœื™ื ืœื ืกื•ืช ื•ืœืœืžื•ื“ ื“ื‘ืจื™ื ื—ื“ืฉื™ื.
06:31
As an example, this is a patient of mine
134
391240
2056
ื›ื“ื•ื’ืžื”, ื–ื”ื• ืžื˜ื•ืคืœ ืฉืœื™
06:33
who had a cancer near his knee.
135
393320
1680
ืฉื”ื™ื” ืœื• ืกืจื˜ืŸ ืœื™ื“ ื”ื‘ืจืš.
06:35
Because of humbly curious communication
136
395480
2376
ื‘ื’ืœืœ ืชืงืฉื•ืจืช ืกืงืจื ื™ืช ื•ืขื ื•ื•ื”
06:37
in international collaborations,
137
397880
2096
ื‘ืฉื™ืชื•ืคื™ ืคืขื•ืœื” ื‘ื™ื ืœืื•ืžื™ื™ื,
ืœืžื“ื ื• ืฉืื ื• ื™ื›ื•ืœื™ื ืœื”ืชืื™ื ืืช ื”ืงืจืกื•ืœ ื›ืš ืฉื™ืฉืžืฉ ืœื• ื›ื‘ืจืš
06:40
we have learned that we can repurpose the ankle to serve as the knee
138
400000
4536
06:44
when we have to remove the knee with the cancer.
139
404560
2256
ื›ืืฉืจ ืขืœื™ื ื• ืœื”ืกื™ืจ ืืช ื”ื‘ืจืš ืขื ื”ืกืจื˜ืŸ.
06:46
He can then wear a prosthetic and run and jump and play.
140
406840
2840
ืœืื—ืจ ืžื›ืŸ ื”ื•ื ื™ื›ื•ืœ ืœืœื‘ื•ืฉ ืชื•ืชื‘ ื•ืœืจื•ืฅ ื•ืœืงืคื•ืฅ ื•ืœืฉื—ืง.
06:50
This opportunity was available to him
141
410360
3016
ื”ื–ื“ืžื ื•ืช ื–ื• ื”ื™ื™ืชื” ื–ืžื™ื ื” ืœื•
06:53
because of international collaborations.
142
413400
2776
ื‘ื’ืœืœ ืฉื™ืชื•ืคื™ ืคืขื•ืœื” ื‘ื™ื ืœืื•ืžื™ื™ื.
06:56
It was desirable to him
143
416200
1696
ื”ื•ื ืจืฆื” ืืช ื–ื”
06:57
because he had contacted other patients who had experienced it.
144
417920
2960
ื›ื™ ื”ื•ื ื™ืฆืจ ืงืฉืจ ืขื ืžื˜ื•ืคืœื™ื ืื—ืจื™ื ืฉื—ื•ื• ืืช ื–ื”.
07:01
And so exceptions and outliers in medicine
145
421920
4056
ื•ื›ืš ื™ื•ืฆืื™ื ืžืŸ ื”ื›ืœืœ ื•ื—ืจื™ื’ื™ื ื‘ืจืคื•ืื”
ืœื ืจืง ืžืœืžื“ื™ื ืื•ืชื ื• ืืช ืžื” ืฉืื™ื ื ื• ื™ื•ื“ืขื™ื, ืืœื ื’ื ืžื•ื‘ื™ืœื™ื ืื•ืชื ื• ืœื—ืฉื™ื‘ื” ื—ื“ืฉื”.
07:06
teach us what we don't know, but also lead us to new thinking.
146
426000
3960
ื›ืขืช, ืžืื•ื“ ื—ืฉื•ื‘,
07:11
Now, very importantly,
147
431080
1856
07:12
all the new thinking that outliers and exceptions lead us to in medicine
148
432960
3856
ื›ืœ ื”ื—ืฉื™ื‘ื” ื”ื—ื“ืฉื” ืฉื—ืจื™ื’ื™ื ื•ื™ื•ืฆืื™ ื“ื•ืคืŸ ื”ื•ื‘ื™ืœื• ืื•ืชื ื• ืืœื™ื” ื‘ืจืคื•ืื”
07:16
does not only apply to the outliers and exceptions.
149
436840
3360
ืœื ื—ืœื™ื ืจืง ืขืœ ื—ืจื™ื’ื™ื ื•ื™ื•ืฆืื™ ื“ื•ืคืŸ,
07:20
It is not that we only learn from sarcoma patients
150
440920
3176
ื–ื” ืœื ืฉืื ื—ื ื• ืœื•ืžื“ื™ื ืจืง ืžื—ื•ืœื™ ืกืจืงื•ืžื”
ืขืœ ื“ืจื›ื™ื ืœื˜ืคืœ ื‘ื—ื•ืœื™ ืกืจืงื•ืžื”.
07:24
ways to manage sarcoma patients.
151
444120
1960
07:26
Sometimes, the outliers
152
446920
2056
ืœืคืขืžื™ื ื”ื—ืจื™ื’ื™ื,
ื•ื”ื™ื•ืฆืื™ื ืžืŸ ื”ื›ืœืœ
07:29
and the exceptions
153
449000
1696
07:30
teach us things that matter quite a lot to the general population.
154
450720
3240
ืžืœืžื“ื™ื ืื•ืชื ื• ื“ื‘ืจื™ื ืฉื—ืฉื•ื‘ื™ื ืžืื•ื“ ืœืื•ื›ืœื•ืกื™ื™ื” ื”ื›ืœืœื™ืช.
07:35
Like a tree standing outside a forest,
155
455360
1856
ื›ืžื• ืขืฅ ืฉืขื•ืžื“ ืžื—ื•ืฅ ืœื™ืขืจ.
07:37
the outliers and the exceptions draw our attention
156
457240
4016
ื”ื—ืจื™ื’ื™ื ื•ื”ื™ื•ืฆืื™ื ืžื’ื“ืจ ื”ืจื’ื™ืœ ืžื•ืฉื›ื™ื ืืช ืชืฉื•ืžืช ื”ืœื‘ ืฉืœื ื•
07:41
and lead us into a much greater sense of perhaps what a tree is.
157
461280
4336
ื•ืžื•ื‘ื™ืœื™ื ืื•ืชื ื• ืœืชื—ื•ืฉื” ื’ื“ื•ืœื” ื™ื•ืชืจ ืฉืœ ืžื”ื• ืขืฅ.
07:45
We often talk about losing the forests for the trees,
158
465640
2496
ืœืขืชื™ื ืงืจื•ื‘ื•ืช ืื ื• ื“ื ื™ื ืขืœ ืื•ื‘ื“ืŸ ื”ื™ืขืจื•ืช ืœืžืขืŸ ื”ืขืฆื™ื,
ืื‘ืœ ืืคืฉืจ ื’ื ืœืื‘ื“ ืขืฅ
07:48
but one also loses a tree
159
468160
1816
ื‘ืชื•ื›ื›ื™ ื”ื™ืขืจ.
07:50
within a forest.
160
470000
1520
ืื‘ืœ ื”ืขืฅ ืฉืขื•ืžื“ ืžื›ื•ื— ืขืฆืžื•
07:53
But the tree that stands out by itself
161
473000
1856
07:54
makes those relationships that define a tree,
162
474880
2896
ื™ื•ืฆืจ ืืช ืื•ืชื ื™ื—ืกื™ ื’ื•ืžืœื™ืŸ ืฉืžื’ื“ื™ืจื™ื ืขืฅ.
07:57
the relationships between trunk and roots and branches,
163
477800
3816
ืžืขืจื›ืช ื™ื—ืกื™ื ื‘ื™ืŸ ื’ื–ืข ืฉื•ืจืฉื™ื ื•ืขื ืคื™ื,
08:01
much more apparent.
164
481640
1240
ื”ืจื‘ื” ื™ื•ืชืจ ื ืจืื™ืช ืœืขื™ืŸ.
08:03
Even if that tree is crooked
165
483360
1696
ืืคื™ืœื• ืื ืื•ืชื• ืขืฅ ื”ื•ื ื›ืคื•ืฃ
ืื• ืืคื™ืœื• ืื ืœืื•ืชื• ืขืฅ ื™ืฉ ืžืขืจื›ืช ื™ื—ืกื™ื ื‘ืœืชื™ ืจื’ื™ืœื”
08:05
or even if that tree has very unusual relationships
166
485080
2976
ื‘ื™ืŸ ื’ื–ืข ืฉื•ืจืฉื™ื ื•ืขื ืคื™ื,
08:08
between trunk and roots and branches,
167
488080
2296
08:10
it nonetheless draws our attention
168
490400
2696
ื”ื•ื ื‘ื›ืœ ื–ืืช ืžื•ืฉืš ืืช ืชืฉื•ืžืช ืœื‘ื ื•
ื•ืžืืคืฉืจ ืœื ื• ืœื‘ืฆืข ืชืฆืคื™ื•ืช
08:13
and allows us to make observations
169
493120
1896
ืฉื ื•ื›ืœ ืื—ืจ ื›ืš ืœื‘ื“ื•ืง ื‘ืื•ื›ืœื•ืกื™ื” ื”ื›ืœืœื™ืช.
08:15
that we can then test in the general population.
170
495040
2240
ืกื™ืคืจืชื™ ืœื›ื ืฉืกืจืงื•ืžื•ืช ื”ืŸ ื ื“ื™ืจื•ืช.
08:18
I told you that sarcomas are rare.
171
498000
1976
ื”ืŸ ืžื”ื•ื•ืช ื›ืื—ื•ื– ืื—ื“ ืžื›ืœ ืžืงืจื™ ื”ืกืจื˜ืŸ.
08:20
They make up about one percent of all cancers.
172
500000
2640
08:23
You also probably know that cancer is considered a genetic disease.
173
503280
3960
ืืชื ื’ื ื•ื“ืื™ ื™ื•ื“ืขื™ื ืฉืกืจื˜ืŸ ื ื—ืฉื‘ ืœืžื—ืœื” ื’ื ื˜ื™ืช.
08:27
By genetic disease we mean that cancer is caused by oncogenes
174
507840
3336
ื‘ื›ืš ืื ื• ืžืชื›ื•ื•ื ื™ื ืฉืกืจื˜ืŸ ื ื’ืจื ืขืœ ื™ื“ื™ ืื•ื ืงื•ื’ื ื™ื
08:31
that are turned on in cancer
175
511200
1376
ืฉืžื•ืคืขืœื™ื ื‘ืกืจื˜ืŸ.
08:32
and tumor suppressor genes that are turned off to cause cancer.
176
512600
3040
ื•ื’ื ื™ื ืžื“ื›ืื™ ื’ื™ื“ื•ืœ, ืฉื ื›ื‘ื™ื ื•ื’ื•ืจืžื™ื ืœืกืจื˜ืŸ.
ืืชื ืขืฉื•ื™ื™ื ืœื—ืฉื•ื‘ ืฉืœืžื“ื ื• ืขืœ ืื•ื ืงื•ื’ื ื™ื
08:36
You might think that we learned about oncogenes
177
516160
2416
08:38
and tumor suppressor genes from common cancers
178
518600
2216
ื•ื’ื ื™ื ืžื“ื›ืื™ ื’ื™ื“ื•ืœ ืžืกื•ื’ื™ ืกืจื˜ืŸ ืฉื›ื™ื—ื™ื
08:40
like breast cancer and prostate cancer
179
520840
1976
ื›ืžื• ืกืจื˜ืŸ ื”ืฉื“ ื•ืกืจื˜ืŸ ื”ืขืจืžื•ื ื™ืช
08:42
and lung cancer,
180
522840
1496
ื•ืกืจื˜ืŸ ื”ืจื™ืื•ืช,
08:44
but you'd be wrong.
181
524360
1199
ืื‘ืœ ืื™ืŸ ื–ื” ื›ืš.
ืœืžื“ื ื• ืขืœ ืื•ื ืงื•ื’ื ื™ื ื•ืขืœ ื’ื ื™ื ืžื“ื›ืื™ ื’ื™ื“ื•ืœ
08:46
We learned about oncogenes and tumor suppressor genes
182
526000
2895
08:48
for the first time
183
528919
1216
ืœืจืืฉื•ื ื”
ืžืื•ืชื• ืื—ื•ื– ืื—ื“ ืงื˜ื ื˜ืŸ ืฉืœ ืกืจื˜ืŸ ืžืกื•ื’ ืกืจืงื•ืžื”.
08:50
in that itty-bitty little one percent of cancers called sarcoma.
184
530159
3441
08:54
In 1966, Peyton Rous got the Nobel Prize
185
534760
2576
ื‘ 1966, ืคื™ื™ื˜ื•ืŸ ืจื•ืก ืงื™ื‘ืœ ืคืจืก ื ื•ื‘ืœ
08:57
for realizing that chickens
186
537360
2016
ื›ืฉื’ื™ืœื” ืฉืœืขื•ืคื•ืช
08:59
had a transmissible form of sarcoma.
187
539400
3120
ื”ื™ืชื” ืฆื•ืจื” ื‘ืจืช-ื”ืขื‘ืจื” ืฉืœ ืกืจืงื•ืžื”.
09:03
Thirty years later, Harold Varmus and Mike Bishop discovered
188
543260
2836
ืฉืœื•ืฉื™ื ืฉื ื” ืžืื•ื—ืจ ื™ื•ืชืจ, ื”ืจื•ืœื“ ื•ืจืžื•ืก ื•ืžื™ื™ืง ื‘ื™ืฉื•ืฃ ื’ื™ืœื•
ืžื” ื”ื™ื” ื”ืืœืžื ื˜ ื‘ืจ-ื”ืขื‘ืจื” ื”ื–ื”.
09:06
what that transmissible element was.
189
546120
2536
09:08
It was a virus
190
548680
1576
ื–ื” ื”ื™ื” ื ื’ื™ืฃ
09:10
carrying a gene,
191
550280
1416
ื ื•ืฉื ื’ืŸ,
09:11
the src oncogene.
192
551720
1440
ืื•ื ืงื•ื’ืŸ src.
09:13
Now, I will not tell you that src is the most important oncogene.
193
553880
3656
ืื ื™ ืœื ืื•ืžืจ ืœื›ื ืฉ src ื”ื•ื ื”ืื•ื ืงื•ื’ืŸ ื”ื—ืฉื•ื‘ ื‘ื™ื•ืชืจ.
09:17
I will not tell you
194
557560
1216
ืื ื™ ืœื ืื•ืžืจ ืœื›ื
09:18
that src is the most frequently turned on oncogene in all of cancer.
195
558800
3496
ืฉ src ื”ื•ื ื”ืื•ื ืงื•ื’ืŸ ื”ืžื•ืคืขืœ ื‘ืชื“ื™ืจื•ืช ื”ื’ื‘ื•ื”ื” ื‘ื™ื•ืชืจ ื‘ื›ืœ ืกื•ื’ื™ ื”ืกืจื˜ืŸ .
09:22
But it was the first oncogene.
196
562320
2440
ืื‘ืœ ื–ื” ื”ื™ื” ื”ืื•ื ืงื•ื’ืŸ ื”ืจืืฉื•ืŸ.
09:25
The exception, the outlier
197
565960
2336
ื”ื™ื•ืฆื ืžื’ื“ืจ ื”ืจื’ื™ืœ, ื”ื—ืจื™ื’,
09:28
drew our attention and led us to something
198
568320
2520
ืฉืžืฉืš ืืช ืชืฉื•ืžืช ื”ืœื‘ ืฉืœื ื• ื•ื”ื•ื‘ื™ืœ ืื•ืชื ื• ืœืžืฉื”ื•
09:31
that taught us very important things about the rest of biology.
199
571520
4040
ืฉืœื™ืžื“ ืื•ืชื ื• ื“ื‘ืจื™ื ื—ืฉื•ื‘ื™ื ืžืื•ื“ ืœื’ื‘ื™ ืฉืืจ ื”ื‘ื™ื•ืœื•ื’ื™ื”.
09:36
Now, TP53 is the most important tumor suppressor gene.
200
576880
4096
ื•ื‘ื›ืŸ, TP53 ื”ื•ื ื’ืŸ ืžื“ื›ื ื”ื’ื™ื“ื•ืœ ื”ื—ืฉื•ื‘ ื‘ื™ื•ืชืจ.
ื–ื”ื• ื’ืŸ ืžื“ื›ื ื”ื’ื™ื“ื•ืœ ื”ื ืžืฆื ื›ื‘ื•ื™ ื‘ืชื“ื™ืจื•ืช ื”ื’ื‘ื•ื”ื” ื‘ื™ื•ืชืจ
09:41
It is the most frequently turned off tumor suppressor gene
201
581000
2736
09:43
in almost every kind of cancer.
202
583760
1800
ื›ืžืขื˜ ื‘ื›ืœ ืกื•ื’ ืฉืœ ืกืจื˜ืŸ.
09:46
But we didn't learn about it from common cancers.
203
586360
2296
ืื‘ืœ ืœื ืœืžื“ื ื• ืขืœื™ื• ืžืกื•ื’ื™ ื”ืกืจื˜ืŸ ื”ืฉื›ื™ื—ื™ื.
09:48
We learned about it when doctors Li and Fraumeni
204
588680
2416
ืœืžื“ื ื• ืขืœ ื–ื” ื›ืฉื”ืจื•ืคืื™ื ืœื™ ื•ืคืจืื•ืžื ื™
ื‘ื“ืงื• ืžืฉืคื—ื•ืช,
09:51
were looking at families,
205
591120
1576
09:52
and they realized that these families
206
592720
2016
ื•ื”ื‘ื™ื ื• ืฉื‘ืžืฉืคื—ื•ืช ืืœื•
09:54
had way too many sarcomas.
207
594760
2520
ื”ื™ื• ื”ืจื‘ื” ืžื“ื™ ืžืงืจื™ ืกืจืงื•ืžื”.
09:57
I told you that sarcoma is rare.
208
597920
1776
ืกื™ืคืจืชื™ ืœื›ื ืฉืกืจืงื•ืžื” ื”ื™ื ื ื“ื™ืจื”.
09:59
Remember that a one in a million diagnosis,
209
599720
3176
ื–ื™ื›ืจื• ืฉืื—ืช ืžืžื™ืœื™ื•ืŸ ืื‘ื—ื ื•ืช,
10:02
if it happens twice in one family,
210
602920
2136
ืื ื–ื” ืงื•ืจื” ืคืขืžื™ื™ื ื‘ืžืฉืคื—ื” ืื—ืช,
ื–ื” ื ืคื•ืฅ ืžื“ื™ ื‘ืื•ืชื” ืžืฉืคื—ื”.
10:05
is way too common in that family.
211
605080
2400
10:08
The very fact that these are rare
212
608640
2696
ืขืฆื ื”ืขื•ื‘ื“ื” ืฉืกื•ื’ื™ื ืืœื” ื ื“ื™ืจื™ื
10:11
draws our attention
213
611360
1440
ืžื•ืฉื›ืช ืืช ืชืฉื•ืžืช ืœื‘ื ื•
10:13
and leads us to new kinds of thinking.
214
613760
2240
ื•ืžื•ื‘ื™ืœื” ืื•ืชื ื• ืœืกื•ื’ื™ ื—ืฉื™ื‘ื” ื—ื“ืฉื™ื.
10:17
Now, many of you may say,
215
617480
1456
ื•ื‘ื›ืŸ, ืจื‘ื™ื ืžื›ื ืขืฉื•ื™ื™ื ืœื•ืžืจ,
10:18
and may rightly say,
216
618960
1536
ื•ื‘ืฆื“ืง,
10:20
that yeah, Kevin, that's great,
217
620520
1896
ืฉื›ืŸ, ืงื•ื•ื™ืŸ, ื–ื” ื ื”ื“ืจ,
10:22
but you're not talking about a bird's wing.
218
622440
2056
ืื‘ืœ ืื™ื ืš ืžื“ื‘ืจ ืขืœ ื›ื ืฃ ืฆื™ืคื•ืจ.
10:24
You're not talking about moons floating around some planet Jupiter.
219
624520
3480
ืื™ื ืš ืžื“ื‘ืจ ืขืœ ื™ืจื—ื™ื ืฉืžืจื—ืคื™ื ืกื‘ื™ื‘ ื›ื•ื›ื‘ ื”ืœื›ืช ืฆื“ืง.
10:28
This is a person.
220
628520
1536
ื–ื” ื‘ืŸ ืื“ื.
ื—ืจื™ื’ ื–ื”, ื™ื•ืฆื ืžืŸ ื”ื›ืœืœ ื–ื”, ืขืฉื•ื™ ืœื”ื•ื‘ื™ืœ ืœืงื™ื“ื•ื ื”ืžื“ืข
10:30
This outlier, this exception, may lead to the advancement of science,
221
630080
3256
10:33
but this is a person.
222
633360
1200
ืื‘ืœ ื–ื”ื• ืื“ื.
10:36
And all I can say
223
636280
1616
ื•ื›ืœ ืžื” ืฉืื ื™ ื™ื›ื•ืœ ืœื•ืžืจ
10:37
is that I know that all too well.
224
637920
2360
ื”ื•ื ืฉืื ื™ ื™ื•ื“ืข ื›ืœ ื–ื” ื˜ื•ื‘ ืžื“ื™.
10:41
I have conversations with these patients with rare and deadly diseases.
225
641760
3400
ืื ื™ ืžืงื™ื™ื ืฉื™ื—ื•ืช ืขื ื—ื•ืœื™ื ื‘ืžื—ืœื•ืช ื ื“ื™ืจื•ืช ื•ืงื˜ืœื ื™ื•ืช ืืœื•.
10:45
I write about these conversations.
226
645800
1936
ืื ื™ ื›ื•ืชื‘ ืขืœ ืฉื™ื—ื•ืช ืืœื”.
10:47
These conversations are terribly fraught.
227
647760
2296
ืฉื™ื—ื•ืช ืืœื” ื”ืŸ ืžืื•ื“ ื˜ืขื•ื ื•ืช.
ื”ืŸ ื˜ืขื•ื ื•ืช ื‘ืžืฉืคื˜ื™ื ื ื•ืจืื™ื™ื
10:50
They're fraught with horrible phrases
228
650080
1816
10:51
like "I have bad news" or "There's nothing more we can do."
229
651920
3240
ื›ืžื• "ื™ืฉ ืœื™ ื—ื“ืฉื•ืช ืจืขื•ืช" ืื• "ืื™ืŸ ืฉื•ื ื“ื‘ืจ ืฉืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืขืฉื•ืช."
10:55
Sometimes these conversations turn on a single word:
230
655760
3200
ืœืคืขืžื™ื ืฉื™ื—ื•ืช ืืœื• ืžืกืชื›ืžื•ืช ื‘ืžื™ืœื” ืื—ืช:
10:59
"terminal."
231
659760
1200
"ืกื•ืคื ื™."
11:04
Silence can also be rather uncomfortable.
232
664920
2920
ืฉืชื™ืงื” ื™ื›ื•ืœื” ื’ื ื”ื™ื ืœื”ื™ื•ืช ื‘ืœืชื™ ื ื•ื—ื” ืœืžื“ื™.
11:09
Where the blanks are in medicine
233
669360
2576
ื”ื ืขืœืžื™ื ืฉืงื™ื™ืžื™ื ื‘ืจืคื•ืื”
11:11
can be just as important
234
671960
1856
ื™ื›ื•ืœื™ื ืœื”ื™ื•ืช ื—ืฉื•ื‘ื™ื
11:13
as the words that we use in these conversations.
235
673840
2240
ื›ืžื• ื”ืžื™ืœื™ื ื‘ื”ืŸ ืื ื• ืžืฉืชืžืฉื™ื ื‘ืฉื™ื—ื•ืช ืืœื•.
ืžื”ื ื”ื ืขืœืžื™ื?
11:17
What are the unknowns?
236
677080
1536
11:18
What are the experiments that are being done?
237
678640
2200
ืžื”ื ื”ื ื™ืกื•ื™ื™ื ืฉืžืชื‘ืฆืขื™ื?
11:21
Do this little exercise with me.
238
681680
1696
ืชืจื’ืœื• ืืชื™ ืืช ื”ืชืจื’ื™ืœ ื”ืงื˜ืŸ ื”ื–ื”.
11:23
Up there on the screen, you see this phrase, "no where."
239
683400
3216
ืฉื ืœืžืขืœื” ืขืœ ื”ืžืกืš, ืืชื ืจื•ืื™ื ืืช ื”ืžืฉืคื˜ ื”ื–ื”, "ื‘ืฉื•ื ืžืงื•ื."
11:26
Notice where the blank is.
240
686640
1280
ืฉื™ืžื• ืœื‘ ื”ื™ื›ืŸ ื”ื—ืœืœ ื”ืจื™ืง.
11:28
If we move that blank one space over
241
688680
3200
ืื ื ืขื‘ื™ืจ ืื•ืชื• ืžืจื•ื•ื— ืื—ื“ ืงื“ื™ืžื”
11:32
"no where"
242
692640
1576
"ืฉื•ื ืžืงื•ื"
11:34
becomes "now here,"
243
694240
2696
ื”ื•ืคืš ืœื”ื™ื•ืช "ืขื›ืฉื™ื• ื›ืืŸ,"
11:36
the exact opposite meaning,
244
696960
1896
ื”ืžืฉืžืขื•ืช ื”ื”ืคื•ื›ื” ืœื’ืžืจื™.
11:38
just by shifting the blank one space over.
245
698880
2200
ืจืง ืขืœ ื™ื“ื™ ื”ืขื‘ืจืช ื”ื—ืœืœ ื”ืจื™ืง ืœืžืจื•ื•ื— ืื—ื“ ืงื“ื™ืžื”.
11:43
I'll never forget the night
246
703680
1576
ืœืขื•ืœื ืœื ืืฉื›ื— ืืช ื”ืœื™ืœื”
11:45
that I walked into one of my patients' rooms.
247
705280
2240
ืฉื ื›ื ืกืชื™ ืœืชื•ืš ื—ื“ืจ ืฉืœ ืื—ื“ ื”ืžื˜ื•ืคืœื™ื ืฉืœื™.
11:48
I had been operating long that day
248
708280
1656
ื ื™ืชื—ืชื™ ื”ืจื‘ื” ื–ืžืŸ ื‘ืื•ืชื• ื™ื•ื
11:49
but I still wanted to come and see him.
249
709960
2016
ืื‘ืœ ืขื“ื™ื™ืŸ ืจืฆื™ืชื™ ืœื‘ื•ื ื•ืœืจืื•ืช ืื•ืชื•.
ื”ื•ื ื”ื™ื” ื™ืœื“ ืฉืื™ื‘ื—ื ืชื™ ืขื ืกืจื˜ืŸ ืขืฆืžื•ืช ื›ืžื” ื™ืžื™ื ืœืคื ื™ ื›ืŸ.
11:52
He was a boy I had diagnosed with a bone cancer a few days before.
250
712000
3200
11:55
He and his mother had been meeting with the chemotherapy doctors
251
715840
3056
ื”ื•ื ื•ืืžื• ื ืคื’ืฉื• ืขื ืจื•ืคืื™ ื”ื›ื™ืžื•ืชืจืคื™ื”
11:58
earlier that day,
252
718920
1216
ืžื•ืงื“ื ื‘ืื•ืชื• ื™ื•ื,
ื•ื”ื•ื ืื•ืฉืคื– ื‘ื‘ื™ืช ื”ื—ื•ืœื™ื ื›ื“ื™ ืœื”ืชื—ื™ืœ ื‘ื›ื™ืžื•ืชืจืคื™ื”.
12:00
and he had been admitted to the hospital to begin chemotherapy.
253
720160
2976
ื”ืฉืขื” ื”ื™ื™ืชื” ื›ืžืขื˜ ื—ืฆื•ืช ื›ืฉื”ื’ืขืชื™ ืœื—ื“ืจื•.
12:03
It was almost midnight when I got to his room.
254
723160
2176
12:05
He was asleep, but I found his mother
255
725360
2176
ื”ื•ื ื™ืฉืŸ, ืื‘ืœ ืžืฆืืชื™ ืืช ืืžื•
12:07
reading by flashlight
256
727560
1576
ืงื•ืจืืช ืœืื•ืจ ื”ืžื ื•ืจื”
ืœื™ื“ ืžื™ื˜ืชื•.
12:09
next to his bed.
257
729160
1456
12:10
She came out in the hall to chat with me for a few minutes.
258
730640
2800
ื”ื™ื ื™ืฆืื” ืœืžืกื“ืจื•ืŸ ืœืฉื•ื—ื— ืื™ืชื™ ื‘ืžืฉืš ื›ืžื” ื“ืงื•ืช.
12:14
It turned out that what she had been reading
259
734280
2096
ื”ืชื‘ืจืจ ืฉืžื” ืฉื”ื™ื ืงืจืื”
12:16
was the protocol that the chemotherapy doctors
260
736400
2176
ื”ื™ื” ื”ื“ื•"ื— ืฉืจื•ืคืื™ ื”ื›ื™ืžื•ืชืจืคื™ื”
12:18
had given her that day.
261
738600
1240
ื ืชื ื• ืœื” ื‘ืื•ืชื• ื™ื•ื.
12:20
She had memorized it.
262
740200
1240
ื”ื™ื ืฉื™ื ื ื” ืื•ืชื•.
12:23
She said, "Dr. Jones, you told me
263
743200
3536
ื”ื™ื ืืžืจื”, "ื“"ืจ ื’'ื•ื ืก, ืืžืจืช ืœื™
12:26
that we don't always win
264
746760
2176
ืฉืื ื—ื ื• ืœื ืชืžื™ื“ ืžื ืฆื—ื™ื
12:28
with this type of cancer,
265
748960
1280
ืขื ืกื•ื’ ื–ื” ืฉืœ ืกืจื˜ืŸ,
12:31
but I've been studying this protocol, and I think I can do it.
266
751680
3480
ืื‘ืœ ืื ื™ ืœืžื“ืชื™ ืืช ื”ืคืจื•ื˜ื•ืงื•ืœ ื”ื–ื”, ื•ืื ื™ ื—ื•ืฉื‘ืช ืฉืื ื™ ื™ื›ื•ืœื” ืœืขืฉื•ืช ืืช ื–ื”.
12:35
I think I can comply with these very difficult treatments.
267
755960
3576
ืื ื™ ื—ื•ืฉื‘ืช ืฉืื ื™ ื™ื›ื•ืœื” ืœื”ืชืžื•ื“ื“ ืขื ื”ื˜ื™ืคื•ืœื™ื ื”ืงืฉื™ื ืžืื•ื“ ื”ืœืœื•.
12:39
I'm going to quit my job. I'm going to move in with my parents.
268
759560
2976
ืื ื™ ืžืชื›ื•ื•ื ืช ืœืขื–ื•ื‘ ืืช ื”ืขื‘ื•ื“ื” ืฉืœื™ ื•ืœืขื‘ื•ืจ ืœื’ื•ืจ ืขื ื”ื”ื•ืจื™ื ืฉืœื™.
12:42
I'm going to keep my baby safe."
269
762560
1960
ืื ื™ ืืฉืžื•ืจ ืขืœ ืฉืœื•ืžื• ืฉืœ ื”ืชื™ื ื•ืง ืฉืœื™."
12:47
I didn't tell her.
270
767320
1200
ืœื ืืžืจืชื™ ืœื”.
12:49
I didn't stop to correct her thinking.
271
769840
2920
ืœื ืขืฆืจืชื™ ื›ื“ื™ ืœืชืงืŸ ืืช ื—ืฉื™ื‘ืชื”.
12:53
She was trusting in a protocol
272
773680
2256
ื”ื™ื ื‘ื˜ื—ื” ื‘ืคืจื•ื˜ื•ืงื•ืœ
12:55
that even if complied with,
273
775960
3216
ืฉืืคื™ืœื• ืื ื ื•ื”ื’ื™ื ืœืคื™ื•,
12:59
wouldn't necessarily save her son.
274
779200
2400
ืœื ื‘ื”ื›ืจื— ื™ืฆื™ืœ ืืช ื‘ื ื”.
13:03
I didn't tell her.
275
783960
1200
ืœื ืืžืจืชื™ ืœื”.
13:06
I didn't fill in that blank.
276
786360
1400
ืœื ืžื™ืœืืชื™ ืืช ื”ื—ืœืœ ื”ื–ื”.
ืื‘ืœ ื›ืขื‘ื•ืจ ืฉื ื” ื•ื—ืฆื™
13:09
But a year and a half later
277
789080
1976
ื”ื™ืœื“ ืฉืœื” ื‘ื›ืœ ื–ืืช ื ืคื˜ืจ ืžื”ืกืจื˜ืŸ.
13:11
her boy nonetheless died of his cancer.
278
791080
2720
13:15
Should I have told her?
279
795400
1320
ื”ืื ื”ื™ื™ืชื™ ืฆืจื™ืš ืœืกืคืจ ืœื”?
13:17
Now, many of you may say, "So what?
280
797360
2256
ื›ืขืช, ืจื‘ื™ื ืžื›ื ืขืฉื•ื™ื™ื ืœื•ืžืจ: "ืื– ืžื”?
13:19
I don't have sarcoma.
281
799640
1256
ืื™ืŸ ืœื™ ืกืจืงื•ืžื”.
13:20
No one in my family has sarcoma.
282
800920
1896
ืœืืฃ ืื—ื“ ื‘ืžืฉืคื—ืชื™ ืื™ืŸ ืกืจืงื•ืžื”.
13:22
And this is all fine and well,
283
802840
1456
ื•ื›ืœ ื–ื” ื˜ื•ื‘ ื•ื™ืคื”,
13:24
but it probably doesn't matter in my life."
284
804320
2696
ืื‘ืœ ื–ื” ื›ื ืจืื” ืœื ื ื•ื’ืข ืœื™."
ื•ืืชื ื›ื ืจืื” ืฆื•ื“ืงื™ื.
13:27
And you're probably right.
285
807040
1256
13:28
Sarcoma may not matter a whole lot in your life.
286
808320
2680
ืกืจืงื•ืžื” ืœื ืžืฉื ื” ื”ืจื‘ื” ื‘ื—ื™ื™ื ืฉืœื›ื.
ืื‘ืœ ืžื™ืงื•ื ื”ื—ืœืœื™ื ื‘ืจืคื•ืื”
13:33
But where the blanks are in medicine
287
813040
2336
13:35
does matter in your life.
288
815400
1320
ื›ืŸ ืžืฉื ื™ื ื‘ื—ื™ื™ื›ื.
13:38
I didn't tell you one dirty little secret.
289
818520
2296
13:40
I told you that in medicine, we test predictions in populations,
290
820840
4376
ืกื™ืคืจืชื™ ืœื›ื ืฉื‘ืจืคื•ืื”, ืื ื• ื‘ื•ื—ื ื™ื ื ื™ื‘ื•ื™ื™ื ื‘ืื•ื›ืœื•ืกื™ื•ืช,
13:45
but I didn't tell you,
291
825240
1256
ืื‘ืœ ืœื ืกื™ืคืจืชื™ ืœื›ื,
13:46
and so often medicine never tells you
292
826520
2216
ื•ืจืคื•ืื” ืœืขื™ืชื™ื ื›ื” ืงืจื•ื‘ื•ืช ืœื ืžืกืคืจืช ืœื›ื
13:48
that every time an individual
293
828760
2856
ืฉื‘ื›ืœ ืคืขื ืฉืื“ื ื™ื—ื™ื“
13:51
encounters medicine,
294
831640
2096
ื ืคื’ืฉ ื‘ืจืคื•ืื”,
13:53
even if that individual is firmly embedded in the general population,
295
833760
4040
ื’ื ืื ื™ื—ื™ื“ ื–ื” ืžืขื•ืจื” ื‘ืื•ื›ืœื•ืกื™ื” ื”ื›ืœืœื™ืช,
13:59
neither the individual nor the physician knows
296
839360
2376
ืœื ื”ื™ื—ื™ื“ ื•ืœื ื”ืจื•ืคื ื™ื•ื“ืขื™ื
14:01
where in that population the individual will land.
297
841760
2680
ื”ื™ื›ืŸ ื‘ืื•ื›ืœื•ืกื™ื” ื™ื—ื™ื“ ื–ื” ื™ื ื—ืช.
ืœืคื™ื›ืš, ื›ืœ ืžืคื’ืฉ ืขื ืจืคื•ืื”
14:05
Therefore, every encounter with medicine
298
845040
2696
14:07
is an experiment.
299
847760
1440
ื”ื•ื ื ื™ืกื•ื™.
14:09
You will be a subject
300
849920
2016
ืืชื ืชืฉืžืฉื• ื ื•ืฉื
14:11
in an experiment.
301
851960
1680
ื‘ื ื™ืกื•ื™.
14:14
And the outcome will be either a better or a worse result for you.
302
854560
4840
ื•ื”ืชื•ืฆืื” ืชื”ื™ื” ืื• ื˜ื•ื‘ื” ื™ื•ืชืจ ืื• ื’ืจื•ืขื” ื™ื•ืชืจ ื‘ืฉื‘ื™ืœื›ื.
14:20
As long as medicine works well,
303
860320
2016
ื›ืœ ืขื•ื“ ื”ืจืคื•ืื” ืคื•ืขืœืช ื”ื™ื˜ื‘,
14:22
we're fine with fast service,
304
862360
3016
ืื ื—ื ื• ื‘ืกื“ืจ ืขื ืฉืจื•ืช ืžื”ื™ืจ,
14:25
bravado, brimmingly confident conversations.
305
865400
3440
ืฉื™ื—ื•ืช ื ื•ืขื–ื•ืช, ื’ื“ื•ืฉื•ืช ื‘ื™ื˜ื—ื•ืŸ.
14:29
But when things don't work well,
306
869720
1656
ืื‘ืœ ื›ืฉื”ื“ื‘ืจื™ื ืœื ืžืฆืœื™ื—ื™ื,
14:31
sometimes we want something different.
307
871400
1840
ืœืคืขืžื™ื ืื ื—ื ื• ืจื•ืฆื™ื ืžืฉื”ื• ืฉื•ื ื”.
14:34
A colleague of mine removed a tumor from a patient's limb.
308
874520
3280
ืขืžื™ืช ืฉืœื™ ื”ืกื™ืจ ื’ื™ื“ื•ืœ ืžืื™ื‘ืจ ืฉืœ ืžื˜ื•ืคืœ.
14:38
He was concerned about this tumor.
309
878920
1816
ื”ื•ื ื”ื™ื” ืžื•ื“ืื’ ืœื’ื‘ื™ ื”ื’ื™ื“ื•ืœ ื”ื–ื”.
14:40
In our physician conferences, he talked about his concern
310
880760
3016
ื”ื•ื ื”ื‘ื™ืข ืืช ื“ืื’ืชื• ืขืœ ื›ืš ื‘ื›ื ืกื™ ื”ืจื•ืคืื™ื ืฉืœื ื•,
14:43
that this was a type of tumor
311
883800
1416
ืฉื–ื” ื”ื™ื” ืกื•ื’ ืฉืœ ื’ื™ื“ื•ืœ
14:45
that had a high risk for coming back in the same limb.
312
885240
2560
ื‘ืจืžืช ืกื™ื›ื•ืŸ ื’ื‘ื•ื”ื” ืฉื™ื—ื–ื•ืจ ื‘ืื•ืชื• ืื™ื‘ืจ.
14:48
But his conversations with the patient
313
888680
1976
ืื‘ืœ ืฉื™ื—ื•ืชื™ื• ืขื ื”ืžื˜ื•ืคืœืช
14:50
were exactly what a patient might want:
314
890680
2096
ื”ื™ื• ืขืœ ืžื” ืฉื”ืžื˜ื•ืคืœืช ื”ื™ืชื” ื›ื ืจืื” ืจื•ืฆื” ืœืฉืžื•ืข:
14:52
brimming with confidence.
315
892800
1256
ืฉื•ืคืขื™ื ื‘ื™ื˜ื—ื•ืŸ.
ื”ื•ื ืืžืจ: "ื”ืกืจืชื™ ื”ื›ืœ ื•ืืช ื™ื›ื•ืœื” ืœืœื›ืช ื‘ืฉืœื•ื."
14:54
He said, "I got it all and you're good to go."
316
894080
3016
ื”ื™ื ื•ื‘ืขืœื” ื”ื™ื• ืžืื•ืฉืจื™ื.
14:57
She and her husband were thrilled.
317
897120
1736
14:58
They went out, celebrated, fancy dinner, opened a bottle of champagne.
318
898880
4080
ื”ื ื™ืฆืื•, ื—ื’ื’ื•, ืืจื•ื—ืช ืขืจื‘ ืžืคื•ืืจืช, ืคืชื—ื• ื‘ืงื‘ื•ืง ืฉืžืคื ื™ื”.
ื”ื‘ืขื™ื” ื”ื™ื—ื™ื“ื” ื”ื™ื™ืชื” ืฉื›ืžื” ืฉื‘ื•ืขื•ืช ืœืื—ืจ ืžื›ืŸ,
15:04
The only problem was a few weeks later,
319
904040
2296
15:06
she started to notice another nodule in the same area.
320
906360
3096
ื”ื™ื ื”ืชื—ื™ืœื” ืœื”ื‘ื—ื™ืŸ ื‘ื’ื•ืฉ ืื—ืจ ื‘ืื•ืชื• ืื–ื•ืจ.
15:09
It turned out he hadn't gotten it all, and she wasn't good to go.
321
909480
4136
ื”ืชื‘ืจืจ ืฉื”ื•ื ืœื ื”ืกื™ืจ ืืช ื”ื›ืœ, ื•ื”ื™ื ืœื ื”ื™ื™ืชื” ื‘ืžืฆื‘ ืฉืœ ืœืœื›ืช ื‘ืฉืœื•ื.
15:13
But what happened at this juncture absolutely fascinates me.
322
913640
2840
ืื‘ืœ ืžื” ืฉืงืจื” ื‘ืฉืœื‘ ื–ื”, ืžืจืชืง ืื•ืชื™ ืœื—ืœื•ื˜ื™ืŸ.
15:17
My colleague came to me and said,
323
917200
1616
ื”ืขืžื™ืช ืฉืœื™ ื‘ื ืืœื™ ื•ืืžืจ,
15:18
"Kevin, would you mind looking after this patient for me?"
324
918840
2720
"ืงื•ื•ื™ืŸ, ืื›ืคืช ืœืš ืœื”ืฉื’ื™ื— ืขืœ ืžื˜ื•ืคืœืช ื–ื• ื‘ืฉื‘ื™ืœื™? "
15:22
I said, "Why, you know the right thing to do as well as I do.
325
922240
3216
ืืžืจืชื™, "ืœืžื”, ืืชื” ื™ื•ื“ืข ืœืขืฉื•ืช ืืช ื”ื“ื‘ืจ ื”ื ื›ื•ืŸ ื˜ื•ื‘ ื›ืžื•ื ื™.
15:25
You haven't done anything wrong."
326
925480
1616
ืœื ืขืฉื™ืช ืฉื•ื ื“ื‘ืจ ืจืข. "
ื”ื•ื ืืžืจ, "ื‘ื‘ืงืฉื”, ืจืง ืชืขืงื•ื‘ ืขืœ ื—ื•ืœื” ื–ื• ื‘ืฉื‘ื™ืœื™."
15:27
He said, "Please, just look after this patient for me."
327
927120
4480
15:33
He was embarrassed --
328
933200
1536
ื”ื•ื ื”ื™ื” ื ื‘ื•ืš -
15:34
not by what he had done,
329
934760
1400
ืœื ื‘ื’ืœืœ ืžื” ืฉื”ื•ื ืขืฉื”,
ืืœื ื‘ื’ืœืœ ื”ืฉื™ื—ื” ืฉื”ื•ื ืงื™ื™ื,
15:37
but by the conversation that he had had,
330
937154
1926
15:39
by the overconfidence.
331
939760
1440
ื‘ื’ืœืœ ื”ื‘ื™ื˜ื—ื•ืŸ ื”ืขืฆืžื™ ื”ืžื•ืคืจื–.
15:42
So I performed a much more invasive surgery
332
942600
2616
ืื– ื‘ื™ืฆืขืชื™ ื ื™ืชื•ื— ืคื•ืœืฉื ื™ ื”ืจื‘ื” ื™ื•ืชืจ
15:45
and had a very different conversation with the patient afterwards.
333
945240
3136
ื•ื ื™ื”ืœืชื™ ืฉื™ื—ื” ืžืื•ื“ ืฉื•ื ื” ืขื ื”ืžื˜ื•ืคืœืช ืœืื—ืจ ืžื›ืŸ.
15:48
I said, "Most likely I've gotten it all
334
948400
2336
ืืžืจืชื™, "ืกื‘ื™ืจ ืœื”ื ื™ื— ืฉื”ืกืจืชื™ ืืช ื”ื›ืœ
15:50
and you're most likely good to go,
335
950760
2416
ื•ืืช ื›ื ืจืื” ื™ื›ื•ืœื” ืœืœื›ืช ื‘ืฉืœื•ื,
15:53
but this is the experiment that we're doing.
336
953200
3160
ืื‘ืœ ื–ื”ื• ื ื™ืกื•ื™ ืฉืื ื• ืขื•ืฉื™ื.
ื‘ื–ื” ืืช ืืžื•ืจื” ืœืฆืคื•ืช.
15:57
This is what you're going to watch for.
337
957040
2016
ื‘ื–ื” ืื ื™ ืืžื•ืจ ืœืฆืคื•ืช.
15:59
This is what I'm going to watch for.
338
959080
1896
ื•ื ืขื‘ื•ื“ ื™ื—ื“ ื›ื“ื™ ืœื’ืœื•ืช ืื ื”ื ื™ืชื•ื— ื”ื–ื” ื™ืฆืœื™ื—
16:01
And we're going to work together to find out if this surgery will work
339
961000
3936
16:04
to get rid of your cancer."
340
964960
1320
ืœื”ื™ืคื˜ืจ ืžื”ืกืจื˜ืŸ ืฉืœืš."
16:06
I can guarantee you, she and her husband
341
966920
1936
ืื ื™ ื™ื›ื•ืœ ืœื”ื‘ื˜ื™ื— ืœื›ื ืฉื”ื™ื ื•ื‘ืขืœื”
16:08
did not crack another bottle of champagne after talking to me.
342
968880
2920
ืœื ืคืชื—ื• ืขื•ื“ ื‘ืงื‘ื•ืง ืฉืžืคื ื™ื” ืœืื—ืจ ืฉื“ื™ื‘ืจื• ืืชื™.
16:13
But she was now a scientist,
343
973600
2856
ืื‘ืœ ื”ื™ื ื”ื™ืชื” ื›ืขืช ืžื“ืขื ื™ืช,
16:16
not only a subject in her experiment.
344
976480
3360
ื•ืœื ืจืง ื ื•ืฉื ื‘ื ื™ืกื•ื™ ืฉืœื”.
16:21
And so I encourage you
345
981960
1616
ื•ื›ืš ืื ื™ ืžืขื•ื“ื“ ืืชื›ื
16:23
to seek humility and curiosity
346
983600
3456
ืœื—ืคืฉ ืขื ื•ื•ื” ื•ืกืงืจื ื•ืช
ืืฆืœ ื”ืจื•ืคืื™ื ืฉืœื›ื.
16:27
in your physicians.
347
987080
1200
16:28
Almost 20 billion times each year,
348
988760
2976
ื›ืžืขื˜ 20 ืžื™ืœื™ืืจื“ ืคืขืžื™ื ื‘ืฉื ื”,
16:31
a person walks into a doctor's office,
349
991760
3936
ืื“ื ื ื›ื ืก ืœืžืฉืจื“ื• ืฉืœ ืจื•ืคื,
16:35
and that person becomes a patient.
350
995720
2280
ื•ื”ืื“ื ื”ื•ืคืš ืœืžื˜ื•ืคืœ.
16:39
You or someone you love will be that patient sometime very soon.
351
999320
3520
ืืชื ืื• ืžื™ืฉื”ื• ืฉืืชื ืื•ื”ื‘ื™ื ื™ื”ื™ื” ื”ืžื˜ื•ืคืœ ื”ื–ื” ืžืชื™ืฉื”ื• ื‘ืงืจื•ื‘ ืžืื•ื“.
16:43
How will you talk to your doctors?
352
1003840
1640
ื›ื™ืฆื“ ืชื“ื‘ืจื• ืขื ื”ืจื•ืคืื™ื ืฉืœื›ื?
16:46
What will you tell them?
353
1006640
1200
ืžื” ืชืืžืจื• ืœื”ื?
16:48
What will they tell you?
354
1008760
1520
ืžื” ื”ื ื™ืืžืจื• ืœื›ื?
16:52
They cannot tell you
355
1012600
2216
ื”ื ืœื ื™ื›ื•ืœื™ื ืœื•ืžืจ ืœื›ื
16:54
what they do not know,
356
1014840
1520
ืžื” ืฉื”ื ืœื ื™ื•ื“ืขื™ื,
16:57
but they can tell you when they don't know
357
1017560
3560
17:02
if only you'll ask.
358
1022280
1360
ืื ืจืง ืชืฉืืœื•.
ืื– ื‘ื‘ืงืฉื”, ื”ืฆื˜ืจืคื• ืœืฉื™ื—ื”.
17:04
So please, join the conversation.
359
1024160
2840
17:08
Thank you.
360
1028200
1216
ืชื•ื“ื” ืจื‘ื” ืœื›ื.
17:09
(Applause)
361
1029440
2868
(ืชืฉื•ืื•ืช)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7