Sebastian Seung: I am my connectome

250,237 views ใƒป 2010-09-28

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Sigal Tifferet ืžื‘ืงืจ: Ido Dekkers
00:17
We live in in a remarkable time,
0
17260
3000
ืื ื—ื ื• ื—ื™ื™ื ื‘ืขื™ื“ืŸ ื™ื•ืฆื ื“ื•ืคืŸ,
00:20
the age of genomics.
1
20260
3000
ื”ืขื™ื“ืŸ ื”ื’ื ื•ืžื™.
00:23
Your genome is the entire sequence of your DNA.
2
23260
3000
ื”ื’ื ื•ื ืฉืœื›ื ื”ื•ื ื›ืœ ืจืฆืฃ ื” DNA ืฉืœื›ื.
00:26
Your sequence and mine are slightly different.
3
26260
3000
ื”ืจืฆืฃ ืฉืœื›ื ื•ืฉืœื™ ืžืขื˜ ืฉื•ื ื” ื–ื” ืžื–ื”.
00:29
That's why we look different.
4
29260
2000
ืœื›ืŸ ืื ื• ื ืจืื™ื ืื—ืจืช.
00:31
I've got brown eyes;
5
31260
2000
ืœื™ ื™ืฉ ืขื™ื ื™ื ื—ื•ืžื•ืช.
00:33
you might have blue or gray.
6
33260
3000
ืœื›ื ืื•ืœื™ ื›ื—ื•ืœื•ืช ืื• ืืคื•ืจื•ืช.
00:36
But it's not just skin-deep.
7
36260
2000
ืื‘ืœ ื–ื” ืœื ืจืง ื”ื‘ื“ืœื™ื ื—ื™ืฆื•ื ื™ื™ื.
00:38
The headlines tell us
8
38260
2000
ื”ื›ื•ืชืจื•ืช ืžืกืคืจื•ืช ืœื ื•
00:40
that genes can give us scary diseases,
9
40260
3000
ืฉื’ื ื™ื ื™ื›ื•ืœื™ื ืœื’ืจื•ื ืœืžื—ืœื•ืช ืžืคื—ื™ื“ื•ืช,
00:43
maybe even shape our personality,
10
43260
3000
ื•ืื•ืœื™ ืืฃ ืœืขืฆื‘ ืืช ืื™ืฉื™ื•ืชื ื•,
00:46
or give us mental disorders.
11
46260
3000
ืื• ืœื’ืจื•ื ืœื ื• ืœื”ืคืจืขื•ืช ื ืคืฉื™ื•ืช.
00:49
Our genes seem to have
12
49260
3000
ื ืจืื” ืฉืœื’ื ื™ื ืฉืœื ื• ื™ืฉ
00:52
awesome power over our destinies.
13
52260
3000
ื›ื•ื— ืขืฆื•ื ืขืœ ื’ื•ืจืœื ื•.
00:56
And yet, I would like to think
14
56260
3000
ื•ืขื“ื™ื™ืŸ, ื”ื™ื™ืชื™ ืจื•ืฆื” ืœื—ืฉื•ื‘
00:59
that I am more than my genes.
15
59260
3000
ืฉืื ื™ ื™ื•ืชืจ ืžื”ื’ื ื™ื ืฉืœื™.
01:04
What do you guys think?
16
64260
2000
ืžื” ืืชื ื—ื•ืฉื‘ื™ื?
01:06
Are you more than your genes?
17
66260
3000
ื”ืื ืืชื ื™ื•ืชืจ ืžื”ื’ื ื™ื ืฉืœื›ื?
01:09
(Audience: Yes.) Yes?
18
69260
2000
(ืงื”ืœ: ื›ืŸ.) ื›ืŸ?
01:13
I think some people agree with me.
19
73260
2000
ืื ื™ ื—ื•ืฉื‘ ืฉื—ืœืง ืžื”ืื ืฉื™ื ืžืกื›ื™ื ืื™ืชื™.
01:15
I think we should make a statement.
20
75260
2000
ืื ื™ ื—ื•ืฉื‘ ืฉืื ื—ื ื• ืฆืจื™ื›ื™ื ืœืฆืืช ื‘ื”ื›ืจื–ื”.
01:17
I think we should say it all together.
21
77260
2000
ืื ื™ ื—ื•ืฉื‘ ืฉืื ื—ื ื• ืฆืจื™ื›ื™ื ืœื•ืžืจ ื–ืืช ื™ื—ื“.
01:20
All right: "I'm more than my genes" -- all together.
22
80260
3000
ืงื“ื™ืžื”: "ืื ื™ ื™ื•ืชืจ ืžื”ื’ื ื™ื ืฉืœื™" ื‘ื™ื—ื“.
01:23
Everybody: I am more than my genes.
23
83260
4000
ื›ื•ืœื: ืื ื™ ื™ื•ืชืจ ืžื”ื’ื ื™ื ืฉืœื™.
01:27
(Cheering)
24
87260
2000
(ืชืฉื•ืื•ืช)
01:30
Sebastian Seung: What am I?
25
90260
2000
ืกื•ื•ืื ื’: ืžื” ืื ื™?
01:32
(Laughter)
26
92260
3000
(ืฆื—ื•ืง)
01:35
I am my connectome.
27
95260
3000
ืื ื™ ื”ื•ื ื”ืงื•ื ืงื˜ื•ื ืฉืœื™.
01:40
Now, since you guys are really great,
28
100260
2000
ืขื›ืฉื™ื•, ื‘ื’ืœืœ ืฉืืชื ืงื”ืœ ืžืฆื•ื™ืŸ,
01:42
maybe you can humor me and say this all together too.
29
102260
2000
ืื•ืœื™ ืชืขื–ืจื• ืœื™ ื•ื ืืžืจ ื’ื ืืช ื–ื” ื™ื—ื“.
01:44
(Laughter)
30
104260
2000
(ืฆื—ื•ืง)
01:46
Right. All together now.
31
106260
2000
ื˜ื•ื‘. ื›ื•ืœื ื‘ื™ื—ื“.
01:48
Everybody: I am my connectome.
32
108260
3000
ื›ื•ืœื: ืื ื™ ื”ื•ื ื”ืงื•ื ืงื˜ื•ื ืฉืœื™.
01:53
SS: That sounded great.
33
113260
2000
ืกื•ื•ืื ื’: ื–ื” ื ืฉืžืข ืžืฆื•ื™ืŸ.
01:55
You know, you guys are so great, you don't even know what a connectome is,
34
115260
2000
ืืชื ื™ื•ื“ืขื™ื, ืืชื ืžืžืฉ ื ื”ื“ืจื™ื, ืืชื ืืคื™ืœื• ืœื ื™ื•ื“ืขื™ื ืžื” ื–ื” ืงื•ื ืงื˜ื•ื,
01:57
and you're willing to play along with me.
35
117260
2000
ื•ืืชื ืžื•ื›ื ื™ื ืœืฉืชืฃ ืื™ืชื™ ืคืขื•ืœื”.
01:59
I could just go home now.
36
119260
3000
ืื ื™ ื™ื›ื•ืœ ืœืœื›ืช ื”ื‘ื™ืชื” ืขื›ืฉื™ื•.
02:02
Well, so far only one connectome is known,
37
122260
3000
ื•ื‘ื›ืŸ, ื‘ื™ื ืชื™ื™ื ืจืง ืงื•ื ืงื˜ื•ื ืื—ื“ ื™ื“ื•ืข ืœื ื•,
02:05
that of this tiny worm.
38
125260
3000
ื–ื” ืฉืœ ื”ืชื•ืœืขืช ื”ื–ืขื™ืจื” ื”ื–ื•.
02:08
Its modest nervous system
39
128260
2000
ืžืขืจื›ืช ื”ืขืฆื‘ื™ื ื”ืฆื ื•ืขื” ืฉืœื”
02:10
consists of just 300 neurons.
40
130260
2000
ืžื•ืจื›ื‘ืช ืž300 ื ื•ื™ืจื•ื ื™ื (ืชืื™ ืขืฆื‘) ื‘ืœื‘ื“
02:12
And in the 1970s and '80s,
41
132260
2000
ื•ื‘ืฉื ื•ืช ื”70 ื•ื”80,
02:14
a team of scientists
42
134260
2000
ืงื‘ื•ืฆื” ืฉืœ ืžื“ืขื ื™ื
02:16
mapped all 7,000 connections
43
136260
2000
ืžื™ืคืชื” ืืช ื›ืœ 7000 ื”ืงืฉืจื™ื
02:18
between the neurons.
44
138260
2000
ื‘ื™ืŸ ื”ื ื•ื™ืจื•ื ื™ื.
02:21
In this diagram, every node is a neuron,
45
141260
2000
ื‘ืชืจืฉื™ื ื”ื–ื” ื›ืœ ืฆื•ืžืช ื”ื•ื ื ื•ื™ืจื•ืŸ
02:23
and every line is a connection.
46
143260
2000
ื•ื›ืœ ืงื• ื”ื•ื ื—ื™ื‘ื•ืจ.
02:25
This is the connectome
47
145260
2000
ื–ื” ื”ืงื•ื ืงื˜ื•ื
02:27
of the worm C. elegans.
48
147260
4000
ืฉืœ ื”ืชื•ืœืขืช C. elegans.
02:31
Your connectome is far more complex than this
49
151260
3000
ื”ืงื•ื ืงื˜ื•ื ืฉืœื›ื ื”ืจื‘ื” ื™ื•ืชืจ ืžื•ืจื›ื‘ ืžื–ื”,
02:34
because your brain
50
154260
2000
ื›ื™ ื”ืžื•ื— ืฉืœื›ื
02:36
contains 100 billion neurons
51
156260
2000
ืžื›ื™ืœ 100 ืžื™ืœื™ืืจื“ ื ื•ื™ืจื•ื ื™ื
02:38
and 10,000 times as many connections.
52
158260
3000
ื•ืคื™ 10,000 ืงืฉืจื™ื ืžื–ื”.
02:41
There's a diagram like this for your brain,
53
161260
2000
ื™ืฉ ืชืจืฉื™ื ื›ื–ื” ืœืžื•ื— ืฉืœื›ื,
02:43
but there's no way it would fit on this slide.
54
163260
3000
ืื‘ืœ ืื™ืŸ ื“ืจืš ืฉื”ื•ื ื™ื™ื›ื ืก ืœืฉืงืฃ ื”ื–ื”.
02:47
Your connectome contains one million times more connections
55
167260
3000
ื”ืงื•ื ืงื˜ื•ื ืฉืœื›ื ื›ื•ืœืœ ืคื™ ืžื™ืœื™ื•ืŸ ื™ื•ืชืจ ืงืฉืจื™ื
02:50
than your genome has letters.
56
170260
3000
ืžืืฉืจ ืžืกืคืจ ื”ืื•ืชื™ื•ืช (ื‘ืกื™ืกื™ื) ื‘ื’ื ื•ื ืฉืœื›ื.
02:53
That's a lot of information.
57
173260
2000
ื–ื” ื”ืžื•ืŸ ืžื™ื“ืข.
02:55
What's in that information?
58
175260
3000
ืžื” ื™ืฉ ื‘ืžื™ื“ืข ื”ื–ื”?
02:59
We don't know for sure, but there are theories.
59
179260
3000
ืื ื—ื ื• ืœื ื‘ื˜ื•ื—ื™ื, ืื‘ืœ ื™ืฉ ืชื™ืื•ืจื™ื•ืช.
03:02
Since the 19th century, neuroscientists have speculated
60
182260
3000
ืžืื– ื”ืžืื” ื”19 ื—ื•ืงืจื™ื ืฉืœ ืžื“ืขื™ ื”ืžื•ื— ืฉื™ืขืจื•
03:05
that maybe your memories --
61
185260
2000
ืฉืื•ืœื™ ื”ื–ื›ืจื•ื ื•ืช ืฉืœื›ื -
03:07
the information that makes you, you --
62
187260
2000
ื”ืžื™ื“ืข ืฉื”ื•ืคืš ืืชื›ื ืœืžื™ ืฉืืชื -
03:09
maybe your memories are stored
63
189260
2000
ืื•ืœื™ ื”ื–ื›ืจื•ื ื•ืช ืฉืœื›ื ืžืื•ื—ืกื ื™ื
03:11
in the connections between your brain's neurons.
64
191260
2000
ื‘ืงืฉืจื™ื ื‘ื™ืŸ ื”ื ื•ื™ืจื•ื ื™ื ื‘ืžื•ื—.
03:15
And perhaps other aspects of your personal identity --
65
195260
2000
ื•ืื•ืœื™ ื”ื™ื‘ื˜ื™ื ืื—ืจื™ื ื‘ื–ื”ื•ืช ื”ืื™ืฉื™ืช ืฉืœื›ื -
03:17
maybe your personality and your intellect --
66
197260
3000
ืื•ืœื™ ื”ืื™ืฉื™ื•ืช ื•ื”ืื™ื ื˜ืœืงื˜ -
03:20
maybe they're also encoded
67
200260
2000
ืื•ืœื™ ื’ื ื”ื ืžืงื•ื“ื“ื™ื
03:22
in the connections between your neurons.
68
202260
3000
ื‘ืงืฉืจื™ื ื‘ื™ืŸ ื”ื ื•ื™ืจื•ื ื™ื ืฉืœื›ื.
03:26
And so now you can see why I proposed this hypothesis:
69
206260
3000
ืื– ืขื›ืฉื™ื• ืืชื ืžื‘ื™ื ื™ื ืœืžื” ื”ืฆืขืชื™ ืืช ื”ื”ื™ืคื•ืชื™ื–ื” ื”ื–ืืช:
03:29
I am my connectome.
70
209260
3000
ืื ื™ ื”ื•ื ื”ืงื•ื ืงื˜ื•ื ืฉืœื™.
03:32
I didn't ask you to chant it because it's true;
71
212260
3000
ืœื ื‘ื™ืงืฉืชื™ ืžื›ื ืœื—ื–ื•ืจ ืขืœ ื–ื” ื›ื™ ื–ื” ื ื›ื•ืŸ,
03:35
I just want you to remember it.
72
215260
2000
ืจืฆื™ืชื™ ืฉืชื–ื›ืจื• ืืช ื–ื”.
03:37
And in fact, we don't know if this hypothesis is correct,
73
217260
2000
ื•ืœืžืขืฉื”, ืื ื—ื ื• ืœื ื™ื•ื“ืขื™ื ืื ื”ื”ื™ืคื•ืชื™ื–ื” ื”ื–ืืช ื ื›ื•ื ื”,
03:39
because we have never had technologies
74
219260
2000
ื›ื™ ืืฃ ืคืขื ืœื ื”ื™ื• ืœื ื• ื˜ื›ื ื•ืœื•ื’ื™ื•ืช
03:41
powerful enough to test it.
75
221260
2000
ื—ื–ืงื•ืช ืžืกืคื™ืง ื›ื“ื™ ืœื‘ื—ื•ืŸ ืื•ืชื”.
03:44
Finding that worm connectome
76
224260
3000
ืœืžืฆื•ื ืืช ื”ืงื•ื ืงื˜ื•ื ืฉืœ ื”ืชื•ืœืขืช ื”ื–ื•
03:47
took over a dozen years of tedious labor.
77
227260
3000
ืœืงื— ื™ื•ืชืจ ืžืชืจื™ืกืจ ืฉื ื™ื ืฉืœ ืžืœืื›ื” ืžื™ื™ื’ืขืช.
03:50
And to find the connectomes of brains more like our own,
78
230260
3000
ื•ื›ื“ื™ ืœืžืฆื•ื ืืช ื”ืงื•ื ืงื˜ื•ืžื™ื ืฉืœ ืžื•ื—ื•ืช ืฉื“ื•ืžื™ื ืœืฉืœื ื•,
03:53
we need more sophisticated technologies, that are automated,
79
233260
3000
ืื ื• ื–ืงื•ืงื™ื ืœื˜ื›ื ื•ืœื•ื’ื™ื•ืช ืžืžื•ื›ื ื•ืช, ืžืชื•ื—ื›ืžื•ืช ื™ื•ืชืจ,
03:56
that will speed up the process of finding connectomes.
80
236260
3000
ืฉื™ืื™ืฆื• ืืช ืชื”ืœื™ืš ืžืฆื™ืืช ื”ืงื•ื ืงื˜ื•ืžื™ื.
03:59
And in the next few minutes, I'll tell you about some of these technologies,
81
239260
3000
ื•ื‘ื“ืงื•ืช ื”ืงืจื•ื‘ื•ืช ืืกืคืจ ืœื›ื ืขืœ ื—ืœืง ืžื”ื˜ื›ื ื•ืœื•ื’ื™ืช ื”ืœืœื•,
04:02
which are currently under development
82
242260
2000
ื”ื ืžืฆืื•ืช ื›ืจื’ืข ื‘ืคื™ืชื•ื—
04:04
in my lab and the labs of my collaborators.
83
244260
3000
ื‘ืžืขื‘ื“ื” ืฉืœื™ ื•ื‘ืžืขื‘ื“ื•ืช ืฉืœ ืฉื•ืชืคื™.
04:08
Now you've probably seen pictures of neurons before.
84
248260
3000
ืื– ื‘ื˜ื— ืจืื™ืชื ื›ื‘ืจ ืชืžื•ื ื•ืช ืฉืœ ื ื•ื™ืจื•ื ื™ื ื‘ืขื‘ืจ.
04:11
You can recognize them instantly
85
251260
2000
ืืคืฉืจ ืœื–ื”ื•ืช ืื•ืชื ืžื™ื“
04:13
by their fantastic shapes.
86
253260
3000
ืœืคื™ ื”ืฆื•ืจื•ืช ื”ืคื ื˜ืกื˜ื™ื•ืช ืฉืœื”ื.
04:16
They extend long and delicate branches,
87
256260
3000
ื”ื ืฉื•ืœื—ื™ื ืขื ืคื™ื ืืจื•ื›ื™ื ื•ืขื“ื™ื ื™ื,
04:19
and in short, they look like trees.
88
259260
3000
ื•ื‘ืงื™ืฆื•ืจ, ื ืจืื™ื ื›ืžื• ืขืฆื™ื.
04:22
But this is just a single neuron.
89
262260
3000
ืื‘ืœ ื–ื” ืจืง ื ื•ื™ืจื•ืŸ ื‘ื•ื“ื“.
04:25
In order to find connectomes,
90
265260
2000
ืขืœ ืžื ืช ืœืžืฆื•ื ืงื•ื ืงื˜ื•ืžื™ื,
04:27
we have to see all the neurons at the same time.
91
267260
3000
ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœืจืื•ืช ืืช ื›ืœ ื”ื ื•ื™ืจื•ื ื™ื ื‘ื• ื–ืžื ื™ืช.
04:30
So let's meet Bobby Kasthuri,
92
270260
2000
ืื– ื‘ื•ืื• ื ื›ื™ืจ ืืช ื‘ื•ื‘ื™ ืงืกื˜ื•ืจื™
04:32
who works in the laboratory of Jeff Lichtman
93
272260
2000
ืฉืขื•ื‘ื“ ื‘ืžืขื‘ื“ื” ืฉืœ ื’'ืฃ ืœื™ื›ื˜ืžืŸ
04:34
at Harvard University.
94
274260
2000
ื‘ืื•ื ื™ื‘ืจืกื™ื˜ืช ื”ืจื•ื•ืืจื“.
04:36
Bobby is holding fantastically thin slices
95
276260
2000
ื‘ื•ื‘ื™ ืžื—ื–ื™ืง ืคืจื•ืกื•ืช ื“ืงื•ืช ืœื”ืคืœื™ื
04:38
of a mouse brain.
96
278260
2000
ืฉืœ ืžื•ื— ืขื›ื‘ืจ.
04:40
And we're zooming in by a factor of 100,000 times
97
280260
3000
ื•ืื ื—ื ื• ืžื’ื“ื™ืœื™ื ืคื™ 100,000
04:44
to obtain the resolution,
98
284260
2000
ืขืœ ืžื ืช ืœื”ื’ื™ืข ืœืจื–ื•ืœื•ืฆื™ื”,
04:46
so that we can see the branches of neurons all at the same time.
99
286260
3000
ืฉืชืืคืฉืจ ืœืจืื•ืช ืืช ื›ืœ ืขื ืคื™ ื”ื ื•ื™ืจื•ืŸ ื‘ื• ื–ืžื ื™ืช.
04:50
Except, you still may not really recognize them,
100
290260
3000
ืื‘ืœ, ื™ืชื›ืŸ ืฉืœื ืชื–ื”ื• ืื•ืชื ืขื“ื™ื™ืŸ
04:53
and that's because we have to work in three dimensions.
101
293260
3000
ื•ื–ื” ืžืฉื•ื ืฉืื ื• ืฆืจื™ื›ื™ื ืœืขื‘ื•ื“ ื‘ืชืœืช-ืžื™ืžื“.
04:56
If we take many images of many slices of the brain
102
296260
2000
ืื ืžืฆืœืžื™ื ื”ืจื‘ื” ืชืžื•ื ื•ืช ืฉืœ ื”ืจื‘ื” ืคืจื•ืกื•ืช ืฉืœ ื”ืžื•ื—
04:58
and stack them up,
103
298260
2000
ื•ืขื•ืจืžื™ื ืื•ืชื ื™ื—ื“,
05:00
we get a three-dimensional image.
104
300260
2000
ืื ื—ื ื• ืžืงื‘ืœื™ื ืชืžื•ื ื” ืชืœืช-ืžื™ืžื“ื™ืช.
05:02
And still, you may not see the branches.
105
302260
2000
ื•ืขื“ื™ื™ืŸ, ืื•ืœื™ ืœื ืชืจืื• ืืช ื”ืขื ืคื™ื.
05:04
So we start at the top,
106
304260
2000
ืื– ืื ื—ื ื• ืžืชื—ื™ืœื™ื ืžืœืžืขืœื”,
05:06
and we color in the cross-section of one branch in red,
107
306260
3000
ื•ืฆื•ื‘ืขื™ื ืฆื•ืžืช ืฉืœ ืขื ืฃ ืื—ื“ ื‘ืื“ื•ื,
05:09
and we do that for the next slice
108
309260
2000
ื•ืื ื—ื ื• ืขื•ืฉื™ื ื–ืืช ื‘ืคืจื•ืกื” ื”ื‘ืื”
05:11
and for the next slice.
109
311260
2000
ื•ื‘ืคืจื•ืกื” ื”ื‘ืื”.
05:13
And we keep on doing that,
110
313260
2000
ื•ืื ื—ื ื• ืžืžืฉื™ื›ื™ื ืœืขืฉื•ืช ื–ืืช
05:15
slice after slice.
111
315260
3000
ืคืจื•ืกื” ืื—ืจ ืคืจื•ืกื”.
05:18
If we continue through the entire stack,
112
318260
2000
ืื ืžืžืฉื™ื›ื™ื ื“ืจืš ื”ืขืจื™ืžื” ื›ื•ืœื”
05:20
we can reconstruct the three-dimensional shape
113
320260
3000
ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื‘ื ื•ืช ืžื—ื“ืฉ ืืช ื”ืžื‘ื ื” ื”ืชืœืช-ืžื™ืžื“ื™
05:23
of a small fragment of a branch of a neuron.
114
323260
3000
ืฉืœ ื—ืœืง ืงื˜ืŸ ืžืขื ืฃ ืฉืœ ื ื•ื™ืจื•ืŸ.
05:26
And we can do that for another neuron in green.
115
326260
2000
ื•ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ืืช ื–ื” ืœื ื•ื™ืจื•ืŸ ืื—ืจ ื‘ื™ืจื•ืง.
05:28
And you can see that the green neuron touches the red neuron
116
328260
2000
ื•ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืฉื”ื ื•ื™ืจื•ืŸ ื”ื™ืจื•ืง ื ื•ื’ืข ื‘ื ื•ื™ืจื•ืŸ ื”ืื“ื•ื
05:30
at two locations,
117
330260
2000
ื‘ืฉื ื™ ืžืงื•ืžื•ืช,
05:32
and these are what are called synapses.
118
332260
2000
ืฉืœื”ื ืื ื• ืงื•ืจืื™ื ืกื™ื ืคืกื•ืช.
05:34
Let's zoom in on one synapse,
119
334260
2000
ื‘ื•ืื• ื ืชืžืงื“ ื‘ืกื™ื ืคืกื” ืื—ืช.
05:36
and keep your eyes on the interior of the green neuron.
120
336260
3000
ื•ืชืกืชื›ืœื• ืขืœ ืคื ื™ื ื”ื ื•ื™ืจื•ืŸ ื”ื™ืจื•ืง.
05:39
You should see small circles --
121
339260
2000
ืืชื ืืžื•ืจื™ื ืœืจืื•ืช ืขื™ื’ื•ืœื™ื ืงื˜ื ื™ื.
05:41
these are called vesicles.
122
341260
3000
ืืœื” ื ืงืจืื™ื ื•ืกื™ืงื•ืœื•ืช (ืฉืœืคื•ื—ื™ื•ืช.)
05:44
They contain a molecule know as a neurotransmitter.
123
344260
3000
ื”ืŸ ืžื›ื™ืœื•ืช ืžื•ืœืงื•ืœื” ื”ื ืงืจืืช ื ื•ื™ืจื•ื˜ืจื ืกืžื™ื˜ืจ (ืžื•ืœื™ืš ืขืฆื‘ื™)
05:47
And so when the green neuron wants to communicate,
124
347260
2000
ื•ื›ืš ื›ืฉื”ื ื•ื™ืจื•ืŸ ื”ื™ืจื•ืง ืจื•ืฆื” ืœืชืงืฉืจ,
05:49
it wants to send a message to the red neuron,
125
349260
2000
ืจื•ืฆื” ืœืฉืœื•ื— ื”ื•ื“ืขื” ืœื ื•ื™ืจื•ืŸ ื”ืื“ื•ื,
05:51
it spits out neurotransmitter.
126
351260
3000
ื”ื•ื ืคื•ืœื˜ ืืช ื”ื ื•ื™ืจื•ื˜ืจื ืกืžื™ื˜ืจ.
05:54
At the synapse, the two neurons
127
354260
2000
ื‘ืกื™ื ืคืกื”, ืฉื ื™ ื”ื ื•ื™ืจื•ื ื™ื
05:56
are said to be connected
128
356260
2000
ืžื—ื•ื‘ืจื™ื ื–ื” ืœื–ื”
05:58
like two friends talking on the telephone.
129
358260
3000
ื›ืžื• ืฉื ื™ ื—ื‘ืจื™ื ื”ืžื“ื‘ืจื™ื ื‘ื˜ืœืคื•ืŸ.
06:02
So you see how to find a synapse.
130
362260
2000
ืื– ืืชื ืจื•ืื™ื ืื™ืš ืžื•ืฆืื™ื ืกื™ื ืคืกื”.
06:04
How can we find an entire connectome?
131
364260
3000
ืื™ืš ืืคืฉืจ ืœืžืฆื•ื ืงื•ื ืงื˜ื•ื ืฉืœื?
06:07
Well, we take this three-dimensional stack of images
132
367260
3000
ืื– ืื ื—ื ื• ืœื•ืงื—ื™ื ืืช ืขืจื™ืžืช ื”ืชืžื•ื ื•ืช ื”ืชืœืช-ืžื™ืžื“ื™ื•ืช ื”ืœืœื•
06:10
and treat it as a gigantic three-dimensional coloring book.
133
370260
3000
ื•ืžืชื™ื™ื—ืกื™ื ืืœื™ื” ื›ืžื• ืืœ ืกืคืจ ืฆื‘ื™ืขื” ืชืœืช-ืžื™ืžื“ื™ ืขื ืงื™.
06:13
We color every neuron in, in a different color,
134
373260
3000
ืื ื—ื ื• ืฆื•ื‘ืขื™ื ื›ืœ ื ื•ื™ืจื•ืŸ ื‘ืฆื‘ืข ืื—ืจ,
06:16
and then we look through all of the images,
135
376260
2000
ื•ืื– ืื ื—ื ื• ืขื•ื‘ืจื™ื ืขืœ ื›ืœ ื”ืชืžื•ื ื•ืช,
06:18
find the synapses
136
378260
2000
ืžื•ืฆืื™ื ืืช ื”ืกื™ื ืคืกื•ืช
06:20
and note the colors of the two neurons involved in each synapse.
137
380260
3000
ื•ืจื•ืฉืžื™ื ืืช ื”ืฆื‘ืขื™ื ืฉืœ ืฉื ื™ ื”ื ื•ื™ืจื•ื ื™ื ื”ืžืขื•ืจื‘ื™ื ื‘ื›ืœ ืกื™ื ืคืกื”.
06:23
If we can do that throughout all the images,
138
383260
3000
ืื ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ื–ืืช ื‘ื›ืœ ื”ืชืžื•ื ื•ืช,
06:26
we could find a connectome.
139
386260
2000
ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืžืฆื•ื ืงื•ื ืงื˜ื•ื.
06:29
Now, at this point,
140
389260
2000
ืขื›ืฉื™ื•, ืขื“ ื›ืืŸ
06:31
you've learned the basics of neurons and synapses.
141
391260
2000
ืœืžื“ืชื ืืช ื”ื™ืกื•ื“ื•ืช ืฉืœ ื ื•ื™ืจื•ื ื™ื ื•ืกื™ื ืคืกื•ืช.
06:33
And so I think we're ready to tackle
142
393260
2000
ืื– ืื ื™ ื—ื•ืฉื‘ ืฉืื ื—ื ื• ืžื•ื›ื ื™ื ืœื”ืชืžื•ื“ื“
06:35
one of the most important questions in neuroscience:
143
395260
3000
ืขื ืื—ืช ื”ืฉืืœื•ืช ื”ื—ืฉื•ื‘ื•ืช ื‘ื™ื•ืชืจ ื‘ืžื“ืขื™ ื”ืžื•ื—:
06:39
how are the brains of men and women different?
144
399260
3000
ืžื”ื ื”ื”ื‘ื“ืœื™ื ื‘ื™ืŸ ื”ืžื•ื—ื•ืช ืฉืœ ื ืฉื™ื ื•ื’ื‘ืจื™ื?
06:42
(Laughter)
145
402260
2000
(ืฆื—ื•ืง)
06:44
According to this self-help book,
146
404260
2000
ืœืคื™ ืกืคืจ ื”ื™ื™ืขื•ืฅ ื”ื–ื”,
06:46
guys brains are like waffles;
147
406260
2000
ื”ืžื•ื— ืฉืœ ื‘ื—ื•ืจื™ื ื”ื•ื ื›ืžื• ื•ื•ืคืœ,
06:48
they keep their lives compartmentalized in boxes.
148
408260
3000
ื”ื—ื™ื™ื ืฉืœื”ื ืžืžื•ื“ืจื™ื ื‘ืงื•ืคืกืื•ืช.
06:51
Girls' brains are like spaghetti;
149
411260
3000
ื”ืžื•ื— ืฉืœ ื‘ื—ื•ืจื•ืช ื”ื•ื ื›ืžื• ืกืคื’ื˜ื™,
06:54
everything in their life is connected to everything else.
150
414260
3000
ื›ืœ ื“ื‘ืจ ื‘ื—ื™ื™ื ืฉืœื”ืŸ ืงืฉื•ืจ ืœื›ืœ ื”ืฉืืจ.
06:57
(Laughter)
151
417260
2000
(ืฆื—ื•ืง)
06:59
You guys are laughing,
152
419260
2000
ื”ื’ื‘ืจื™ื ื›ืืŸ ืฆื•ื—ืงื™ื,
07:01
but you know, this book changed my life.
153
421260
2000
ืื‘ืœ, ืืชื ื™ื•ื“ืขื™ื, ื”ืกืคืจ ื”ื–ื” ืฉื™ื ื” ืืช ื—ื™ื™!
07:03
(Laughter)
154
423260
2000
(ืฆื—ื•ืง)
07:07
But seriously, what's wrong with this?
155
427260
3000
ืื‘ืœ ื‘ืจืฆื™ื ื•ืช, ืžื” ืฉื’ื•ื™ ื‘ื–ื”?
07:10
You already know enough to tell me -- what's wrong with this statement?
156
430260
3000
ืืชื ื›ื‘ืจ ื™ื•ื“ืขื™ื ืžืกืคื™ืง ื›ื“ื™ ืœื•ืžืจ. ืžื” ืฉื’ื•ื™ ื‘ื”ืฆื”ืจื” ื”ื–ื•?
07:20
It doesn't matter whether you're a guy or girl,
157
440260
3000
ื–ื” ืœื ืžืฉื ื” ืื ืืชื” ื‘ื—ื•ืจ ืื• ื‘ื—ื•ืจื”,
07:23
everyone's brains are like spaghetti.
158
443260
3000
ื”ืžื•ื—ื•ืช ืฉืœ ื›ื•ืœื ื ืจืื™ื ื›ืžื• ืกืคื’ื˜ื™.
07:26
Or maybe really, really fine capellini with branches.
159
446260
3000
ืื• ืื•ืœื™, ืื•ืœื™ ืงืคืœื™ื ื™ ืขื“ื™ืŸ ืขื ืขื ืคื™ื.
07:30
Just as one strand of spaghetti
160
450260
2000
ื›ืžื• ืฉื—ืชื™ื›ืช ืกืคื’ื˜ื™ ืื—ืช
07:32
contacts many other strands on your plate,
161
452260
3000
ื ื•ื’ืขืช ื‘ื—ืชื™ื›ื•ืช ืื—ืจื•ืช ื‘ืฆืœื—ืช ืฉืœื›ื,
07:35
one neuron touches many other neurons
162
455260
2000
ื›ืš ื ื•ื™ืจื•ืŸ ืื—ื“ ื ื•ื’ืข ื‘ื”ืจื‘ื” ื ื•ื™ืจื•ื ื™ื ืื—ืจื™ื
07:37
through their entangled branches.
163
457260
2000
ื‘ืืžืฆืขื•ืช ื”ืขื ืคื™ื ื”ืกื‘ื•ื›ื™ื ืฉืœื”ื.
07:39
One neuron can be connected to so many other neurons,
164
459260
3000
ื ื•ื™ืจื•ืŸ ืื—ื“ ื™ื›ื•ืœ ืœื”ื™ื•ืช ืงืฉื•ืจ ืœื›"ื› ื”ืจื‘ื” ื ื•ื™ืจื•ื ื™ื ืื—ืจื™ื,
07:42
because there can be synapses
165
462260
2000
ื›ื™ ื™ื›ื•ืœื•ืช ืœื”ื™ื•ืช ืกื™ื ืคืกื•ืช
07:44
at these points of contact.
166
464260
3000
ื‘ื ืงื•ื“ื•ืช ื”ืžื’ืข ื”ืืœื”.
07:49
By now, you might have sort of lost perspective
167
469260
3000
ืขื“ ืขื›ืฉื™ื• ืื•ืœื™ ืื™ื‘ื“ืชื ืคืจืกืคืงื˜ื™ื‘ื”
07:52
on how large this cube of brain tissue actually is.
168
472260
3000
ืขืœ ื’ื•ื“ืœื” ื”ืืžื™ืชื™ ืฉืœ ืงื•ื‘ื™ื™ืช ื”ืžื•ื— ื”ื–ื•.
07:55
And so let's do a series of comparisons to show you.
169
475260
3000
ืื– ื‘ื•ืื• ื ืขืจื•ืš ืกื“ืจื” ืฉืœ ื”ืฉื•ื•ืื•ืช ื›ื“ื™ ืœื”ืจืื•ืช ืœื›ื.
07:58
I assure you, this is very tiny. It's just six microns on a side.
170
478260
3000
ืื ื™ ืืจืื” ืœื›ื. ื–ื” ื–ืขื™ืจ ื‘ื™ื•ืชืจ. ื–ื” ืจืง 6 ืžื™ืงืจื•ื ื™ื ืžื”ืฆื“.
08:03
So, here's how it stacks up against an entire neuron.
171
483260
3000
ืื– ื›ืš ื–ื” ื ื‘ื ื” ืœื ื•ื™ืจื•ืŸ ืฉืœื.
08:06
And you can tell that, really, only the smallest fragments of branches
172
486260
3000
ื•ืืคืฉืจ ืœืจืื•ืช ืฉื‘ืืžืช ืจืง ืฉื‘ืจื™ ื”ืขื ืคื™ื ื”ืงื˜ื ื™ื ื‘ื™ื•ืชืจ
08:09
are contained inside this cube.
173
489260
3000
ื ื›ื ืกื™ื ืœืงื•ื‘ื™ื” ื”ื–ื•.
08:12
And a neuron, well, that's smaller than brain.
174
492260
3000
ื•ื ื•ื™ืจื•ืŸ, ื˜ื•ื‘, ื”ื•ื ื™ื•ืชืจ ืงื˜ืŸ ืžืžื•ื— ืฉืœื.
08:17
And that's just a mouse brain --
175
497260
2000
ื•ื–ื” ืจืง ืžื•ื— ืฉืœ ืขื›ื‘ืจ.
08:21
it's a lot smaller than a human brain.
176
501260
3000
ื”ื•ื ื”ืจื‘ื” ื™ื•ืชืจ ืงื˜ืŸ ืžืžื•ื— ืื ื•ืฉื™.
08:25
So when show my friends this,
177
505260
2000
ืื– ื›ืฉืื ื™ ืžืจืื” ืืช ื–ื” ืœื—ื‘ืจื™ื ืฉืœื™,
08:27
sometimes they've told me,
178
507260
2000
ืœืคืขืžื™ื ื”ื ืื•ืžืจื™ื ืœื™
08:29
"You know, Sebastian, you should just give up.
179
509260
3000
"ืืชื” ื™ื•ื“ืข, ืกื‘ืกื˜ื™ืืŸ, ืืชื” ืฆืจื™ืš ืœื•ื•ืชืจ.
08:32
Neuroscience is hopeless."
180
512260
2000
"ืžื“ืขื™ ื”ืžื•ื— ื”ื ืขืกืง ืื‘ื•ื“."
08:34
Because if you look at a brain with your naked eye,
181
514260
2000
ื›ื™ ืื ืืชื ืžืกืชื›ืœื™ื ืขืœ ื”ืžื•ื— ื‘ืขื™ืŸ ื‘ืœืชื™ ืžื–ื•ื™ื™ื ืช,
08:36
you don't really see how complex it is,
182
516260
2000
ืืชื ื‘ืืžืช ืœื ืชืจืื• ืขื“ ื›ืžื” ื”ื•ื ืžื•ืจื›ื‘,
08:38
but when you use a microscope,
183
518260
2000
ืื‘ืœ ื›ืฉืžืฉืชืžืฉื™ื ื‘ืžื™ืงืจื•ืกืงื•ืค,
08:40
finally the hidden complexity is revealed.
184
520260
3000
ื”ืžื•ืจื›ื‘ื•ืช ื”ื—ื‘ื•ื™ื™ื” ืกื•ืฃ ืกื•ืฃ ื ื’ืœื™ืช.
08:45
In the 17th century,
185
525260
2000
ื‘ืžืื” ื” 17
08:47
the mathematician and philosopher, Blaise Pascal,
186
527260
2000
ื”ืžืชืžื˜ื™ืงืื™ ื•ื”ืคื™ืœื•ืกื•ืฃ ื‘ืœื™ื™ื– ืคืกืงืœ
08:49
wrote of his dread of the infinite,
187
529260
3000
ื›ืชื‘ ืขืœ ื—ืจื“ืชื• ืžืคื ื™ ื”ืื™ื ืกื•ืฃ,
08:52
his feeling of insignificance
188
532260
2000
ืขืœ ืชื—ื•ืฉืช ื—ื•ืกืจ ื”ื—ืฉื™ื‘ื•ืช ืฉืœื•
08:54
at contemplating the vast reaches of outer space.
189
534260
3000
ื›ืฉื”ื•ื ื—ื•ืฉื‘ ืขืœ ื”ืžืจื—ื‘ื™ื ื”ืขืฆื•ืžื™ื ืฉืœ ื”ื—ืœืœ.
08:59
And, as a scientist,
190
539260
2000
ื•ื‘ืชื•ืจ ืžื“ืขืŸ
09:01
I'm not supposed to talk about my feelings --
191
541260
3000
ืื ื™ ืœื ืืžื•ืจ ืœื“ื‘ืจ ืขืœ ื”ืจื’ืฉื•ืช ืฉืœื™.
09:04
too much information, professor.
192
544260
2000
ื™ื•ืชืจ ืžื“ื™ ืžื™ื“ืข, ืคืจื•ืคืกื•ืจ.
09:06
(Laughter)
193
546260
2000
(ืฆื—ื•ืง)
09:08
But may I?
194
548260
2000
ืื‘ืœ ืืคืฉืจ?
09:10
(Laughter)
195
550260
2000
(ืฆื—ื•ืง)
09:12
(Applause)
196
552260
2000
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
09:14
I feel curiosity,
197
554260
2000
ืื ื™ ื—ืฉ ืกืงืจื ื•ืช,
09:16
and I feel wonder,
198
556260
2000
ื•ืื ื™ ื—ืฉ ืคืœื™ืื”,
09:18
but at times I have also felt despair.
199
558260
3000
ืื‘ืœ ืœืขื™ืชื™ื ืื ื™ ื—ืฉ ื’ื ื™ื™ืื•ืฉ.
09:22
Why did I choose to study
200
562260
2000
ืœืžื” ื‘ื—ืจืชื™ ืœื—ืงื•ืจ
09:24
this organ that is so awesome in its complexity
201
564260
3000
ืืช ื”ืื™ื‘ืจ ื”ื–ื” ืฉื›ื” ืžื“ื”ื™ื ื‘ืžื•ืจื›ื‘ื•ืชื•
09:27
that it might well be infinite?
202
567260
2000
ืฉืืคืฉืจ ื›ื‘ืจ ืœื•ืžืจ ืฉื”ื•ื ืื™ื ืกื•ืคื™?
09:29
It's absurd.
203
569260
2000
ื–ื” ืื‘ืกื•ืจื“.
09:31
How could we even dare to think
204
571260
2000
ืื™ืš ื™ื›ื•ืœื ื• ืœื”ืขื– ื•ืœื—ืฉื•ื‘
09:33
that we might ever understand this?
205
573260
3000
ืฉืื™ ืคืขื ืื•ืœื™ ื ื‘ื™ืŸ ืื•ืชื•?
09:38
And yet, I persist in this quixotic endeavor.
206
578260
3000
ื•ืขื“ื™ื™ืŸ ืื ื™ ืžืชืžื™ื“ ื‘ืžืืžืฅ ื”ื“ื•ืŸ-ืงื™ื—ื•ื˜ื™ ื”ื–ื”.
09:41
And indeed, these days I harbor new hopes.
207
581260
3000
ื•ืœืžืขืฉื”, ื‘ื™ืžื™ื ืืœื” ืื ื™ ืžืคืชื— ืชืงื•ื•ืช ื—ื“ืฉื•ืช.
09:45
Someday,
208
585260
2000
ื™ื•ื ืื—ื“,
09:47
a fleet of microscopes will capture
209
587260
2000
ืฆื™ ืฉืœ ืžื™ืงืจื•ืกืงื•ืคื™ื ื™ื™ืœื›ื“ื•
09:49
every neuron and every synapse
210
589260
2000
ื›ืœ ื ื•ื™ืจื•ืŸ ื•ื›ืœ ืกื™ื ืคืกื”
09:51
in a vast database of images.
211
591260
3000
ื‘ืžืื’ืจ ืžื™ื“ืข ืขืฆื•ื ืฉืœ ืชืžื•ื ื•ืช.
09:54
And some day, artificially intelligent supercomputers
212
594260
3000
ื•ื™ื•ื ืื—ื“, ืžื—ืฉื‘ื™ ืขืœ ื‘ืขืœื™ ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช
09:57
will analyze the images without human assistance
213
597260
3000
ื™ื ืชื—ื• ืืช ื”ืชืžื•ื ื•ืช ื”ืœืœื• ืœืœื ืกื™ื•ืข ืื ื•ืฉื™
10:00
to summarize them in a connectome.
214
600260
3000
ื•ื™ืกื›ืžื• ืื•ืชื ืœืงื•ื ืงื˜ื•ื.
10:04
I do not know, but I hope that I will live to see that day,
215
604260
3000
ืื ื™ ืœื ื™ื•ื“ืข, ืื‘ืœ ืื ื™ ืžืงื•ื•ื” ืฉืื—ื™ื” ืœืจืื•ืช ืืช ื”ื™ื•ื ื”ื–ื”.
10:08
because finding an entire human connectome
216
608260
2000
ื›ื™ ืžืฆื™ืืช ืงื•ื ืงื˜ื•ื ืื ื•ืฉื™ ืฉืœื
10:10
is one of the greatest technological challenges of all time.
217
610260
3000
ื”ื™ื ืื—ื“ ื”ืืชื’ืจื™ื ื”ื˜ื›ื ื•ืœื•ื’ื™ื™ื ื”ื’ื“ื•ืœื™ื ืฉืœ ื›ืœ ื”ื–ืžื ื™ื.
10:13
It will take the work of generations to succeed.
218
613260
3000
ื”ื•ื ื™ื“ืจื•ืฉ ืขื‘ื•ื“ื” ืฉืœ ื“ื•ืจื•ืช ืขืœ ืžื ืช ืฉื™ืฆืœื™ื—.
10:17
At the present time, my collaborators and I,
219
617260
3000
ื›ืจื’ืข ืฉื•ืชืคื™ ื•ืื ื™,
10:20
what we're aiming for is much more modest --
220
620260
2000
ืื ื—ื ื• ืžื›ื•ื•ื ื™ื ืœืžืฉื”ื• ื”ืจื‘ื” ื™ื•ืชืจ ืฆื ื•ืข -
10:22
just to find partial connectomes
221
622260
2000
ืจืง ืœืžืฆื•ื ืงื•ื ืงื˜ื•ืžื™ื ื—ืœืงื™ื™ื
10:24
of tiny chunks of mouse and human brain.
222
624260
3000
ืฉืœ ื’ื•ืฉื™ ืžื•ื— ื–ืขื™ืจื™ื ื‘ืขื›ื‘ืจ ื•ื‘ืื“ื.
10:27
But even that will be enough for the first tests of this hypothesis
223
627260
3000
ืื‘ืœ ื’ื ื–ื” ื™ืกืคืง ื›ื“ื™ ืœื‘ืฆืข ื‘ื—ื™ื ื•ืช ืจืืฉื•ื ื™ืช ืฉืœ ื”ื”ื™ืคื•ืชื™ื–ื” ื”ื–ื•
10:30
that I am my connectome.
224
630260
3000
ืฉืื ื™ ื”ื•ื ื”ืงื•ื ืงื˜ื•ื ืฉืœื™.
10:35
For now, let me try to convince you of the plausibility of this hypothesis,
225
635260
3000
ื›ืจื’ืข ืชื ื• ืœื™ ืœื ืกื•ืช ื•ืœืฉื›ื ืข ืืชื›ื ื‘ืกื‘ื™ืจื•ืช ืฉืœ ื”ื”ื™ืคื•ืชื™ื–ื” ื”ื–ื•,
10:38
that it's actually worth taking seriously.
226
638260
3000
ืฉืฉื•ื•ื” ืœืงื—ืช ืื•ืชื” ื‘ืจืฆื™ื ื•ืช.
10:42
As you grow during childhood
227
642260
2000
ื›ืฉืืชื ื’ื“ืœื™ื ื‘ืžื”ืœืš ื”ื™ืœื“ื•ืช
10:44
and age during adulthood,
228
644260
3000
ื•ืžืชื‘ื’ืจื™ื ื‘ื‘ื’ืจื•ืช,
10:47
your personal identity changes slowly.
229
647260
3000
ื”ื–ื”ื•ืช ื”ืื™ืฉื™ืช ืฉืœื›ื ืžืฉืชื ื” ื‘ืื™ื˜ื™ื•ืช.
10:50
Likewise, every connectome
230
650260
2000
ื›ืš ื’ื ื›ืœ ืงื•ื ืงื˜ื•ื
10:52
changes over time.
231
652260
2000
ืžืฉืชื ื” ืขื ื”ื–ืžืŸ.
10:55
What kinds of changes happen?
232
655260
2000
ืื™ื–ื” ืกื•ื’ ืฉืœ ืฉื™ื ื•ื™ื™ื ืžืชืจื—ืฉื™ื?
10:57
Well, neurons, like trees,
233
657260
2000
ื•ื‘ื›ืŸ, ื ื•ื™ืจื•ื ื™ื, ื›ืžื• ืขืฆื™ื,
10:59
can grow new branches,
234
659260
2000
ื™ื›ื•ืœื™ื ืœื”ืฆืžื™ื— ืขื ืคื™ื ื—ื“ืฉื™ื,
11:01
and they can lose old ones.
235
661260
3000
ื•ื”ื ื™ื›ื•ืœื™ื ืœืื‘ื“ ืขื ืคื™ื ื™ืฉื ื™ื.
11:04
Synapses can be created,
236
664260
3000
ืกื™ื ืคืกื•ืช ื™ื›ื•ืœื•ืช ืœื”ื™ื•ื•ืฆืจ,
11:07
and they can be eliminated.
237
667260
3000
ื•ื”ืŸ ื™ื›ื•ืœื•ืช ืœื”ื™ืžื—ืง.
11:10
And synapses can grow larger,
238
670260
2000
ื•ืกื™ื ืคืกื•ืช ื™ื›ื•ืœื•ืช ืœื’ื“ื•ืœ
11:12
and they can grow smaller.
239
672260
3000
ื•ื”ืŸ ื™ื›ื•ืœื•ืช ืœืงื˜ื•ืŸ.
11:15
Second question:
240
675260
2000
ืฉืืœื” ืฉื ื™ื™ื”:
11:17
what causes these changes?
241
677260
3000
ืžื” ื’ื•ืจื ืœืฉื™ื ื•ื™ื™ื ื”ืœืœื•?
11:20
Well, it's true.
242
680260
2000
ื•ื‘ื›ืŸ, ื–ื” ื ื›ื•ืŸ,
11:22
To some extent, they are programmed by your genes.
243
682260
3000
ื‘ืžื™ื“ื” ืžืกื•ื™ื™ืžืช ื”ื ืžืชื•ื›ื ืชื™ื ืข"ื™ ื”ื’ื ื™ื ืฉืœื›ื.
11:25
But that's not the whole story,
244
685260
2000
ืื‘ืœ ื–ื” ืœื ื›ืœ ื”ืกื™ืคื•ืจ,
11:27
because there are signals, electrical signals,
245
687260
2000
ื›ื™ ื™ืฉื ื ืื•ืชื•ืช, ืื•ืชื•ืช ื—ืฉืžืœื™ื™ื,
11:29
that travel along the branches of neurons
246
689260
2000
ื”ื ื•ื“ื“ื™ื ืœืื•ืจืš ืขื ืคื™ ื”ื ื•ื™ืจื•ื ื™ื
11:31
and chemical signals
247
691260
2000
ื•ืฉื“ืจื™ื ื›ื™ืžื™ื™ื
11:33
that jump across from branch to branch.
248
693260
2000
ื”ืขื•ื‘ืจื™ื ืžืขื ืฃ ืœืขื ืฃ.
11:35
These signals are called neural activity.
249
695260
3000
ื”ืื•ืชื•ืช ื”ืืœื” ื ืงืจืื™ื ืคืขื™ืœื•ืช ืขืฆื‘ื™ืช.
11:38
And there's a lot of evidence
250
698260
2000
ื•ื™ืฉ ืขื“ื•ื™ื•ืช ืจื‘ื•ืช
11:40
that neural activity
251
700260
3000
ืฉืคืขื™ืœื•ืช ืขืฆื‘ื™ืช
11:43
is encoding our thoughts, feelings and perceptions,
252
703260
3000
ืžืงื•ื“ื“ืช ืืช ื”ืžื—ืฉื‘ื•ืช, ื”ืจื’ืฉื•ืช ื•ื”ืชืคื™ืกื•ืช ืฉืœื ื•,
11:46
our mental experiences.
253
706260
2000
ื”ื—ื•ื•ื™ื•ืช ื”ืžื ื˜ืœื™ื•ืช ืฉืœื ื•.
11:48
And there's a lot of evidence that neural activity
254
708260
3000
ื•ื™ืฉ ืขื“ื•ื™ื•ืช ืจื‘ื•ืช ืฉืคืขื™ืœื•ืช ืขืฆื‘ื™ืช
11:51
can cause your connections to change.
255
711260
3000
ื™ื›ื•ืœื” ืœื’ืจื•ื ืœืฉื™ื ื•ื™ื™ื ื‘ื—ื™ื‘ื•ืจื™ื ืฉืœื›ื.
11:54
And if you put those two facts together,
256
714260
3000
ื•ืื ืชื—ื‘ืจื• ื™ื—ื“ ืืช ืฉืชื™ ื”ืขื•ื‘ื“ื•ืช ื”ืืœื”,
11:57
it means that your experiences
257
717260
2000
ื–ื” ืื•ืžืจ ืฉื”ื—ื•ื•ื™ื•ืช ืฉืœื›ื
11:59
can change your connectome.
258
719260
3000
ื™ื›ื•ืœื•ืช ืœืฉื ื•ืช ืืช ื”ืงื•ื ืงื˜ื•ื ืฉืœื›ื.
12:02
And that's why every connectome is unique,
259
722260
2000
ื•ืœื›ืŸ ื”ืงื•ื ืงื˜ื•ื ื”ื•ื ื™ื™ื—ื•ื“ื™,
12:04
even those of genetically identical twins.
260
724260
3000
ืืคื™ืœื• ื‘ื™ืŸ ืฉื ื™ ืชืื•ืžื™ื ื–ื”ื™ื ื’ื ื˜ื™ืช.
12:08
The connectome is where nature meets nurture.
261
728260
3000
ื”ืงื•ื ืงื˜ื•ื ื”ื•ื ื”ืžืงื•ื ื‘ื• ื”ืชื•ืจืฉื” ืคื•ื’ืฉืช ืืช ื”ืกื‘ื™ื‘ื”.
12:12
And it might true
262
732260
2000
ื•ื™ืชื›ืŸ ืฉื–ื” ื ื›ื•ืŸ
12:14
that just the mere act of thinking
263
734260
2000
ืฉืขืฆื ืคืขื•ืœืช ื”ืžื—ืฉื‘ื”
12:16
can change your connectome --
264
736260
2000
ื™ื›ื•ืœื” ืœืฉื ื•ืช ืืช ื”ืงื•ื ืงื˜ื•ื ืฉืœื›ื -
12:18
an idea that you may find empowering.
265
738260
3000
ืจืขื™ื•ืŸ ืฉื™ื›ื•ืœ ืœื”ื™ื•ืช ืžืขืฆื™ื.
12:24
What's in this picture?
266
744260
2000
ืžื” ืจื•ืื™ื ื›ืืŸ?
12:28
A cool and refreshing stream of water, you say.
267
748260
3000
ื ื—ืœ ืงืจื™ืจ ื•ืžืจืขื ืŸ, ืืชื ืื•ืžืจื™ื.
12:32
What else is in this picture?
268
752260
2000
ืžื” ืขื•ื“ ื™ืฉ ื‘ืชืžื•ื ื”?
12:37
Do not forget that groove in the Earth
269
757260
2000
ืขืœ ืชืฉื›ื—ื• ืืช ื”ื—ืจื™ืฅ ื”ื–ื” ื‘ืื“ืžื”
12:39
called the stream bed.
270
759260
3000
ืฉื ืงืจื ืืคื™ืง.
12:42
Without it, the water would not know in which direction to flow.
271
762260
3000
ื‘ืœืขื“ื™ื• ื”ืžื™ื ืœื ื™ื“ืขื• ื‘ืื™ื–ื” ื›ื™ื•ื•ืŸ ืœื–ืจื•ื.
12:45
And with the stream,
272
765260
2000
ื•ื‘ืขื–ืจืช ื”ื ื—ืœ
12:47
I would like to propose a metaphor
273
767260
2000
ืื ื™ ืจื•ืฆื” ืœื”ืฆื™ืข ืžื˜ืืคื•ืจื”
12:49
for the relationship between neural activity
274
769260
2000
ืขืœ ื”ืงืฉืจ ื‘ื™ืŸ ืคืขื™ืœื•ืช ื—ืฉืžืœื™ืช
12:51
and connectivity.
275
771260
2000
ื•ืงื™ืฉื•ืจื™ื•ืช.
12:54
Neural activity is constantly changing.
276
774260
3000
ืคืขื™ืœื•ืช ื—ืฉืžืœื™ืช ืžืฉืชื ื” ื›ืœ ื”ื–ืžืŸ.
12:57
It's like the water of the stream; it never sits still.
277
777260
3000
ื–ื” ื›ืžื• ื”ืžื™ื ื‘ื ื—ืœ, ื”ื ืืฃ ืคืขื ืœื ืฉืงื˜ื™ื.
13:00
The connections
278
780260
2000
ื”ืงืฉืจื™ื
13:02
of the brain's neural network
279
782260
2000
ื‘ืจืฉืช ื”ืขืฆื‘ื™ืช ื‘ืžื•ื—
13:04
determines the pathways
280
784260
2000
ืงื•ื‘ืขื™ื ืืช ื”ื ืชื™ื‘ื™ื
13:06
along which neural activity flows.
281
786260
2000
ื‘ื”ื ืชื–ืจื•ื ื”ืคืขื™ืœื•ืช ื”ื—ืฉืžืœื™ืช.
13:08
And so the connectome is like bed of the stream;
282
788260
3000
ื•ื”ืงื•ื ืงื˜ื•ื ื”ื•ื ื›ืžื• ืืคื™ืง ื”ื ื—ืœ.
13:13
but the metaphor is richer than that,
283
793260
3000
ืื‘ืœ ื”ืžื˜ืืคื•ืจื” ืขืฉื™ืจื” ื™ื•ืชืจ ืžื–ื”.
13:16
because it's true that the stream bed
284
796260
3000
ื›ื™ ื–ื” ื ื›ื•ืŸ ืฉืืคื™ืง ื”ื ื—ืœ
13:19
guides the flow of the water,
285
799260
2000
ืžื ื—ื” ืืช ื–ืจื™ืžืช ื”ืžื™ื,
13:21
but over long timescales,
286
801260
2000
ืื‘ืœ ืœืื•ืจืš ื–ืžืŸ,
13:23
the water also reshapes the bed of the stream.
287
803260
3000
ื”ืžื™ื ื’ื ืžืขืฆื‘ื™ื ืžื—ื“ืฉ ืืช ืืคื™ืง ื”ื ื—ืœ.
13:26
And as I told you just now,
288
806260
2000
ื•ื›ืคื™ ืฉืืžืจืชื™ ืœื›ื ืงื•ื“ื,
13:28
neural activity can change the connectome.
289
808260
3000
ืคืขื™ืœื•ืช ืขืฆื‘ื™ืช ื™ื›ื•ืœื” ืœืฉื ื•ืช ืืช ื”ืงื•ื ืงื˜ื•ื.
13:33
And if you'll allow me to ascend
290
813260
2000
ื•ืื ืชืจืฉื• ืœื™ ืœื˜ืคืก
13:35
to metaphorical heights,
291
815260
3000
ืœื’ื‘ื”ื™ื ืžื˜ืืคื•ืจื™ื™ื,
13:38
I will remind you that neural activity
292
818260
3000
ืื–ื›ื™ืจ ืœื›ื ืฉืคืขื™ืœื•ืช ืขืฆื‘ื™ืช
13:41
is the physical basis -- or so neuroscientists think --
293
821260
2000
ื”ื™ื ื”ื‘ืกื™ืก ื”ืคื™ื–ื™ืงืœื™ - ืื• ื›ืš ื—ื•ืฉื‘ื™ื ืžื“ืขื ื™ ื”ืžื•ื— -
13:43
of thoughts, feelings and perceptions.
294
823260
3000
ืฉืœ ืžื—ืฉื‘ื•ืช, ืจื’ืฉื•ืช ื•ืชืคื™ืกื•ืช.
13:46
And so we might even speak of
295
826260
2000
ื•ืืคืฉืจ ืืคื™ืœื• ืœื“ื‘ืจ ืขืœ
13:48
the stream of consciousness.
296
828260
2000
ื–ืจื ื”ืชื•ื“ืขื”.
13:50
Neural activity is its water,
297
830260
3000
ืคืขื™ืœื•ืช ืขืฆื‘ื™ืช ื”ื™ื ื”ืžื™ื,
13:53
and the connectome is its bed.
298
833260
3000
ื•ื”ืงื•ื ืงื˜ื•ื ื”ื•ื ื”ืืคื™ืง.
13:57
So let's return from the heights of metaphor
299
837260
2000
ืื– ื‘ื•ืื• ื ื—ื–ื•ืจ ืžื’ื‘ื”ื™ ื”ืžื˜ืืคื•ืจื”
13:59
and return to science.
300
839260
2000
ื•ื ื—ื–ื•ืจ ืœืžื“ืข.
14:01
Suppose our technologies for finding connectomes
301
841260
2000
ื ื ื™ื— ืฉื”ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ืœืžืฆื™ืืช ืงื•ื ืงื˜ื•ืžื™ื
14:03
actually work.
302
843260
2000
ื”ื™ื• ื‘ืืžืช ืขื•ื‘ื“ื•ืช.
14:05
How will we go about testing the hypothesis
303
845260
2000
ืื™ืš ื ื‘ื—ืŸ ืืช ื”ื”ื™ืคื•ืชื™ื–ื”
14:07
"I am my connectome?"
304
847260
3000
"ืื ื™ ื”ื•ื ื”ืงื•ื ืงื˜ื•ื ืฉืœื™"?
14:10
Well, I propose a direct test.
305
850260
3000
ื•ื‘ื›ืŸ, ืื ื™ ืžืฆื™ืข ื‘ื“ื™ืงื” ื™ืฉื™ืจื”.
14:13
Let us attempt
306
853260
2000
ื‘ื•ืื• ื ื ืกื”
14:15
to read out memories from connectomes.
307
855260
3000
ืœืงืจื•ื ืืช ื”ื–ื›ืจื•ื ื•ืช ืฉืœื ื• ืžืชื•ืš ื”ืงื•ื ืงื˜ื•ืžื™ื.
14:18
Consider the memory
308
858260
2000
ืงื—ื• ืœืžืฉืœ ื–ื›ืจื•ืŸ
14:20
of long temporal sequences of movements,
309
860260
3000
ืฉืœ ืจืฆืคื™ ืชื ื•ืขื” ื‘ืžืฉืš ื–ืžืŸ ืืจื•ืš,
14:23
like a pianist playing a Beethoven sonata.
310
863260
3000
ื›ืžื• ื ื’ื™ื ื” ืฉืœ ืกื•ื ื˜ื” ืฉืœ ื‘ื˜ื”ื•ื‘ืŸ.
14:26
According to a theory that dates back to the 19th century,
311
866260
3000
ืœืคื™ ืชื™ืื•ืจื™ื” ืฉืชื—ื™ืœืชื” ื‘ืžืื” ื” 19,
14:29
such memories are stored
312
869260
2000
ื–ื›ืจื•ื ื•ืช ืฉื›ืืœื” ืฉืžื•ืจื™ื
14:31
as chains of synaptic connections inside your brain.
313
871260
3000
ื›ืฉืจืฉืจืื•ืช ืฉืœ ืงืฉืจื™ื ืกื™ื ืคื˜ื™ื™ื ื‘ืชื•ืš ื”ืžื•ื— ืฉืœื›ื.
14:35
Because, if the first neurons in the chain are activated,
314
875260
3000
ื›ื™ ืื ื”ื ื•ื™ืจื•ื ื™ื ื”ืจืืฉื•ื ื™ื ื‘ืฉืจืฉืจืช ืžื•ืคืขืœื™ื,
14:38
through their synapses they send messages to the second neurons, which are activated,
315
878260
3000
ื“ืจืš ื”ืกื™ื ืคืกื•ืช ืฉืœื”ื ื”ื ืฉื•ืœื—ื™ื ืžืกืจื™ื ืœื ื•ื™ืจื•ื ื™ื ื”ื‘ืื™ื, ืฉื’ื ืžื•ืคืขืœื™ื,
14:41
and so on down the line,
316
881260
2000
ื•ื›ืš ื”ืœืื” ื‘ืžื•ืจื“ ื”ืฉืจืฉืจืช,
14:43
like a chain of falling dominoes.
317
883260
2000
ื›ืžื• ืจืฆืฃ ืฉืœ ืื‘ื ื™ ื“ื•ืžื™ื ื• ื ื•ืคืœื•ืช.
14:45
And this sequence of neural activation
318
885260
2000
ื•ืžืฉื•ืขืจ ืฉืจืฆืฃ ื”ืคืขื™ืœื•ืช ื”ืขืฆื‘ื™ืช ื”ื–ื”
14:47
is hypothesized to be the neural basis
319
887260
3000
ืžื”ื•ื•ื” ืืช ื”ื‘ืกื™ืก ื”ืขืฆื‘ื™
14:50
of those sequence of movements.
320
890260
2000
ืฉืœ ืื•ืชื• ืจืฆืฃ ืชื ื•ืขื•ืช.
14:52
So one way of trying to test the theory
321
892260
2000
ืื– ื“ืจืš ืื—ืช ืœื ืกื•ืช ืœื‘ื—ื•ืŸ ืืช ื”ืชื™ืื•ืจื™ื”
14:54
is to look for such chains
322
894260
2000
ื”ื™ื ืœื—ืคืฉ ืฉืจืฉืจืื•ืช ื›ืืœื”
14:56
inside connectomes.
323
896260
2000
ื‘ืชื•ืš ืงื•ื ืงื˜ื•ืžื™ื.
14:58
But it won't be easy, because they're not going to look like this.
324
898260
3000
ืื‘ืœ ื–ื” ืœื ื™ื”ื™ื” ืงืœ, ื›ื™ ื”ื ืœื ื™ื™ืจืื• ื›ืš.
15:01
They're going to be scrambled up.
325
901260
2000
ื”ื ื™ื”ื™ื• ืžืขื•ืจื‘ืœื™ื.
15:03
So we'll have to use our computers
326
903260
2000
ืื– ื ื”ื™ื” ื—ื™ื™ื‘ื™ื ืœื”ืฉืชืžืฉ ื‘ืžื—ืฉื‘ื™ื ืฉืœื ื•
15:05
to try to unscramble the chain.
327
905260
3000
ื›ื“ื™ ืœืคืขื ื— ืืช ื”ืฉืจืฉืจืช.
15:08
And if we can do that,
328
908260
2000
ื•ืื ื ื•ื›ืœ ืœืขืฉื•ืช ื–ืืช,
15:10
the sequence of the neurons we recover from that unscrambling
329
910260
3000
ืจืฆืฃ ื”ื ื•ื™ืจื•ื ื™ื ืฉื ื’ืœื” ื‘ืคืขื ื•ื— ื”ื–ื”
15:13
will be a prediction of the pattern of neural activity
330
913260
3000
ื™ื”ื™ื” ื ื™ื‘ื•ื™ ืœื“ืคื•ืก ืคืขื™ืœื•ืช ืขืฆื‘ื™ืช
15:16
that is replayed in the brain during memory recall.
331
916260
3000
ื”ืžื•ืคืขืœ ื‘ืžื•ื— ื‘ืžื”ืœืš ืฉื—ื–ื•ืจ ื–ื™ื›ืจื•ืŸ.
15:19
And if that were successful,
332
919260
2000
ื•ืื ื–ื” ื™ืฆืœื™ื—,
15:21
that would be the first example of reading a memory from a connectome.
333
921260
3000
ื–ืืช ืชื”ื™ื” ื”ื“ื•ื’ืžื ื”ืจืืฉื•ื ื” ืฉืœ ืงืจื™ืืช ื–ื™ื›ืจื•ืŸ ืžืชื•ืš ืงื•ื ืงื˜ื•ื.
15:28
(Laughter)
334
928260
2000
(ืฆื—ื•ืง)
15:30
What a mess --
335
930260
2000
ืื™ื–ื” ื‘ืœื’ืŸ.
15:33
have you ever tried to wire up a system
336
933260
2000
ื ื™ืกื™ืชื ืคืขื ืœื—ื‘ืจ ืžืขืจื›ืช ื—ืฉืžืœื™ืช
15:35
as complex as this?
337
935260
2000
ืžื•ืจื›ื‘ืช ื›ืžื• ื–ื•?
15:37
I hope not.
338
937260
2000
ืื ื™ ืžืงื•ื•ื” ืฉืœื.
15:39
But if you have, you know it's very easy to make a mistake.
339
939260
3000
ืื‘ืœ ืื ื›ืŸ, ืืชื ื™ื•ื“ืขื™ื ืฉืžืื•ื“ ืงืœ ืœื˜ืขื•ืช.
15:45
The branches of neurons are like the wires of the brain.
340
945260
2000
ืขื ืคื™ ื”ื ื•ื™ืจื•ื ื™ื ื”ื ื›ืžื• ื—ื•ื˜ื™ ื”ื—ืฉืžืœ ืฉืœ ื”ืžื•ื—.
15:47
Can anyone guess: what's the total length of wires in your brain?
341
947260
4000
ืžื™ืฉื”ื• ื™ื›ื•ืœ ืœื ื—ืฉ: ืžื”ื• ื”ืื•ืจืš ื”ื›ื•ืœืœ ืฉืœ ื”ื—ื•ื˜ื™ื ื‘ืžื•ื— ืฉืœื›ื?
15:54
I'll give you a hint. It's a big number.
342
954260
2000
ืืชืŸ ืœื›ื ืจืžื–. ื–ื” ืžืกืคืจ ื’ื“ื•ืœ.
15:56
(Laughter)
343
956260
2000
(ืฆื—ื•ืง)
15:59
I estimate, millions of miles,
344
959260
3000
ืื ื™ ืžืขืจื™ืš, ืžื™ืœื™ื•ื ื™ ืžื™ื™ืœื™ื.
16:02
all packed in your skull.
345
962260
3000
ื”ื›ืœ ืืจื•ื– ื‘ืชื•ืš ื”ื’ื•ืœื’ื•ืœืช.
16:05
And if you appreciate that number,
346
965260
2000
ื•ืื ืืชื ืžืขืจื™ื›ื™ื ืืช ื”ืžืกืคืจ ื”ื–ื”,
16:07
you can easily see
347
967260
2000
ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ื‘ืงืœื•ืช
16:09
there is huge potential for mis-wiring of the brain.
348
969260
2000
ืฉื™ืฉ ืคื•ื˜ื ืฆื™ืืœ ืขืฆื•ื ืœื˜ืขื•ื™ื•ืช ื‘ืงื™ืฉื•ืจื™ื ื‘ืชื•ืš ื”ืžื•ื—.
16:11
And indeed, the popular press loves headlines like,
349
971260
3000
ื•ืื›ืŸ ื”ืขื™ืชื•ื ื•ืช ืื•ื”ื‘ืช ื›ื•ืชืจื•ืช ื›ืžื•:
16:14
"Anorexic brains are wired differently,"
350
974260
2000
"ื”ืžื•ื— ื”ืื ื•ืจืงื˜ื™ ืžืงื•ืฉืจ ื‘ืฆื•ืจื” ืื—ืจืช."
16:16
or "Autistic brains are wired differently."
351
976260
2000
ืื• "ืžื•ื—ื•ืช ืื•ื˜ื™ืกื˜ื™ื™ื ืžืงื•ืฉืจื™ื ืื—ืจืช."
16:18
These are plausible claims,
352
978260
2000
ืืœื” ื˜ืขื ื•ืช ืกื‘ื™ืจื•ืช,
16:20
but in truth,
353
980260
2000
ืื‘ืœ ื”ืืžืช ื”ื™ื
16:22
we can't see the brain's wiring clearly enough
354
982260
2000
ืฉืื ื—ื ื• ืœื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืืช ื”ืงืฉืจื™ื ื”ืขืฆื‘ื™ื™ื ื‘ืฆื•ืจื” ื‘ื”ื™ืจื” ืžืกืคื™ืง
16:24
to tell if these are really true.
355
984260
2000
ื›ื“ื™ ืœื“ืขืช ืื ื”ืŸ ื‘ืืžืช ื ื›ื•ื ื•ืช.
16:26
And so the technologies for seeing connectomes
356
986260
3000
ืื– ื”ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ืœื–ื™ื”ื•ื™ ืงื•ื ืงื˜ื•ืžื™ื
16:29
will allow us to finally
357
989260
2000
ื™ืืคืฉืจื• ืœื ื• ืกื•ืฃ ืกื•ืฃ
16:31
read mis-wiring of the brain,
358
991260
2000
ืœืงืจื•ื ืงื™ืฉื•ืจื™ื ืฉื’ื•ื™ื™ื ื‘ืžื•ื—,
16:33
to see mental disorders in connectomes.
359
993260
3000
ืœืจืื•ืช ื”ืคืจืขื•ืช ืžื ื˜ืœื™ื•ืช ื‘ืงื•ื ืงื˜ื•ืžื™ื.
16:40
Sometimes the best way to test a hypothesis
360
1000260
3000
ืœืคืขืžื™ื ื”ื“ืจืš ื”ื˜ื•ื‘ื” ื‘ื™ื•ืชืจ ืœื‘ื—ื•ืŸ ื”ื™ืคื•ืชื™ื–ื”
16:43
is to consider its most extreme implication.
361
1003260
3000
ื”ื™ื ืœืฉืงื•ืœ ืืช ื”ื”ืฉืœื›ื” ื”ืงื™ืฆื•ื ื™ืช ื‘ื™ื•ืชืจ ืฉืœื”.
16:46
Philosophers know this game very well.
362
1006260
3000
ืคื™ืœื•ืกื•ืคื™ื ืžื›ื™ืจื™ื ืืช ื”ืžืฉื—ืง ื”ื–ื” ื”ื™ื˜ื‘.
16:50
If you believe that I am my connectome,
363
1010260
3000
ืื ืืชื” ืžืืžื™ืŸ ืฉืืชื” ื”ื•ื ื”ืงื•ื ืงื˜ื•ื ืฉืœืš,
16:53
I think you must also accept the idea
364
1013260
3000
ืื ื™ ื—ื•ืฉื‘ ืฉืืชื” ืฆืจื™ืš ื’ื ืœืงื‘ืœ ืืช ื”ืจืขื™ื•ืŸ
16:56
that death is the destruction
365
1016260
2000
ืฉืžื•ื•ืช ื”ื•ื ื”ืจืก
16:58
of your connectome.
366
1018260
3000
ื”ืงื•ื ืงื˜ื•ื ืฉืœืš.
17:02
I mention this because there are prophets today
367
1022260
3000
ืื ื™ ืžื–ื›ื™ืจ ื–ืืช ืžื›ื™ื•ื•ืŸ ืฉื™ืฉื ื ื ื‘ื™ืื™ื ื”ื™ื•ื
17:05
who claim that technology
368
1025260
3000
ื”ื˜ื•ืขื ื™ื ืฉื˜ื›ื ื•ืœื•ื’ื™ื”
17:08
will fundamentally alter the human condition
369
1028260
3000
ืชืฉื ื” ื‘ืื•ืคืŸ ื‘ืกื™ืกื™ ืืช ื”ืžืฆื‘ ื”ืื ื•ืฉื™
17:11
and perhaps even transform the human species.
370
1031260
3000
ื•ืื•ืœื™ ืืฃ ืชืฉื ื” ืืช ื”ืžื™ืŸ ื”ืื ื•ืฉื™.
17:14
One of their most cherished dreams
371
1034260
3000
ืื—ื“ ืžื—ืœื•ืžื•ืชื™ื”ื ื”ื›ืžื•ืกื™ื
17:17
is to cheat death
372
1037260
2000
ื”ื•ื ืœืจืžื•ืช ืืช ื”ืžื•ื•ืช
17:19
by that practice known as cryonics.
373
1039260
2000
ืขืœ-ื™ื“ื™ ืชื•ืจื” ื”ื ืงืจืืช ืงืจื™ื•ื ื™ืงื”.
17:21
If you pay 100,000 dollars,
374
1041260
2000
ืื ืชืฉืœืžื• $100,000,
17:23
you can arrange to have your body frozen after death
375
1043260
3000
ืชื•ื›ืœื• ืœืกื“ืจ ืฉื™ืงืคื™ืื• ืืช ื’ื•ืคืชื›ื ืœืื—ืจ ื”ืžื•ื•ืช
17:26
and stored in liquid nitrogen
376
1046260
2000
ื•ื™ืฉืžืจื• ืื•ืชื” ื‘ื—ื ืงืŸ ื ื•ื–ืœื™
17:28
in one of these tanks in an Arizona warehouse,
377
1048260
2000
ื‘ืื—ื“ ืžื”ืžื™ื›ืœื™ื ื”ืืœื” ื‘ืžื—ืกืŸ ื‘ืืจื™ื–ื•ื ื”,
17:30
awaiting a future civilization
378
1050260
2000
ื‘ืฆื™ืคื™ื™ื” ืœืชืจื‘ื•ืช ืขืชื™ื“ื™ืช
17:32
that is advanced to resurrect you.
379
1052260
3000
ืฉืžืกืคื™ืง ืžืชืงื“ืžืช ื›ื“ื™ ืœื”ืงื™ื ืืชื›ื ืœืชื—ื™ื™ื”.
17:36
Should we ridicule the modern seekers of immortality,
380
1056260
2000
ื”ืื ืฆืจื™ืš ืœืœืขื•ื’ ืœืจื•ื“ืคื™ื ื”ืžื•ื“ืจื ื™ื™ื ืื—ืจ ื”ืืœืžื•ื•ืช,
17:38
calling them fools?
381
1058260
2000
ื•ืœืงืจื•ื ืœื”ื ื˜ืคืฉื™ื?
17:40
Or will they someday chuckle
382
1060260
2000
ืื• ืฉืื•ืœื™ ื™ื•ื ืื—ื“ ื”ื ื™ืฆื—ืงื•
17:42
over our graves?
383
1062260
2000
ืžืขืœ ื”ืงื‘ืจื™ื ืฉืœื ื•?
17:45
I don't know --
384
1065260
2000
ืื ื™ ืœื ื™ื•ื“ืข.
17:47
I prefer to test their beliefs, scientifically.
385
1067260
3000
ืื ื™ ืžืขื“ื™ืฃ ืœื‘ื—ื•ืŸ ืืช ื”ืืžื•ื ื•ืช ืฉืœื”ื ื‘ืื•ืคืŸ ืžื“ืขื™.
17:50
I propose that we attempt to find a connectome
386
1070260
2000
ืื ื™ ืžืฆื™ืข ืฉื ื ืกื” ืœืžืฆื•ื ืงื•ื ืงื˜ื•ื
17:52
of a frozen brain.
387
1072260
2000
ื‘ืžื•ื— ืงืคื•ื.
17:54
We know that damage to the brain
388
1074260
2000
ืื ื—ื ื• ื™ื•ื“ืขื™ื ืฉื ื–ืง ืœืžื•ื—
17:56
occurs after death and during freezing.
389
1076260
2000
ืžืชืจื—ืฉ ืœืื—ืจ ื”ืžื•ื•ืช ื•ื‘ืžื”ืœืš ื”ื”ืงืคืื”.
17:58
The question is: has that damage erased the connectome?
390
1078260
3000
ื”ืฉืืœื” ื”ื™ื: ื”ืื ื”ื ื–ืง ืžื—ืง ืืช ื”ืงื•ื ืงื˜ื•ื?
18:01
If it has, there is no way that any future civilization
391
1081260
3000
ืื ื›ืŸ, ืื™ืŸ ืฉื•ื ื“ืจืš ืฉืืฃ ืชืจื‘ื•ืช ืขืชื™ื“ื™ืช
18:04
will be able to recover the memories of these frozen brains.
392
1084260
3000
ืชื”ื™ื” ืžืกื•ื’ืœืช ืœืฉื—ื–ืจ ื–ื™ื›ืจื•ื ื•ืช ืžืชื•ืš ืื•ืชื ืžื•ื—ื•ืช ืงืคื•ืื™ื.
18:07
Resurrection might succeed for the body,
393
1087260
2000
ืชื—ื™ื™ื” ืžื—ื•ื“ืฉืช ื™ื›ื•ืœื” ืœื”ืฆืœื™ื— ืขื‘ื•ืจ ื”ื’ื•ืฃ,
18:09
but not for the mind.
394
1089260
2000
ืืš ืœื ืขื‘ื•ืจ ื”ื“ืขืช.
18:11
On the other hand, if the connectome is still intact,
395
1091260
3000
ืžืฆื“ ืฉื ื™, ืื ื”ืงื•ื ืงื˜ื•ื ืขื“ื™ื™ืŸ ืฉืœื,
18:14
we cannot ridicule the claims of cryonics so easily.
396
1094260
3000
ืœื ื ื•ื›ืœ ืœืœืขื•ื’ ืœื˜ืขื ื•ืช ื”ืงืจื™ื•ื ื™ืงื” ื‘ืงืœื•ืช ื›ื” ืจื‘ื”.
18:20
I've described a quest
397
1100260
2000
ืื ื™ ืชื™ืืจืชื™ ืžืกืข
18:22
that begins in the world of the very small,
398
1102260
3000
ื”ืžืชื—ื™ืœ ื‘ืขื•ืœืžื ืฉืœ ื”ืงื˜ื ื™ื ืžืื•ื“,
18:25
and propels us to the world of the far future.
399
1105260
3000
ื•ืžื ื™ืข ืื•ืชื ื• ืœืขื•ืœื ื”ืขืชื™ื“ ื”ืจื—ื•ืง.
18:28
Connectomes will mark a turning point in human history.
400
1108260
3000
ืงื•ื ืงื˜ื•ืžื™ื ื™ืกืžื ื• ื ืงื•ื“ืช ืžืคื ื” ื‘ื”ื™ืกื˜ื•ืจื™ื” ื”ืื ื•ืฉื™ืช.
18:32
As we evolved from our ape-like ancestors
401
1112260
2000
ื›ืฉืื ื—ื ื• ื”ืชืคืชื—ื ื• ืžืื‘ื•ืชื™ื ื• ื“ืžื•ื™ื™ ื”ืงื•ืฃ
18:34
on the African savanna,
402
1114260
2000
ื‘ืกื•ื•ืื ื” ื”ืืคืจื™ืงืื™ืช,
18:36
what distinguished us was our larger brains.
403
1116260
3000
ืžื” ืฉื”ื‘ื—ื™ืŸ ื‘ื™ื ื™ื ื• ืœื‘ื™ื ื ื”ื™ื” ืžื•ื—ื ื• ื”ื’ื“ื•ืœ.
18:40
We have used our brains to fashion
404
1120260
2000
ื”ืฉืชืžืฉื ื• ื‘ืžื•ื—ื ื• ื›ื“ื™ ืœืขืฆื‘
18:42
ever more amazing technologies.
405
1122260
3000
ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ืžื“ื”ื™ืžื•ืช ืขื•ื“ ื™ื•ืชืจ.
18:45
Eventually, these technologies will become so powerful
406
1125260
3000
ื‘ืกื•ืคื• ืฉืœ ื“ื‘ืจ, ื”ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ื”ืืœื” ื™ื”ื™ื• ื›ื” ื—ื–ืงื•ืช
18:48
that we will use them to know ourselves
407
1128260
3000
ืฉื ืฉืชืžืฉ ื‘ื”ื ื›ื“ื™ ืœื”ื›ื™ืจ ืืช ืขืฆืžื ื•
18:51
by deconstructing and reconstructing
408
1131260
3000
ืขืœ-ื™ื“ื™ ืคื™ืจื•ืง ื•ื”ืจื›ื‘ื” ืžื—ื“ืฉ
18:54
our own brains.
409
1134260
3000
ืฉืœ ื”ืžื•ื—ื•ืช ืฉืœื ื•.
18:57
I believe that this voyage of self-discovery
410
1137260
3000
ืื ื™ ืžืืžื™ืŸ ืฉืžืกืข ื–ื” ืฉืœ ื’ื™ืœื•ื™ ืขืฆืžื™
19:00
is not just for scientists,
411
1140260
3000
ืžื™ื•ืขื“ ืœื ืจืง ืœืžื“ืขื ื™ื
19:03
but for all of us.
412
1143260
2000
ืืœื ืœื›ื•ืœื ื•.
19:05
And I'm grateful for the opportunity to share this voyage with you today.
413
1145260
3000
ื•ืื ื™ ืžืขืจื™ืš ืืช ื”ื”ื–ื“ืžื ื•ืช ืœืฉืชืฃ ืืชื›ื ื‘ืžืกืข ื”ื–ื” ื”ื™ื•ื.
19:08
Thank you.
414
1148260
2000
ืชื•ื“ื”
19:10
(Applause)
415
1150260
8000
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7