To detect diseases earlier, let's speak bacteria's secret language | Fatima AlZahra'a Alatraktchi

69,633 views

2019-04-19 ใƒป TED


New videos

To detect diseases earlier, let's speak bacteria's secret language | Fatima AlZahra'a Alatraktchi

69,633 views ใƒป 2019-04-19

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

00:00
Translator: Leslie Gauthier Reviewer: Camille Martรญnez
0
0
7000
ืชืจื’ื•ื: Roni Weisman ืขืจื™ื›ื”: Nurit Noy
00:13
You don't know them.
1
13992
1325
ืื™ื ื›ื ืžื›ื™ืจื™ื ืื•ืชื.
00:16
You don't see them.
2
16150
1286
ืื™ื ื›ื ืจื•ืื™ื ืื•ืชื.
00:18
But they're always around,
3
18405
2003
ืื‘ืœ ื”ื ืชืžื™ื“ ื‘ืกื‘ื™ื‘ื”,
00:21
whispering,
4
21404
1680
ืœื•ื—ืฉื™ื,
00:23
making secret plans,
5
23108
1814
ืจื•ื—ืฉื™ื ืชื›ื ื™ื•ืช ืกืชืจื™ื,
00:25
building armies with millions of soldiers.
6
25700
3682
ื‘ื•ื ื™ื ืฆื‘ืื•ืช ืขื ืžื™ืœื™ื•ื ื™ ื—ื™ื™ืœื™ื.
00:30
And when they decide to attack,
7
30826
1791
ื•ื›ืืฉืจ ื”ื ืžื—ืœื™ื˜ื™ื ืœืชืงื•ืฃ,
00:33
they all attack at the same time.
8
33435
2262
ื”ื ื›ื•ืœื ืชื•ืงืคื™ื ื‘ื‘ืช ืื—ืช.
00:39
I'm talking about bacteria.
9
39130
1779
ืื ื™ ืžืชื›ื•ื•ื ืช ืœื—ื™ื™ื“ืงื™ื.
00:40
(Laughter)
10
40933
1325
(ืฆื—ื•ืง)
00:42
Who did you think I was talking about?
11
42282
1855
ืขืœ ืžื™ ื—ืฉื‘ืชื ืฉืื ื™ ืžื“ื‘ืจืช?
00:46
Bacteria live in communities just like humans.
12
46401
3194
ื—ื™ื™ื“ืงื™ื ื—ื™ื™ื ื‘ืงื”ื™ืœื•ืช ื‘ื“ื™ื•ืง ื›ืžื• ื‘ื ื™-ืื“ื.
00:49
They have families,
13
49619
1273
ื™ืฉ ืœื”ื ืžืฉืคื—ื•ืช,
00:50
they talk,
14
50916
1151
ื”ื ืžื“ื‘ืจื™ื,
ื•ื”ื ืžืชื›ื ื ื™ื ืืช ื”ืคืขื™ืœื•ื™ื•ืช ืฉืœื”ื.
00:52
and they plan their activities.
15
52091
1842
00:53
And just like humans, they trick, deceive,
16
53957
2657
ื•ื‘ื“ื™ื•ืง ื›ืžื• ื‘ื ื™-ืื“ื, ื”ื ืžืขืจื™ืžื™ื, ืžื˜ืขื™ื,
00:56
and some might even cheat on each other.
17
56638
2134
ื•ื—ืœืงื ืืฃ ืžืจืžื™ื ื”ืื—ื“ ืืช ื”ืฉื ื™.
01:00
What if I tell you that we can listen to bacterial conversations
18
60127
3847
ืžื” ืชื’ื™ื“ื• ืื ืื•ืžืจ ืœื›ื ืฉืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื”ืื–ื™ืŸ ืœืฉื™ื—ื•ืช ืฉืœ ื—ื™ื™ื“ืงื™ื
01:03
and translate their confidential information into human language?
19
63998
3574
ื•ืœืชืจื’ื ืืช ื”ืžื™ื“ืข ื”ื—ืกื•ื™ ืฉืœื”ื ืœืฉืคืช ื‘ื ื™ ืื“ื?
01:08
And what if I tell you that translating bacterial conversations can save lives?
20
68255
4798
ื•ืžื” ืื ืื•ืžืจ ืœื›ื ืฉืชืจื’ื•ื ืฉืœ ืฉื™ื—ื•ืช ืฉืœ ื—ื™ื™ื“ืงื™ื ื™ื›ื•ืœ ืœื”ืฆื™ืœ ื—ื™ื™ื?
01:14
I hold a PhD in nanophysics,
21
74519
1771
ื™ืฉ ืœื™ ืชื•ืืจ ื“ื•ืงื˜ื•ืจ ื‘ื ื ื•-ืคื™ื–ื™ืงื”,
01:16
and I've used nanotechnology to develop a real-time translation tool
22
76314
4376
ื•ื”ืฉืชืžืฉืชื™ ื‘ื ื ื•-ื˜ื›ื ื•ืœื•ื’ื™ื” ืœืคื™ืชื•ื— ื›ืœื™ ืชืจื’ื•ื ื‘ื–ืžืŸ ืืžืช
01:20
that can spy on bacterial communities
23
80714
2319
ืฉื™ื›ื•ืœ ืœืจื’ืœ ืื—ืจื™ ืงื”ื™ืœื•ืช ืฉืœ ื—ื™ื™ื“ืงื™ื
01:23
and give us recordings of what bacteria are up to.
24
83057
2916
ื•ืœืกืคืง ืœื ื• ื”ืงืœื˜ื•ืช ืฉืžืกืคืจื•ืช ืžื” ื–ื•ืžืžื™ื ื”ื—ื™ื™ื“ืงื™ื.
01:28
Bacteria live everywhere.
25
88123
1596
ื—ื™ื™ื“ืงื™ื ื—ื™ื™ื ื‘ื›ืœ ืžืงื•ื.
01:29
They're in the soil, on our furniture
26
89743
2329
ื”ื ื ืžืฆืื™ื ื‘ืื“ืžื”, ื‘ืจื”ื™ื˜ื™ื ืฉืœื ื•
01:32
and inside our bodies.
27
92096
1311
ื•ื‘ืชื•ืš ื’ื•ืคื ื•.
01:34
In fact, 90 percent of all the live cells in this theater are bacterial.
28
94083
4539
ืœืžืขืฉื”, 90% ืžื›ืœ ื”ืชืื™ื ื”ื—ื™ื™ื ื‘ืื•ืœื ื”ื–ื” ื”ื™ื ื ื—ื™ื™ื“ืงื™ื.
01:39
Some bacteria are good for us;
29
99915
1599
ื—ืœืง ืžื”ื—ื™ื™ื“ืงื™ื ื˜ื•ื‘ื™ื ืขื‘ื•ืจื ื• -
01:41
they help us digest food or produce antibiotics.
30
101538
3212
ื”ื ืขื•ื–ืจื™ื ืœื ื• ืœืขื›ืœ ืžื–ื•ืŸ ืื• ืžื™ื™ืฆืจื™ื ืื ื˜ื™ื‘ื™ื•ื˜ื™ืงื”.
01:44
And some bacteria are bad for us;
31
104774
2092
ื•ื—ืœืง ืžื”ื—ื™ื™ื“ืงื™ื ืจืขื™ื ืขื‘ื•ืจื ื• -
01:46
they cause diseases and death.
32
106890
1894
ื”ื ื’ื•ืจืžื™ื ืžื—ืœื•ืช ื•ืžื•ื•ืช.
01:49
To coordinate all the functions bacteria have,
33
109794
2416
ื›ื“ื™ ืฉื™ื•ื›ืœื• ืœืชืื ื‘ื™ื ื™ื”ื ืืช ื›ืœ ืžื” ืฉื”ื ืขื•ืฉื™ื,
01:52
they have to be able to organize,
34
112234
2072
ื”ื ืฆืจื™ื›ื™ื ืœื”ื™ื•ืช ื‘ืขืœื™ ื™ื›ื•ืœืช ืœืืจื’ืŸ,
01:54
and they do that just like us humans --
35
114330
2041
ื•ื”ื ืขื•ืฉื™ื ื–ืืช ื‘ื“ื™ื•ืง ื›ืžื•ื ื• ื‘ื ื™ ื”ืื“ื,
01:56
by communicating.
36
116395
1159
ื‘ืืžืฆืขื•ืช ืชืงืฉื•ืจืช.
01:58
But instead of using words,
37
118751
1475
ืืœื ืฉื‘ืžืงื•ื ืœื”ืฉืชืžืฉ ื‘ืžืœื™ื,
02:00
they use signaling molecules to communicate with each other.
38
120250
2942
ื”ื ืžืฉืชืžืฉื™ื ื‘ืžื•ืœืงื•ืœื•ืช ืื™ืชื•ืช ื›ื“ื™ ืœืชืงืฉืจ ื”ืื—ื“ ืขื ื”ืฉื ื™.
02:04
When bacteria are few,
39
124083
1257
ื›ืืฉืจ ื”ื—ื™ื™ื“ืงื™ื ืžื•ืขื˜ื™ื,
02:05
the signaling molecules just flow away,
40
125364
2743
ืžื•ืœืงื•ืœื•ืช ื”ืื™ืชื•ืช ืคืฉื•ื˜ ื–ื•ืจืžื•ืช ื”ืœืื”,
02:08
like the screams of a man alone in the desert.
41
128131
2505
ื‘ื“ื•ืžื” ืœื–ืขืงื” ืฉืœ ืื“ื ืœื‘ื“ ื‘ืžื“ื‘ืจ.
02:11
But when there are many bacteria, the signaling molecules accumulate,
42
131518
3992
ืื‘ืœ ื›ืฉื™ืฉ ื”ืจื‘ื” ื—ื™ื™ื“ืงื™ื, ืžื•ืœืงื•ืœื•ืช ื”ืื™ืชื•ืช ืžืฆื˜ื‘ืจื•ืช,
02:15
and the bacteria start sensing that they're not alone.
43
135534
2992
ื•ื”ื—ื™ื™ื“ืงื™ื ืžืชื—ื™ืœื™ื ืœื”ืจื’ื™ืฉ ืฉื”ื ืื™ื ื ืœื‘ื“.
02:19
They listen to each other.
44
139309
1334
ื”ื ืžืื–ื™ื ื™ื ื”ืื—ื“ ืœืฉื ื™.
02:21
In this way, they keep track of how many they are
45
141459
2816
ื‘ื“ืจืš ื–ื• ื”ื ื™ื•ื“ืขื™ื ื›ืžื” ืžื”ื ื™ืฉื ื ื‘ืกื‘ื™ื‘ื”
02:24
and when they're many enough to initiate a new action.
46
144299
3321
ื•ืžืชื™ ื™ืฉ ืžืกืคื™ืง ืžื”ื ื›ื“ื™ ืœื™ื–ื•ื ืคืขื•ืœื” ื—ื“ืฉื”.
02:28
And when the signaling molecules have reached a certain threshold,
47
148575
3857
ื›ืืฉืจ ื›ืžื•ืช ืžื•ืœืงื•ืœื•ืช ื”ืื™ืชื•ืช ืขื•ืœื” ืขืœ ืกืฃ ืžืกื•ื™ื™ื,
02:32
all the bacteria sense at once that they need to act
48
152456
3121
ื›ืœ ื”ื—ื™ื™ื“ืงื™ื, ื—ืฉื™ื ื‘ื‘ืช ืื—ืช, ืฉืขืœื™ื”ื ืœื‘ืฆืข
02:35
with the same action.
49
155601
1318
ืืช ืื•ืชื” ืคืขื•ืœื”.
02:37
So bacterial conversation consists of an initiative and a reaction,
50
157967
4326
ืœื›ืŸ, ืฉื™ื—ื” ืฉืœ ื”ื—ื™ื™ื“ืงื™ื, ืžื•ืจื›ื‘ืช ืžื”ืชื ืขื” ื•ืชื’ื•ื‘ื”,
02:42
a production of a molecule and the response to it.
51
162317
3072
ื™ื™ืฆื•ืจ ืฉืœ ืžื•ืœืงื•ืœื” ื•ื”ืชื’ื•ื‘ื” ืืœื™ื”.
02:47
In my research, I focused on spying on bacterial communities
52
167094
3340
ื‘ืžื—ืงืจ ืฉืœื™, ื”ืชืžืงื“ืชื™ ื‘ืจื™ื’ื•ืœ ืื—ืจ ืงื”ื™ืœื•ืช ืฉืœ ื—ื™ื™ื“ืงื™ื
02:50
inside the human body.
53
170458
1403
ื”ื ืžืฆืื™ื ื‘ืชื•ืš ื’ื•ืฃ ื”ืื“ื.
02:52
How does it work?
54
172343
1245
ืื™ืš ื–ื” ืขื•ื‘ื“?
02:54
We have a sample from a patient.
55
174385
1915
ืื ื—ื ื• ืœื•ืงื—ื™ื ื“ื’ื™ืžื” ืžืžื˜ื•ืคืœ.
02:56
It could be a blood or spit sample.
56
176324
2538
ื–ืืช ื™ื›ื•ืœื” ืœื”ื™ื•ืช ื“ื’ื™ืžืช ื“ื ืื• ืจื•ืง.
02:59
We shoot electrons into the sample,
57
179304
2537
ืื ื—ื ื• ื™ื•ืจื™ื ืืœืงื˜ืจื•ื ื™ื ืœืชื•ืš ื”ื“ื’ื™ืžื”,
03:01
the electrons will interact with any communication molecules present,
58
181865
3920
ื”ืืœืงื˜ืจื•ื ื™ื ืžืชืงืฉืจื™ื ืขื ื›ืœ ืžื•ืœืงื•ืœืช ืชืงืฉื•ืจืช ืฉื ืžืฆืืช,
03:05
and this interaction will give us information
59
185809
2381
ื•ื”ืชืงืฉื•ืจืช ื”ื–ืืช ืžืกืคืงืช ืœื ื• ืžื™ื“ืข
03:08
on the identity of the bacteria,
60
188214
1891
ืขืœ ื–ื”ื•ืชื ืฉืœ ื”ื—ื™ื™ื“ืงื™ื,
03:10
the type of communication
61
190129
1671
ืกื•ื’ ื”ืชืงืฉื•ืจืช
03:11
and how much the bacteria are talking.
62
191824
2293
ื•ื›ืžื” ืžื”ื—ื™ื™ื“ืงื™ื ืžื“ื‘ืจื™ื.
03:16
But what is it like when bacteria communicate?
63
196269
2321
ืื‘ืœ ืื™ืš ื–ื” ื ืจืื” ื›ืืฉืจ ื—ื™ื™ื“ืงื™ื ืžืชึทืงึฐืฉืจื™ื?
03:19
Before I developed the translation tool,
64
199747
3760
ืœืคื ื™ ืฉืคื™ืชื—ืชื™ ืืช ื›ืœื™ ื”ืชืจื’ื•ื,
03:23
my first assumption was that bacteria would have a primitive language,
65
203531
3846
ื”ื”ื ื—ื” ื”ืจืืฉื•ื ื™ืช ืฉืœื™ ื”ื™ืชื” ืฉืœื—ื™ื™ื“ืงื™ื ื™ืฉ ืฉืคื” ืคืจื™ืžื™ื˜ื™ื‘ื™ืช,
03:27
like infants that haven't developed words and sentences yet.
66
207401
3178
ื‘ื“ื•ืžื” ืœืชื™ื ื•ืงื•ืช ืฉืœื ืคื™ืชื—ื• ืขื“ื™ื™ืŸ ืžืœื™ื ื•ืžืฉืคื˜ื™ื ืขื“ื™ื™ืŸ.
03:31
When they laugh, they're happy; when they cry, they're sad.
67
211208
2921
ื›ืฉื”ื ืฆื•ื—ืงื™ื - ื”ื ืฉืžื—ื™ื, ื›ืฉื”ื ื‘ื•ื›ื™ื - ื”ื ืขืฆื•ื‘ื™ื.
ืคืฉื•ื˜ ืžืื•ื“.
03:34
Simple as that.
68
214153
1150
03:36
But bacteria turned out to be nowhere as primitive as I thought they would be.
69
216008
4115
ืื‘ืœ ื—ื™ื™ื“ืงื™ื ืžืกืชื‘ืจ ืœื ืงืจื•ื‘ื™ื ืืคื™ืœื• ืœื”ื™ื•ืช ืคืจื™ืžื™ื˜ื™ื‘ื™ื™ื ื›ืคื™ ืฉื—ืฉื‘ืชื™ ืฉื”ื.
03:40
A molecule is not just a molecule.
70
220615
2240
ืžื•ืœืงื•ืœื” ื”ื™ื ืœื ืจืง ืžื•ืœืงื•ืœื”.
03:42
It can mean different things depending on the context,
71
222879
2754
ื”ื™ื ื™ื›ื•ืœื” ืœื”ื™ื•ืช ื“ื‘ืจื™ื ืฉื•ื ื™ื ื‘ื”ืชืื ืœื”ืงืฉืจ.
03:46
just like the crying of babies can mean different things:
72
226404
2942
ื‘ื“ื™ื•ืง ื›ืžื• ืฉื‘ื›ื™ ืฉืœ ืชื™ื ื•ืงื•ืช ื™ื›ื•ืœ ืœื”ื‘ื™ืข ื”ืจื‘ื” ื“ื‘ืจื™ื:
03:49
sometimes the baby is hungry,
73
229370
1770
ืœืคืขืžื™ื ื”ืชื™ื ื•ืง ืจืขื‘,
03:51
sometimes it's wet,
74
231164
1194
ืœืคืขืžื™ื ื”ื•ื ืจื˜ื•ื‘,
03:52
sometimes it's hurt or afraid.
75
232382
2019
ืœืคืขืžื™ื ื”ื•ื ืคื’ื•ืข ืื• ืคื•ื—ื“.
03:54
Parents know how to decode those cries.
76
234425
2350
ื”ื•ืจื™ื ื™ื•ื“ืขื™ื ืœืคืขื ื— ืืช ืกื•ื’ื™ ื”ื‘ื›ื™.
03:57
And to be a real translation tool,
77
237624
1882
ื•ื›ื“ื™ ืฉื›ืœื™ ื”ืชืจื’ื•ื ื™ื”ื™ื” ืืžื™ืชื™
03:59
it had to be able to decode the signaling molecules
78
239530
2973
ื”ื™ื” ืขืœื™ื• ืœื”ื™ื•ืช ืžืกื•ื’ืœ ืœืคืขื ื— ืืช ืžื•ืœืงื•ืœื•ืช ื”ืื™ืชื•ืช
04:02
and translate them depending on the context.
79
242527
4061
ื•ืœืชืจื’ื ืื•ืชืŸ ื‘ื”ืชืื ืœื”ืงืฉืจ.
04:07
And who knows?
80
247497
1151
ื•ืžื™ ื™ื•ื“ืข?
04:08
Maybe Google Translate will adopt this soon.
81
248672
2161
ืื•ืœื™ "ื’ื•ื’ืœ ื˜ืจื ืกืœื™ื™ื˜" ื™ืืžืฅ ืื•ืชื• ื‘ืงืจื•ื‘.
04:10
(Laughter)
82
250857
2369
(ืฆื—ื•ืง)
04:14
Let me give you an example.
83
254386
1718
ืืชืŸ ืœื›ื ื“ื•ื’ืžื”.
04:16
I've brought some bacterial data that can be a bit tricky to understand
84
256128
3589
ื”ื‘ืืชื™ ืงืฆืช ืžื™ื“ืข ืขืœ ื—ื™ื™ื“ืงื™ื ืฉืขืœื•ืœ ืœื”ื™ื•ืช ืงืฆืช ืงืฉื” ืœื”ื‘ื™ื ื•
04:19
if you're not trained,
85
259741
1151
ืื ืื™ื ื›ื ืžืื•ืžื ื™ื ื‘ื›ืš,
04:20
but try to take a look.
86
260916
1345
ืื‘ืœ ื ืกื• ืœื”ืชื‘ื•ื ืŸ.
04:23
(Laughter)
87
263548
1919
(ืฆื—ื•ืง)
04:26
Here's a happy bacterial family that has infected a patient.
88
266959
3477
ื›ืืŸ ื™ืฉื ื” ืžืฉืคื—ืช ื—ื™ื™ื“ืงื™ื ืžืื•ืฉืจืช ืฉื”ื“ื‘ื™ืงื” ื—ื•ืœื”.
04:32
Let's call them the Montague family.
89
272261
2033
ื”ื‘ื” ื ืงืจื ืœื”ื ืžืฉืคื—ืช "ืžื•ื ื˜ึทื’ึฐื™ื•".
04:35
They share resources, they reproduce, and they grow.
90
275920
3461
ื”ื ื—ื•ืœืงื™ื ื‘ื™ื ื™ื”ื ืžืฉืื‘ื™ื, ื”ื ืžืชื—ืœืงื™ื, ื•ื”ื ื’ื“ืœื™ื.
04:40
One day, they get a new neighbor,
91
280294
1979
ื™ื•ื ืื—ื“ ื”ื’ื™ืขื• ืืœื™ื”ื ืฉื›ื ื™ื ื—ื“ืฉื™ื,
04:44
bacterial family Capulet.
92
284746
1767
ืžืฉืคื—ืช ื”ื—ื™ื™ื“ืงื™ื "ืงึธืคึผื•ืœึตื˜".
04:46
(Laughter)
93
286537
1150
(ืฆื—ื•ืง)
04:48
Everything is fine, as long as they're working together.
94
288157
2790
ื”ื›ืœ ื‘ืกื“ืจ, ื›ืœ ืขื•ื“ ื”ื ืขื•ื‘ื“ื™ื ื‘ื™ื—ื“.
04:52
But then something unplanned happens.
95
292377
3006
ืื‘ืœ ืื– ืงื•ืจื” ืžืฉื”ื• ื‘ืœืชื™ ืžืชื•ื›ื ืŸ.
04:56
Romeo from Montague has a relationship with Juliet from Capulet.
96
296449
4218
ืจื•ืžื™ืื• ืžืžืฉืคื—ืช ืžื•ื ื˜ื’ื™ื• ืžืคืชื— ื™ื—ืกื™ื ืขื ื™ื•ืœื™ื” ืžืžืฉืคื—ืช ืงืคื•ืœื˜.
05:00
(Laughter)
97
300691
1150
(ืฆื—ื•ืง)
05:02
And yes, they share genetic material.
98
302978
2895
ื•ื›ืŸ, ื”ื ื—ื•ืœืงื™ื ื—ื•ืžืจ ื’ื ื˜ื™.
05:05
(Laughter)
99
305897
2109
(ืฆื—ื•ืง)
05:10
Now, this gene transfer can be dangerous to the Montagues
100
310630
2751
ื•ื‘ื›ืŸ, ื”ืขื‘ืจืช ื’ื ื™ื ื–ื• ืขืœื•ืœื” ืœื”ื™ื•ืช ืžืกื•ื›ื ืช ืœื‘ื ื™ ืžื•ื ื˜ึทื’ึฐื™ื•.
05:13
that have the ambition to be the only family in the patient they have infected,
101
313405
4066
ืืฉืจ ืฉื•ืืคื™ื ืœื”ื™ื•ืช ื”ืžืฉืคื—ื” ื”ื™ื—ื™ื“ื” ื‘ืชื•ืš ื”ื—ื•ืœื” ืื•ืชื• ื”ื“ื‘ื™ืงื•,
05:17
and sharing genes contributes
102
317495
1424
ื•ื—ืœื•ืงืช ื’ื ื™ื ืชื•ืจืžืช ืœื–ื”
05:18
to the Capulets developing resistance to antibiotics.
103
318943
2834
ืฉื‘ื ื™ ืžืฉืคื—ืช ืงึธืคึผื•ืœึตื˜ ืžืคืชื—ื™ื ืขืžื™ื“ื•ืช ืœืื ื˜ื™ื‘ื™ื•ื˜ื™ืงื”
05:23
So the Montagues start talking internally to get rid of this other family
104
323747
4645
ืื– ื‘ื ื™ ืžื•ื ื˜ึทื’ึฐื™ื• ืžืชื—ื™ืœื™ื ืœื“ื‘ืจ ื‘ื™ื ื™ื”ื ืขืœ ืื™ืš ืœื”ืคื˜ืจ ืžื”ืžืฉืคื—ื” ื”ืื—ืจืช.
05:28
by releasing this molecule.
105
328416
1722
ืขืœ-ื™ื“ื™ ืฉื—ืจื•ืจ ื”ืžื•ืœืงื•ืœื” ื”ื–ืืช.
05:30
(Laughter)
106
330688
1150
(ืฆื—ื•ืง)
05:32
And with subtitles:
107
332700
1362
ื•ืขื ื›ืชื•ื‘ื™ื•ืช:
05:34
[Let us coordinate an attack.]
108
334372
1606
[ื‘ื•ืื• ื ืชืื ื”ืชืงืคื”.]
05:36
(Laughter)
109
336002
1291
(ืฆื—ื•ืง)
05:37
Let's coordinate an attack.
110
337639
1791
ื‘ื•ืื• ื ืชืื ื”ืชืงืคื”.
05:41
And then everybody at once responds
111
341148
3100
ื•ืื– ื›ื•ืœื ื‘ื™ื—ื“, ื‘ื‘ืช ืื—ืช ืžื’ื™ื‘ื™ื
05:44
by releasing a poison that will kill the other family.
112
344272
4323
ืขืœ-ื™ื“ื™ ืฉื—ืจื•ืจ ืจืขืœ ืฉื™ื”ืจื•ื’ ืืช ื”ืžืฉืคื—ื” ื”ืื—ืจืช.
05:48
[Eliminate!]
113
348619
1768
[ื—ืกึตืœ!]
05:52
(Laughter)
114
352129
2132
(ืฆื—ื•ืง)
05:55
The Capulets respond by calling for a counterattack.
115
355338
4393
ื‘ื ื™ ืงึธืคึผื•ืœึตื˜ ืžื’ื™ื‘ื™ื ื‘ืงืจื™ืื” ืœื”ืชืงืคืช ื ื’ื“.
05:59
[Counterattack!]
116
359755
1156
[ื”ืชืงืคืช ื ื’ื“!]
06:00
And they have a battle.
117
360935
1425
ื•ื™ืฉ ืงืจื‘.
06:04
This is a video of real bacteria dueling with swordlike organelles,
118
364090
4618
ื–ื”ื• ืกืจื˜ื•ืŸ ืฉืœ ื—ื™ื™ื“ืงื™ื ืืžื™ืชื™ื™ื ื”ื ืœื—ืžื™ื ื‘ืขื–ืจืช ืื‘ืจื•ื ื™ื ื“ืžื•ื™ื™ ื—ืจื‘,
06:08
where they try to kill each other
119
368732
1613
ื‘ื• ื”ื ื ืจืื™ื ืžื ืกื™ื ืœื”ืจื•ื’ ืื—ื“ ืืช ื”ืฉื ื™
06:10
by literally stabbing and rupturing each other.
120
370369
2838
ืžืžืฉ ืขืœ-ื™ื“ื™ ื“ืงื™ืจื” ื•ืงืจื™ืขื” ืื—ื“ ืืช ื”ืฉื ื™.
06:14
Whoever's family wins this battle becomes the dominant bacteria.
121
374784
3961
ื”ืžืฉืคื—ื” ืฉืชื ืฆื— ื‘ืงืจื‘ ืชื”ื™ื” ื”ื“ื•ืžื™ื ื ื˜ื™ืช.
06:20
So what I can do is to detect bacterial conversations
122
380360
3279
ืื– ืžื” ืฉืื ื™ ื™ื›ื•ืœื” ืœืขืฉื•ืช ื–ื” ืœื’ืœื•ืช ืฉื™ื—ื•ืช ืฉืœ ื—ื™ื™ื“ืงื™ื
06:23
that lead to different collective behaviors
123
383663
2032
ืฉืžื•ื‘ื™ืœื•ืช ืœื”ืชื ื”ื’ื•ื™ื•ืช ืงื•ืœืงื˜ื™ื‘ื™ื•ืช ืฉื•ื ื•ืช
06:25
like the fight you just saw.
124
385719
1435
ื›ืžื• ื”ืงืจื‘ ืฉืจืื™ืชื ื–ื” ืขืชื”.
06:27
And what I did was to spy on bacterial communities
125
387633
2917
ื•ืžื” ืฉืขืฉื™ืชื™ ื”ื™ื” ืœืจื’ืœ ืื—ืจื™ ืงื”ื™ืœื•ืช ื”ื—ื™ื™ื“ืงื™ื
06:30
inside the human body
126
390574
2043
ื‘ืชื•ืš ื”ื’ื•ืฃ ื”ืื ื•ืฉื™
06:32
in patients at a hospital.
127
392641
1716
ืฉืœ ืžื˜ื•ืคืœื™ื ื‘ื‘ื™ืช-ื—ื•ืœื™ื.
06:34
I followed 62 patients in an experiment,
128
394737
2470
ืขืงื‘ืชื™ ืื—ืจื™ 62 ืžื˜ื•ืคืœื™ื ื‘ืžื”ืœืš ื ื™ืกื•ื™,
06:37
where I tested the patient samples for one particular infection,
129
397231
3748
ื‘ื• ื‘ื—ื ืชื™ ื“ื’ื™ืžื•ืช ืฉืœ ืžื˜ื•ืคืœื™ื ื‘ื—ื™ืคื•ืฉ ืื—ืจ ื–ื™ื”ื•ื ืžืกื•ื™ื™ื,
06:41
without knowing the results of the traditional diagnostic test.
130
401003
3329
ืžื‘ืœื™ ืœื“ืขืช ืืช ื”ืชื•ืฆืื•ืช ืฉืœ ื‘ื“ื™ืงื•ืช ื”ืื‘ื—ื•ืŸ ื”ืฉื’ืจืชื™ื•ืช.
06:44
Now, in bacterial diagnostics,
131
404356
4220
ืœื™ื“ื™ืขื”, ื‘ืขืช ืื‘ื—ื•ืŸ ืฉืœ ื—ื™ื™ื“ืงื™ื
06:48
a sample is smeared out on a plate,
132
408600
1981
ืžื•ืจื—ื™ื ื“ื’ื™ืžื” ืขืœ ืฆืœื•ื—ื™ืช,
06:50
and if the bacteria grow within five days,
133
410605
3124
ื•ืื ื”ื—ื™ื™ื“ืงื™ื ื’ื“ืœื™ื ื‘ืชื•ืš ื—ืžื™ืฉื” ื™ืžื™ื,
06:53
the patient is diagnosed as infected.
134
413753
2364
ืžืื•ื‘ื—ืŸ ื”ืžื˜ื•ืคืœ ื›ื—ื•ืœื” ืฉื ื“ื‘ืง.
06:57
When I finished the study and I compared the tool results
135
417842
2819
ื›ืืฉืจ ืกื™ื™ืžืชื™ ืืช ื”ืžื—ืงืจ ื•ื”ืฉื•ื•ื™ืชื™ ื‘ื™ืŸ ื”ืชื•ืฆืื•ืช ืฉืœ ื”ื›ืœื™
07:00
to the traditional diagnostic test and the validation test,
136
420685
3238
ืœืืœื” ืฉืœ ื‘ื“ื™ืงื•ืช ื”ืื‘ื—ื•ืŸ ื”ืฉื’ืจืชื™ื•ืช ื•ืฉืœ ื‘ื“ื™ืงื•ืช ื”ืื™ืžื•ืช,
07:03
I was shocked.
137
423947
1400
ื”ื™ื™ืชื™ ื‘ื”ืœื.
07:05
It was far more astonishing than I had ever anticipated.
138
425371
3711
ื–ื” ื”ื™ื” ื”ืจื‘ื” ื™ื•ืชืจ ืžืคืชื™ืข ืžืžื” ืฉืฆื™ืคื™ืชื™.
07:10
But before I tell you what the tool revealed,
139
430011
2139
ืื‘ืœ ืœืคื ื™ ืฉืืกืคืจ ืœื›ื ืžื” ื—ืฉืฃ ื”ื›ืœื™,
07:12
I would like to tell you about a specific patient I followed,
140
432174
2994
ืื ื™ ืจื•ืฆื” ืœืกืคืจ ืœื›ื ืขืœ ืžื˜ื•ืคืœืช ืžืกื•ื™ื™ืžืช.
07:15
a young girl.
141
435192
1167
ื™ืœื“ื” ืฆืขื™ืจื”.
07:16
She had cystic fibrosis,
142
436803
1450
ื”ื™ื” ืœื” ืกื™ืกื˜ื™ืง ืคื™ื‘ื•ืจื–ื™ืก,
07:18
a genetic disease that made her lungs susceptible to bacterial infections.
143
438277
3740
ืžื—ืœื” ื’ื ื˜ื™ืช ืฉื’ืจืžื” ืœืจื™ืื•ืช ืฉืœื” ืœื”ื™ื•ืช ืคื’ื™ืขื•ืช ืœื–ื™ื”ื•ืžื™ื ื—ื™ื™ื“ืงื™ื™ื.
07:22
This girl wasn't a part of the clinical trial.
144
442837
2396
ื”ื™ืœื“ื” ื”ื–ืืช ืœื ื”ื™ืชื” ื—ืœืง ืžื”ื ื™ืกื•ื™ ื‘ืžืจืคืื”.
07:25
I followed her because I knew from her medical record
145
445257
2827
ืขืงื‘ืชื™ ืื—ืจื™ื” ื›ื™ ื™ื“ืขืชื™ ืฉืขืœ ืคื™ ื”ืชื™ืง ื”ืจืคื•ืื™ ืฉืœื”
07:28
that she had never had an infection before.
146
448108
2100
ืฉื”ื™ื ืœื ื ื“ื‘ืงื” ื‘ื–ื™ื”ื•ื ื‘ืขื‘ืจ.
07:31
Once a month, this girl went to the hospital
147
451453
2105
ืคืขื ื‘ื—ื•ื“ืฉ ื”ื’ื™ืขื” ื”ื™ืœื“ื” ื”ื–ืืช ืœื‘ื™ืช-ื”ื—ื•ืœื™ื
07:33
to cough up a sputum sample that she spit in a cup.
148
453582
2654
ื›ื“ื™ ืœืชืช ื“ื’ื™ืžื” ืœื™ื—ื” ืื•ืชื” ื”ื™ื ื™ืจืงื” ืœืชื•ืš ืกืคืœ.
07:36
This sample was transferred for bacterial analysis
149
456916
3126
ื”ื“ื’ื™ืžื” ื”ื–ืืช ื”ื•ืขื‘ืจื” ืœื ื™ืชื•ื— ืชื›ื•ืœืช ื—ื™ื™ื“ืงื™ื
07:40
at the central laboratory
150
460066
1930
ื‘ืžืขื‘ื“ื” ื”ืžืจื›ื–ื™ืช,
07:42
so the doctors could act quickly if they discovered an infection.
151
462020
3466
ื›ื“ื™ ืฉื”ืจื•ืคืื™ื ื™ื•ื›ืœื• ืœืคืขื•ืœ ื‘ืžื”ื™ืจื•ืช ืื ื™ื’ืœื• ื–ื™ื”ื•ื.
07:46
And it allowed me to test my device on her samples as well.
152
466099
2874
ื–ื” ืึดืคืฉืจ ืœื™ ืœื‘ื“ื•ืง ืืช ื”ืžืชืงืŸ ืฉืœื™ ื’ื ืขืœ ื”ื“ื’ื™ืžื•ืช ืฉืœื”.
07:49
The first two months I measured on her samples, there was nothing.
153
469355
3412
ื‘ื—ื•ื“ืฉื™ื™ื ื”ืจืืฉื•ื ื™ื ื‘ื”ื ืžื“ื“ืชื™ ืืช ื”ื“ื’ื™ืžื•ืช ืฉืœื”, ืœื ื”ื™ื” ื›ืœื•ื.
07:53
But the third month,
154
473794
1167
ืื‘ืœ ื‘ื—ื•ื“ืฉ ื”ืฉืœื™ืฉื™
07:54
I discovered some bacterial chatter in her sample.
155
474985
2656
ื’ื™ืœื™ืชื™ ืฉื™ื—ืช ื—ื™ื™ื“ืงื™ื ื›ืœืฉื”ื™ ื‘ื“ื’ื™ืžื” ืฉืœื”.
07:58
The bacteria were coordinating to damage her lung tissue.
156
478473
3112
ื”ื—ื™ื™ื“ืงื™ื ืชื™ืืžื• ืœืงืจืืช ื”ืชืงืคื” ืขืœ ืจืงืžืช ื”ืจื™ืื•ืช ืฉืœื”.
08:02
But the traditional diagnostics showed no bacteria at all.
157
482534
4011
ื”ืื‘ื—ื•ืŸ ื”ืฉื’ืจืชื™ ืœื ืžืฆื ื›ืœ ื—ื™ื™ื“ืง.
08:07
I measured again the next month,
158
487711
1919
ื‘ื™ืฆืขืชื™ ืžื“ื™ื“ื” ื—ื•ื–ืจืช ื‘ื—ื•ื“ืฉ ืฉืื—ืจื™ื•,
08:09
and I could see that the bacterial conversations became even more aggressive.
159
489654
3628
ื•ื™ื›ื•ืœืชื™ ืœืจืื•ืช ืฉื”ืฉื™ื—ื•ืช ื‘ื™ืŸ ื”ื—ื™ื™ื“ืงื™ื ื”ืคื›ื• ืœืชื•ืงืคื ื™ื•ืช ืืคื™ืœื• ื™ื•ืชืจ.
08:14
Still, the traditional diagnostics showed nothing.
160
494167
2752
ื”ืื‘ื—ื•ืŸ ื”ืฉื’ืจืชื™ ืขื“ื™ื™ืŸ ืœื ื”ืจืื” ื“ื‘ืจ.
08:18
My study ended, but a half a year later, I followed up on her status
161
498456
3644
ื”ืžื—ืงืจ ืฉืœื™ ื”ืกืชื™ื™ื, ืื‘ืœ ืื—ืจื™ ื—ืฆื™ ืฉื ื”, ื‘ื“ืงืชื™ ืžื” ืžืฆื‘ื”.
08:22
to see if the bacteria only I knew about had disappeared
162
502124
3241
ื›ื“ื™ ืœืจืื•ืช ืื ื”ื—ื™ื™ื“ืงื™ื, ืฉืจืง ืื ื™ ื™ื“ืขืชื™ ืขืœื™ื”ื, ื ืขืœืžื•
08:25
without medical intervention.
163
505389
2015
ื‘ืœื™ ื”ืชืขืจื‘ื•ืช ืจืคื•ืื™ืช.
08:28
They hadn't.
164
508350
1150
ื”ื ืœื.
08:30
But the girl was now diagnosed with a severe infection
165
510020
2833
ื•ื”ื™ืœื“ื” ืื•ื‘ื—ื ื” ืขื ื–ื™ื”ื•ื ื—ืžื•ืจ
08:32
of deadly bacteria.
166
512877
1318
ืžื—ื™ื™ื“ืงื™ื ืงื˜ืœื ื™ื™ื.
08:35
It was the very same bacteria my tool discovered earlier.
167
515511
4078
ืืœื• ื”ื™ื• ื‘ื“ื™ื•ืง ืื•ืชื ื—ื™ื™ื“ืงื™ื ืื•ืชื ื’ื™ืœื” ื”ื›ืœื™ ืฉืœื™ ืžื•ืงื“ื ื™ื•ืชืจ.
08:40
And despite aggressive antibiotic treatment,
168
520537
2496
ืœืžืจื•ืช ื˜ื™ืคื•ืœ ืื ื˜ื™ื‘ื™ื•ื˜ื™ ื ืžืจืฅ,
08:43
it was impossible to eradicate the infection.
169
523057
2529
ืœื ื ื™ืชืŸ ื”ื™ื” ืœื‘ืขืจ ืืช ื”ื–ื™ื”ื•ื.
08:46
Doctors deemed that she would not survive her 20s.
170
526816
3082
ื”ืจื•ืคืื™ื ืกื‘ืจื• ืฉื”ื™ื ืœื ืชืฉืจื•ื“ ืžืขื‘ืจ ืœืฉื ื•ืช ื”-20 ืฉืœื”.
08:52
When I measured on this girl's samples,
171
532404
2105
ื›ืืฉืจ ืžื“ื“ืชื™ ืืช ื”ื“ื’ื™ืžื•ืช ืฉืœ ื”ื™ืœื“ื” ื”ื–ื•,
08:54
my tool was still in the initial stage.
172
534533
2199
ื”ื™ื” ื”ื›ืœื™ ืฉืœื™ ื‘ืฉืœื‘ ื”ืจืืฉื•ื ื™.
08:56
I didn't even know if my method worked at all,
173
536756
2699
ืœื ื™ื“ืขืชื™ ืืคื™ืœื• ืื ื”ืฉื™ื˜ื” ืฉืœื™ ื‘ื›ืœืœ ืขื•ื‘ื“ืช,
08:59
therefore I had an agreement with the doctors
174
539479
2147
ืœื›ืŸ ื”ื™ื” ืœื™ ื”ืกื›ื ืขื ื”ืจื•ืคืื™ื
09:01
not to tell them what my tool revealed
175
541650
1861
ืœื ืœืกืคืจ ืœื”ื ืขืœ ืชื•ืฆืื•ืช ื”ื›ืœื™ ืฉืœื™
09:03
in order not to compromise their treatment.
176
543535
2140
ื›ื“ื™ ืœื ืœื”ืฉืคื™ืข ืขืœ ื”ื˜ื™ืคื•ืœ ืฉืœื”ื.
09:06
So when I saw these results that weren't even validated,
177
546111
2803
ืœื›ืŸ, ื›ืฉืจืื™ืชื™ ืืช ื”ืชื•ืฆืื•ืช ื”ืืœื”, ืฉืืคื™ืœื• ืœื ืื•ืžืชื•,
09:08
I didn't dare to tell
178
548938
1352
ืœื ื”ืขื–ืชื™ ืœืกืคืจ
09:10
because treating a patient without an actual infection
179
550314
2807
ื›ื™ ืœืžืชืŸ ื˜ื™ืคื•ืœ ืœื—ื•ืœื” ืฉืื™ืŸ ืœื• ื‘ืืžืช ื–ื™ื”ื•ื
09:13
also has negative consequences for the patient.
180
553145
2610
ื™ืฉ ื’ื ื›ืŸ ื”ืฉืœื›ื•ืช ืฉืœื™ืœื™ื•ืช ืขืœ ื”ืžื˜ื•ืคืœ.
09:17
But now we know better,
181
557092
1622
ืื‘ืœ ื›ืขืช ืื ื—ื ื• ื™ื•ื“ืขื™ื ื™ื•ืชืจ,
09:18
and there are many young boys and girls that still can be saved
182
558738
3399
ื•ื™ืฉื ื ื”ืจื‘ื” ื™ืœื“ื™ื ื•ื™ืœื“ื•ืช ื‘ื’ื™ืœ ืฆืขื™ืจ ืฉื ื™ืชืŸ ืขื“ื™ื™ืŸ ืœื”ืฆื™ืœื
09:23
because, unfortunately, this scenario happens very often.
183
563172
3424
ื›ื™ ืœืจื•ืข ื”ืžื–ืœ, ื”ืชืกืจื™ื˜ ื”ื–ื” ืžืชืจื—ืฉ ืœืขืชื™ื ืงืจื•ื‘ื•ืช.
09:26
Patients get infected,
184
566620
1543
ืžื˜ื•ืคืœื™ื ื ื“ื‘ืงื™ื ื‘ื–ื™ื”ื•ื,
09:28
the bacteria somehow don't show on the traditional diagnostic test,
185
568187
3477
ื”ื—ื™ื™ื“ืงื™ื ืื™ื›ืฉื”ื• ืœื ืžื•ืคื™ืขื™ื ื‘ื‘ื“ื™ืงื•ืช ื”ืื‘ื—ื•ืŸ ื”ืฉื’ืจืชื™ื•ืช,
09:31
and suddenly, the infection breaks out in the patient with severe symptoms.
186
571688
3852
ื•ืœืคืชืข, ื”ื–ื™ื”ื•ื ืžืชืคืจืฅ ื‘ืžื˜ื•ืคืœ ืชื•ืš ื”ื•ืคืขืช ืกื™ืžืคื˜ื•ืžื™ื ื—ืžื•ืจื™ื.
09:35
And at that point, it's already too late.
187
575564
2158
ื•ื‘ื ืงื•ื“ื” ื”ื–ืืช, ื–ื” ื›ื‘ืจ ืžืื•ื—ืจ ืžื“ื™.
09:39
The surprising result of the 62 patients I followed
188
579219
3554
ื”ืชื•ืฆืื” ื”ืžืคืชื™ืขื” ืฉืœ 62 ื”ืžื˜ื•ืคืœื™ื ืื—ืจื™ื”ื ืขืงื‘ืชื™
09:42
was that my device caught bacterial conversations
189
582797
2543
ื”ื™ืชื” ืฉื”ืžื›ืฉื™ืจ ืฉืœื™ ื’ื™ืœื” ืฉื™ื—ื•ืช ื‘ื™ืŸ ื—ื™ื™ื“ืงื™ื,
09:45
in more than half of the patient samples
190
585364
2216
ื‘ื™ื•ืชืจ ืžืžื—ืฆื™ืช ืžื“ื’ื™ืžื•ืช ื”ืžื˜ื•ืคืœื™ื
09:47
that were diagnosed as negative by traditional methods.
191
587604
2931
ืฉืื•ื‘ื—ื ื• ื›ืฉืœื™ืœื™ื•ืช ืข"ื™ ื”ืฉื™ื˜ื•ืช ื”ืฉื’ืจืชื™ื•ืช.
09:51
In other words, more than half of these patients went home thinking
192
591501
3554
ื‘ืžืœื™ื ืื—ืจื•ืช, ื™ื•ืชืจ ืžืžื—ืฆื™ืช ืžื”ืžื˜ื•ืคืœื™ื ื”ืืœื” ื”ืœื›ื• ื”ื‘ื™ืชื”,
09:55
they were free from infection,
193
595079
1685
ื›ืฉื”ื ื—ื•ืฉื‘ื™ื ืฉื”ื ื ืงื™ื™ื ืžื–ื™ื”ื•ืžื™ื,
09:56
although they actually carried dangerous bacteria.
194
596788
2748
ืœืžืจื•ืช ืฉืœืžืขืฉื” ื”ื ื ืฉืื• ื—ื™ื™ื“ืงื™ื ืžืกื•ื›ื ื™ื.
10:01
Inside these wrongly diagnosed patients,
195
601257
2297
ื‘ืชื•ืš ื”ืžื˜ื•ืคืœื™ื ื”ืืœื” ืฉืื•ื‘ื—ื ื• ืœื ื ื›ื•ืŸ,
10:03
bacteria were coordinating a synchronized attack.
196
603578
3020
ื”ื™ื• ื—ื™ื™ื“ืงื™ื ืฉืชื™ืืžื• ื”ืชืงืคื” ืžืชื•ื–ืžื ืช.
10:07
They were whispering to each other.
197
607530
1688
ื”ื ืœื—ืฉื• ื”ืื—ื“ ืœืฉื ื™.
10:09
What I call "whispering bacteria"
198
609892
1631
ืžื” ืฉืื ื™ ืงื•ืจืืช ืœื• "ื—ื™ื™ื“ืงื™ื ืœื•ื—ืฉื™ื"
10:11
are bacteria that traditional methods cannot diagnose.
199
611547
3004
ื”ื ื—ื™ื™ื“ืงื™ื ืฉื”ืฉื™ื˜ื•ืช ื”ืฉื’ืจืชื™ื•ืช ืœื ื™ื›ื•ืœื•ืช ืœืื‘ื—ืŸ.
10:15
So far, it's only the translation tool that can catch those whispers.
200
615383
3943
ื‘ื™ื ืชื™ื™ื, ืจืง ื›ืœื™ ื”ืชืจื’ื•ื ืžืกื•ื’ืœ ืœื’ืœื•ืช ืืช ื”ืœื—ื™ืฉื•ืช ื”ืืœื”.
10:20
I believe that the time frame in which bacteria are still whispering
201
620364
3403
ืื ื™ ืžืืžื™ื ื” ืฉืžืกื’ืจืช ื”ื–ืžืŸ ื‘ื” ื”ื—ื™ื™ื“ืงื™ื ืขื“ื™ื™ืŸ ืœื•ื—ืฉื™ื
10:23
is a window of opportunity for targeted treatment.
202
623791
2987
ื”ื™ื ื—ืœื•ืŸ ื”ื–ื“ืžื ื•ื™ื•ืช ืœืžืชืŸ ื˜ื™ืคื•ืœ ื™ื™ืขื•ื“ื™.
10:27
If the girl had been treated during this window of opportunity,
203
627608
3133
ืื ื”ื™ืœื“ื” ื”ื™ืชื” ืžื˜ื•ืคืœืช ื‘ื–ืžืŸ ื—ืœื•ืŸ ื”ื”ื–ื“ืžื ื•ื™ื•ืช ื”ื–ื”,
10:30
it might have been possible to kill the bacteria
204
630765
2501
ื™ื™ืชื›ืŸ ื•ื ื™ืชืŸ ื”ื™ื” ืœื”ืจื•ื’ ืืช ื”ื—ื™ื™ื“ืงื™ื
10:33
in their initial stage,
205
633290
1465
ื‘ืฉืœื‘ ื”ื”ืชื—ืœืชื™ ืฉืœื”ื,
10:34
before the infection got out of hand.
206
634779
2106
ืœืคื ื™ ืฉื”ื–ื™ื”ื•ื ื™ืฆื ืžืฉืœื™ื˜ื”.
10:39
What I experienced with this young girl made me decide to do everything I can
207
639131
3971
ืžื” ืฉื—ื•ื•ื™ืชื™ ืขื ื”ื™ืœื“ื” ื”ืฆืขื™ืจื” ื”ื–ืืช ื’ืจื ืœื™ ืœื”ื—ืœื™ื˜ ืœืขืฉื•ืช ื›ื›ืœ ื™ื›ื•ืœืชื™
10:43
to push this technology into the hospital.
208
643126
2205
ื›ื“ื™ ืœื“ื—ื•ืฃ ืืช ื”ื˜ื›ื ื•ืœื•ื’ื™ื” ื”ื–ื• ืœื‘ืชื™ ื”ื—ื•ืœื™ื.
10:46
Together with doctors,
209
646212
1151
ื™ื—ื“ ืขื ื”ืจื•ืคืื™ื,
10:47
I'm already working on implementing this tool in clinics
210
647387
2969
ืื ื™ ื›ื‘ืจ ืขื•ื‘ื“ืช ืขืœ ื™ื™ืฉื•ื ื”ื›ืœื™ ื”ื–ื” ื‘ืžืจืคืื•ืช
10:50
to diagnose early infections.
211
650380
1822
ื›ื“ื™ ืœื‘ืฆืข ืื‘ื—ื•ืŸ ืžื•ืงื“ื ืฉืœ ื–ื™ื”ื•ืžื™ื.
10:53
Although it's still not known how doctors should treat patients
212
653319
3244
ืœืžืจื•ืช ืฉืขื“ื™ื™ืŸ ืœื ื™ื“ื•ืข ืื™ืš ืฆืจื™ื›ื™ื ื”ืจื•ืคืื™ื ืœื˜ืคืœ ื‘ื—ื•ืœื™ื
10:56
during the whispering phase,
213
656587
1813
ื‘ืžื”ืœืš ืฉืœื‘ ื”ืœื—ื™ืฉื•ืช,
10:58
this tool can help doctors keep a closer eye on patients in risk.
214
658424
3703
ื™ื›ื•ืœ ื”ื›ืœื™ ื”ื–ื” ืœืขื–ื•ืจ ืœืจื•ืคืื™ื ืœืฉืžื•ืจ ื™ื•ืชืจ ืžืงืจื•ื‘ ืื—ืจ ื—ื•ืœื™ื ื‘ืกื™ื›ื•ืŸ.
11:02
It could help them confirm if a treatment had worked or not,
215
662548
3282
ื”ื•ื ื™ื›ื•ืœ ืœืกื™ื™ืข ืœื”ื ืœื•ื•ื“ื ืื ื˜ื™ืคื•ืœ ืขื‘ื“ ืื• ืœื,
11:05
and it could help answer simple questions:
216
665854
2764
ื•ื”ื•ื ื™ื›ื•ืœ ืœืขื–ื•ืจ ืœืขื ื•ืช ืขืœ ืฉืืœื•ืช ืคืฉื•ื˜ื•ืช:
11:08
Is the patient infected?
217
668642
1730
ื”ืื ื”ืžื˜ื•ืคืœ ื ื“ื‘ืง ื‘ื–ื™ื”ื•ื?
11:10
And what are the bacteria up to?
218
670396
1810
ื•ืžื” ื–ื•ืžืžื™ื ื”ื—ื™ื™ื“ืงื™ื?
11:12
Bacteria talk,
219
672958
1787
ื—ื™ื™ื“ืงื™ื ืžื“ื‘ืจื™ื,
11:14
they make secret plans,
220
674769
2026
ื”ื ื”ื•ื’ื™ื ืชื›ื ื™ื•ืช ืกื•ื“ื™ื•ืช,
11:16
and they send confidential information to each other.
221
676819
2823
ื•ื”ื ืฉื•ืœื—ื™ื ืžื™ื“ืข ื—ืกื•ื™ ื”ืื—ื“ ืœืฉื ื™.
11:20
But not only can we catch them whispering,
222
680253
2679
ืื‘ืœ ืœื ืจืง ืฉืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืชืคื•ืก ืื•ืชื ืœื•ื—ืฉื™ื,
11:22
we can all learn their secret language
223
682956
2467
ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืœืžื•ื“ ืืช ืฉืคืช ื”ืกืชืจื™ื ืฉืœื”ื
11:25
and become ourselves bacterial whisperers.
224
685447
2879
ื•ืœื”ืคื•ืš ื‘ืขืฆืžื ื• ืœื•ื—ืฉื™ื ืœื—ื™ื™ื“ืงื™ื.
11:28
And, as bacteria would say,
225
688973
1714
ื•ื›ืคื™ ืฉื—ื™ื™ื“ืงื™ื ืขืฉื•ื™ื™ื ืœืืžืจ,
11:31
"3-oxo-C12-aniline."
226
691656
3098
"3-ืื•ืงืกื•-ืกื™-12-ืื ื™ืœื™ื™ืŸ."
11:35
(Laughter)
227
695763
1168
(ืฆื—ื•ืง)
11:36
(Applause)
228
696955
1085
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
11:38
Thank you.
229
698064
1184
ืชื•ื“ื” ืจื‘ื”.
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7