Sebastian Seung: I am my connectome

250,237 views ใƒป 2010-09-28

TED


์•„๋ž˜ ์˜๋ฌธ์ž๋ง‰์„ ๋”๋ธ”ํด๋ฆญํ•˜์‹œ๋ฉด ์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค.

๋ฒˆ์—ญ: Sunphil Ga ๊ฒ€ํ† : Eunmi Sohn
00:17
We live in in a remarkable time,
0
17260
3000
์šฐ๋ฆฌ๋Š” ๋†€๋ผ์šด ๊ฒŒ๋†ˆ ์„ธ๋Œ€์—
00:20
the age of genomics.
1
20260
3000
์‚ด๊ณ ์žˆ์Šต๋‹ˆ๋‹ค.
00:23
Your genome is the entire sequence of your DNA.
2
23260
3000
์—ฌ๋Ÿฌ๋ถ„์˜ ๊ฒŒ๋†ˆ์€ ์ „์ฒด์ ์ธ DNA์˜ ํŠน์ •ํ•œ ๋ฐฐ์—ด์ž…๋‹ˆ๋‹ค.
00:26
Your sequence and mine are slightly different.
3
26260
3000
์—ฌ๋Ÿฌ๋ถ„๊ณผ ์ €๋Š” ๋ฐฐ์—ด์— ์•ฝ๊ฐ„์˜ ์ฐจ์ด๊ฐ€ ์žˆ์ฃ .
00:29
That's why we look different.
4
29260
2000
์ด๋•Œ๋ฌธ์— ์šฐ๋ฆฌ๊ฐ€ ๋‹ค๋ฅด๊ฒŒ ์ƒ๊ธด ๊ฒƒ์ž…๋‹ˆ๋‹ค.
00:31
I've got brown eyes;
5
31260
2000
์ €๋Š” ๊ฐˆ์ƒ‰ ๋ˆˆ์„ ๊ฐ€์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
00:33
you might have blue or gray.
6
33260
3000
์—ฌ๋Ÿฌ๋ถ„์€ ์•„๋งˆ๋„ ํฌ์ƒ‰์ด๋‚˜, ํŒŒ๋ž€์ƒ‰ ๋ˆˆ์ด์‹œ๊ฒ ์ฃ .
00:36
But it's not just skin-deep.
7
36260
2000
ํ•˜์ง€๋งŒ ์ด๊ฒƒ์€ ๋‹จ์ง€ ํ”ผ๋ถ€์˜ ๊นŠ์ด๋ฅผ ๋œปํ•˜์ง€๋Š” ์•Š์Šต๋‹ˆ๋‹ค.
00:38
The headlines tell us
8
38260
2000
์ด ์ œ๋ชฉ์€ ์œ ์ „์ž๊ฐ€
00:40
that genes can give us scary diseases,
9
40260
3000
์šฐ๋ฆฌ์—๊ฒŒ ๋ฌด์„œ์šด ์งˆ๋ช…์„ ์ค„ ์ˆ˜ ์žˆ๊ฑฐ๋‚˜,
00:43
maybe even shape our personality,
10
43260
3000
์‹ฌ์ง€์–ด ์šฐ๋ฆฌ์˜ ์„ฑ๊ฒฉ์„ ํ˜•์„ฑํ•˜๋ฉฐ,
00:46
or give us mental disorders.
11
46260
3000
ํ˜น์€ ์ •์‹ ๋ณ‘์„ ์ค„ ์ˆ˜ ์žˆ๋‹ค๊ณ  ์ „ํ•ฉ๋‹ˆ๋‹ค.
00:49
Our genes seem to have
12
49260
3000
์šฐ๋ฆฌ์˜ ์œ ์ „์ž๋Š”
00:52
awesome power over our destinies.
13
52260
3000
์šฐ๋ฆฌ์˜ ์šด๋ช…์„ ์ง“๋Š” ๋†€๋ผ์šด ํž˜์„ ๊ฐ€์ง„ ๊ฒƒ์ฒ˜์ฒ˜๋Ÿผ ๋ณด์ž…๋‹ˆ๋‹ค.
00:56
And yet, I would like to think
14
56260
3000
์•„์ง๋„, ์ €๋Š” ์ œ๊ฐ€ ์ œ ์œ ์ „์ž๋ณด๋‹ค
00:59
that I am more than my genes.
15
59260
3000
๋†’์€ ์กด์žฌ๋ผ๊ณ  ์ƒ๊ฐํ•˜๋Š” ๊ฒƒ์„ ์ข‹์•„ํ•ฉ๋‹ˆ๋‹ค.
01:04
What do you guys think?
16
64260
2000
์—ฌ๋Ÿฌ๋ถ„๋“ค์€ ์–ด๋–ป๊ฒŒ ์ƒ๊ฐํ•˜์‹œ๋‚˜์š”?
01:06
Are you more than your genes?
17
66260
3000
์œ ์ „์ž๋ณด๋‹ค ์—ฌ๋Ÿฌ๋ถ„์ด ๋” ๋†’์€ ์กด์žฌ์ธ๊ฐ€์š”?
01:09
(Audience: Yes.) Yes?
18
69260
2000
(๊ด€๊ฐ:์˜ˆ)๊ทธ๋Ÿฐ๊ฐ€์š”?
01:13
I think some people agree with me.
19
73260
2000
๋ช‡๋ช‡ ๋ถ„๊ป˜์„œ ๋™์˜ํ•˜์‹ ๋‹ค๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
01:15
I think we should make a statement.
20
75260
2000
์ €๋Š” ์šฐ๋ฆฌ๊ฐ€ ์–ธ๊ธ‰ํ•ด์•ผ ๋œ๋‹ค๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
01:17
I think we should say it all together.
21
77260
2000
๋ชจ๋‘๊ฐ€ ํ•จ๊ป˜ ์ด๊ฒƒ์„ ๋งํ•ด์•ผํ•œ๋‹ค๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
01:20
All right: "I'm more than my genes" -- all together.
22
80260
3000
์ข‹์Šต๋‹ˆ๋‹ค:"๋‚˜๋Š” ๋‚ด ์œ ์ „์ž๋ณด๋‹ค ๋†’์€ ์กด์žฌ๋‹ค" -- ๋‹คํ•จ๊ป˜.
01:23
Everybody: I am more than my genes.
23
83260
4000
๋ชจ๋‘: ๋‚˜๋Š” ๋‚ด ์œ ์ „์ž๋ณด๋‹ค ๋†’์€ ์กด์žฌ์ด๋‹ค.
01:27
(Cheering)
24
87260
2000
(ํ™˜ํ˜ธ)
01:30
Sebastian Seung: What am I?
25
90260
2000
์„ธ๋ฐ”์Šค์ฑค ์Šน: ๋‚˜๋ž€ ์กด์žฌ๊ฐ€ ๋ญ”๋ฐ?
01:32
(Laughter)
26
92260
3000
(์›ƒ์Œ)
01:35
I am my connectome.
27
95260
3000
๋‚˜๋Š” ๋‚˜์˜ ์ฝ”๋„ฅํ…€์ž…๋‹ˆ๋‹ค.
01:40
Now, since you guys are really great,
28
100260
2000
์ง€๊ธˆ, ์—ฌ๋Ÿฌ๋ถ„์€ ์ •๋ง๋กœ ํ›Œ๋ฅญํ•˜์‹  ๋ถ„๋“ค์ด๊ธฐ ๋•Œ๋ฌธ์—,
01:42
maybe you can humor me and say this all together too.
29
102260
2000
์•„๋งˆ๋„ ์ด ์ฃผ์žฅ์„ ๋ชจ๋‘ ๋‹คํ•จ๊ป˜ ๋งํ•จ์œผ๋กœ์จ ์ €๋ฅผ ์›ƒ๊ธฐ์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
01:44
(Laughter)
30
104260
2000
(์›ƒ์Œ)
01:46
Right. All together now.
31
106260
2000
๋งž์Šต๋‹ˆ๋‹ค. ๋ชจ๋‘ ๋‹ค ํ•จ๊ป˜ ์ง€๊ธˆ.
01:48
Everybody: I am my connectome.
32
108260
3000
๋ชจ๋‘: ๋‚˜๋Š” ๋‚˜์˜ ์ฝ”๋„ฅํ…€์ด๋‹ค.
01:53
SS: That sounded great.
33
113260
2000
SS: ์ข‹์€ ์ƒ๊ฐ์ฒ˜๋Ÿผ ๋“ค๋ฆฌ๋„ค์š”.
01:55
You know, you guys are so great, you don't even know what a connectome is,
34
115260
2000
์•Œ๋‹ค์‹œํ”ผ, ์—ฌ๋Ÿฌ๋ถ„์€ ๋งค์šฐ ํ›Œ๋ฅญํ•˜์‹ญ๋‹ˆ๋‹ค, ์ฝ”๋„ฅํ…€์ด ๋ฌด์—‡์ธ์ง€๋„ ๋ชฐ๋ฅด๋ฉด์„œ,
01:57
and you're willing to play along with me.
35
117260
2000
์ €๋ฅผ ๋”ฐ๋ผ ๊ธฐ๊บผ์ด ์ด๋ ‡๊ฒŒ ๋งํ•ด์ฃผ์‹œ๋‹ˆ
01:59
I could just go home now.
36
119260
3000
์ง€๊ธˆ ๋‹น์žฅ ์ง‘์œผ๋กœ ๊ฐˆ ์ˆ˜ ์žˆ๊ฒ ๋„ค์š”.
02:02
Well, so far only one connectome is known,
37
122260
3000
์Œ, ์˜ค์ง ์ง€๊ธˆ๊นŒ์ง€ ํ•˜๋‚˜์˜ ์ฝ”๋„ฅํ…€์ด ์•Œ๋ ค์กŒ์Šต๋‹ˆ๋‹ค,
02:05
that of this tiny worm.
38
125260
3000
์ด ์ž‘์€ ๋ฒŒ๋ ˆ์˜ ๊ฒƒ์ด์ฃ .
02:08
Its modest nervous system
39
128260
2000
300 ๊ฐœ์˜ ๋‰ด๋Ÿฐ์„ ํฌํ•จํ•˜๊ณ  ์žˆ๋Š”
02:10
consists of just 300 neurons.
40
130260
2000
์ ๋‹นํ•œ ํฌ๊ธฐ์˜ ์‹ ๊ฒฝ ์‹œ์Šคํ…œ์ž…๋‹ˆ๋‹ค.
02:12
And in the 1970s and '80s,
41
132260
2000
1970,80๋…„ ๋Œ€์—,
02:14
a team of scientists
42
134260
2000
ํ•œ ๊ณผํ•™์ž ํŒ€์ด
02:16
mapped all 7,000 connections
43
136260
2000
๋‰ด๋Ÿฐ๋“ค ์‚ฌ์ด์— ์žˆ๋Š” 7,000 ๊ฐœ์˜
02:18
between the neurons.
44
138260
2000
์—ฐ๊ฒฐ์„ ์ง€๋„ํ™” ํ–ˆ์Šต๋‹ˆ๋‹ค.
02:21
In this diagram, every node is a neuron,
45
141260
2000
์ด ๋‹ค์ด์–ด ๊ทธ๋žจ์—, ๋ชจ๋“  ์ ์€ ๋‰ด๋Ÿฐ์ž…๋‹ˆ๋‹ค,
02:23
and every line is a connection.
46
143260
2000
๋ชจ๋“  ์„ ์€ ์—ฐ๊ฒฐ์ด์ฃ .
02:25
This is the connectome
47
145260
2000
์ด๊ฒƒ์€ ์„ ์ถฉ๋ฒŒ๋ ˆ์˜
02:27
of the worm C. elegans.
48
147260
4000
์ฝ”๋„ฅํ…€์ž…๋‹ˆ๋‹ค.
02:31
Your connectome is far more complex than this
49
151260
3000
์—ฌ๋Ÿฌ๋ถ„์˜ ์ฝ”๋„ฅํ…€์€ ์ด๊ฒƒ ๋ณด๋‹ค ์ข€๋” ๋ณต์žกํ•ฉ๋‹ˆ๋‹ค,
02:34
because your brain
50
154260
2000
์—ฌ๋Ÿฌ๋ถ„์˜ ๋‡Œ๊ฐ€
02:36
contains 100 billion neurons
51
156260
2000
์ฒœ์–ต ๊ฐœ์˜ ๋‰ด๋Ÿฐ์„ ํฌํ•จํ•˜๋ฉฐ,
02:38
and 10,000 times as many connections.
52
158260
3000
๋งŒ ๋ฐฐ ๋งŽ์€ ์—ฐ๊ฒฐ์„ ๊ฐ€์ง€๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
02:41
There's a diagram like this for your brain,
53
161260
2000
์—ฌ๋Ÿฌ๋ถ„ ๋‡Œ์— ๊ด€ํ•œ ์ด ๊ฒƒ์€ ๋‹ค์ด์–ด๊ทธ๋žจ๊ณผ ๊ฐ™์ฃ ,
02:43
but there's no way it would fit on this slide.
54
163260
3000
ํ•˜์ง€๋งŒ ์ด ์Šฌ๋ผ์ด๋“œ ํฌ๊ธฐ์— ๋งž์ถœ ๋ฐฉ๋ฒ•์€ ์—†์Šต๋‹ˆ๋‹ค.
02:47
Your connectome contains one million times more connections
55
167260
3000
์—ฌ๋Ÿฌ๋ถ„์˜ ์ฝ”๋„ฅํ…€์€ ์—ฌ๋Ÿฌ๋ถ„ ๊ฒŒ๋†ˆ์ด ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๊ธฐํ˜ธ๋ณด๋‹ค
02:50
than your genome has letters.
56
170260
3000
๋ฐฑ๋งŒ ๋ฐฐ ๋” ๋งŽ์€ ์—ฐ๊ฒฐ์„ ๊ฐ€์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
02:53
That's a lot of information.
57
173260
2000
๊ทธ๊ฒƒ์€ ๋งŽ์€ ์ •๋ณด์ž…๋‹ˆ๋‹ค.
02:55
What's in that information?
58
175260
3000
๊ทธ ์ •๋ณด๊ฐ€ ๋ฌด์—‡์ผ๊นŒ์š”?
02:59
We don't know for sure, but there are theories.
59
179260
3000
์ •ํ™•ํžˆ ์šฐ๋ฆฌ๋Š” ์•Œ์ง€ ๋ชปํ•ฉ๋‹ˆ๋‹ค, ํ•˜์ง€๋งŒ ์ด๋ก ๋“ค์ด ์žˆ์Šต๋‹ˆ๋‹ค.
03:02
Since the 19th century, neuroscientists have speculated
60
182260
3000
19์„ธ๊ธฐ ๋ถ€ํ„ฐ ์‹œ์ž‘ํ•ด์„œ, ์‹ ๊ฒฝ๊ณผํ•™์ž๋“ค์€
03:05
that maybe your memories --
61
185260
2000
์ž์‹ ์„ ๋งŒ๋“œ๋Š” ์ •๋ณด
03:07
the information that makes you, you --
62
187260
2000
์ฆ‰ ๊ธฐ์–ต์„ ์—ฐ๊ตฌํ•ด์™”์Šต๋‹ˆ๋‹ค.
03:09
maybe your memories are stored
63
189260
2000
์•„๋งˆ๋„ ์‚ฌ๋žŒ๋“ค์˜ ๊ธฐ์–ต์€ ๋‡Œ์˜ ๋‰ด๋Ÿฐ ์‚ฌ์ด์— ์žˆ๋Š”
03:11
in the connections between your brain's neurons.
64
191260
2000
์—ฐ๊ฒฐ์— ์ €์žฅ ๋˜์–ด ์žˆ์„์ง€ ๋ชจ๋ฆ…๋‹ˆ๋‹ค.
03:15
And perhaps other aspects of your personal identity --
65
195260
2000
์•„๋งˆ๋„ ์„ฑ๊ฒฉ ์ •์ฒด์„ฑ์˜ ๋‹ค๋ฅธ ์ธก๋ฉด,
03:17
maybe your personality and your intellect --
66
197260
3000
์„ฑ๊ฒฉ๊ณผ ์ง€๋Šฅ ์—ญ์‹œ
03:20
maybe they're also encoded
67
200260
2000
์•„๋งˆ๋„ ๊ทธ๊ฒƒ๋“ค์€ ๋‰ด๋Ÿฐ ์‚ฌ์ด์˜
03:22
in the connections between your neurons.
68
202260
3000
์—ฐ๊ฒฐ์— ๊ธฐํ˜ธํ™” ๋˜์žˆ์„์ง€ ๋ชจ๋ฆ…๋‹ˆ๋‹ค.
03:26
And so now you can see why I proposed this hypothesis:
69
206260
3000
์ด๋ ‡๊ฒŒ ์ง€๊ธˆ ์—ฌ๋Ÿฌ๋ถ„์€ ์ œ๊ฐ€ ์™œ ์ด ๊ฐ€์ •์„ ์ œ์•ˆํ•˜๋Š”์ง€ ์•„์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค ;
03:29
I am my connectome.
70
209260
3000
๋‚˜๋Š” ๋‚˜์˜ ์ฝ”๋„ฅํ…€์ž…๋‹ˆ๋‹ค.
03:32
I didn't ask you to chant it because it's true;
71
212260
3000
์ด๊ฒƒ์€ ์‚ฌ์‹ค์ด๊ธฐ ๋•Œ๋ฌธ์— ์—ฌ๋Ÿฌ๋ถ„๊ป˜ ์ด๊ฒƒ์„ ๋˜ํ’€์ดํ•˜๋„๋ก ๋ถ€ํƒํ•˜์ง€๋Š” ์•Š์•˜์Šต๋‹ˆ๋‹ค,
03:35
I just want you to remember it.
72
215260
2000
์ €๋Š” ์—ฌ๋Ÿฌ๋ถ„๊ป˜์„œ ์ด ์‚ฌ์‹ค์„ ๊ธฐ์–ตํ•˜์‹œ๊ธฐ๋ฅผ ๋ฐ”๋ž๋‹ˆ๋‹ค.
03:37
And in fact, we don't know if this hypothesis is correct,
73
217260
2000
์‚ฌ์‹ค์ƒ, ์šฐ๋ฆฌ๋Š” ์ด ๊ฐ€์ •์ด ์ •ํ™•ํ•˜์ง€ ๋ชจ๋ฆ…๋‹ˆ๋‹ค,
03:39
because we have never had technologies
74
219260
2000
์ด๊ฒƒ์„ ๊ฒ€์‚ฌํ•  ๊ฐ•๋ ฅํ•œ ๊ธฐ์ˆ ์„ ์ถฉ๋ถ„ํžˆ
03:41
powerful enough to test it.
75
221260
2000
๊ฐ€์ ธ๋ณธ์ ์ด ์—†๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
03:44
Finding that worm connectome
76
224260
3000
๊ทธ ๋ฒŒ๋ ˆ์˜ ์ฝ”๋„ฅํ…€์„ ์ฐพ๋Š” ๊ฒƒ์€
03:47
took over a dozen years of tedious labor.
77
227260
3000
12๋…„ ๋™์•ˆ ์ง€๋ฃจํ•œ ๋…ธ๋™์„ ์ฃผ์—ˆ์ฃ .
03:50
And to find the connectomes of brains more like our own,
78
230260
3000
์‚ฌ๋žŒ์˜ ๋‡Œ์™€ ๊ฐ™์€ ๋‡Œ์˜ ์ฝ”๋„ฅํ…€์„ ์ฐพ์œผ๋ ค๋ฉด,
03:53
we need more sophisticated technologies, that are automated,
79
233260
3000
์šฐ๋ฆฌ๋Š” ์ž๋™์ ์œผ๋กœ, ์ฝ”๋„ฅํ…€์„ ์ฐพ๋Š” ๊ณผ์ •์— ์†๋„๋ฅผ ์˜ฌ๋ฆฌ๋Š”
03:56
that will speed up the process of finding connectomes.
80
236260
3000
์ข€๋” ๋ณต์žกํ•œ ๊ธฐ์ˆ ์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค.
03:59
And in the next few minutes, I'll tell you about some of these technologies,
81
239260
3000
๋ช‡๋ถ„ ํ›„์—, ์ €๋Š” ์—ฌ๋Ÿฌ๋ถ„๊ป˜ ๋ช‡๋ช‡ ์ด ๊ธฐ์ˆ ์— ๋Œ€ํ•ด ์ด์•ผ๊ธฐ ํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค,
04:02
which are currently under development
82
242260
2000
์ด ๊ธฐ์ˆ ์€ ์ตœ๊ทผ์— ์ €์˜ ์—ฐ๊ตฌ์†Œ์™€
04:04
in my lab and the labs of my collaborators.
83
244260
3000
๋™๋ฃŒ ์—ฐ๊ตฌ์†Œ์—์„œ ์žˆ์—ˆ๋˜ ๋ฐœ์ „ ์‚ฌํ•ญ์ž…๋‹ˆ๋‹ค.
04:08
Now you've probably seen pictures of neurons before.
84
248260
3000
์ง€๊ธˆ ์—ฌ๋Ÿฌ๋ถ„์€ ์•„๋งˆ๋„ ์ด์ „์— ๋ณด์•˜๋˜ ๋‰ด๋Ÿฐ ์‚ฌ์ง„์„ ๋ณด๊ณ  ๊ณ„์‹ญ๋‹ˆ๋‹ค.
04:11
You can recognize them instantly
85
251260
2000
์ฆ‰๊ฐ์ ์œผ๋กœ ๊ทธ๊ฒƒ๋“ค์„ ์ธ์‹ํ•˜์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค
04:13
by their fantastic shapes.
86
253260
3000
๊ทธ๋“ค์˜ ํ™˜์ƒ์ ์ธ ๋ชจ์–‘์— ์˜ํ•ด ๋ง์ด์ฃ .
04:16
They extend long and delicate branches,
87
256260
3000
๋‰ด๋Ÿฐ์€ ๊ธฐ๊ณ  ์„ฌ์„ธํ•œ ๊ฐ€์ง€๋ฅผ ๋ป—์ณ๋‚˜๊ฐ‘๋‹ˆ๋‹ค,
04:19
and in short, they look like trees.
88
259260
3000
๊ฐ„๋žตํ•˜๊ฒŒ ๋งํ•ด ๋‚˜๋ฌด๊ฐ€์ง€์ฒ˜๋Ÿผ ๋ณด์ž…๋‹ˆ๋‹ค.
04:22
But this is just a single neuron.
89
262260
3000
ํ•˜์ง€๋งŒ ์ด๊ฒƒ์€ ํ•˜๋‚˜์˜ ๋‰ด๋Ÿฐ์ž…๋‹ˆ๋‹ค.
04:25
In order to find connectomes,
90
265260
2000
์ฝ”๋„ฅํ…€์„ ์ฐพ๊ธฐ์œ„ํ•ด,
04:27
we have to see all the neurons at the same time.
91
267260
3000
์šฐ๋ฆฌ๋Š” ๋ชจ๋“  ๋‰ด๋Ÿฐ์„ ๋™์‹œ์— ๋ด์•ผํ•ฉ๋‹ˆ๋‹ค.
04:30
So let's meet Bobby Kasthuri,
92
270260
2000
ํ•˜๋ฒ„๋“œ ๋Œ€ํ•™์— ์žˆ๋Š”
04:32
who works in the laboratory of Jeff Lichtman
93
272260
2000
์ œํ”„ ๋ผํžˆ ๋งŒ ์—ฐ๊ตฌ์†Œ์— ์ผํ•˜๊ณ  ์žˆ๋Š”
04:34
at Harvard University.
94
274260
2000
Bobby Kasthuri๋ฅผ ๋งŒ๋‚˜๋ด…์‹œ๋‹ค
04:36
Bobby is holding fantastically thin slices
95
276260
2000
Bobby๋Š” ํ™˜์ƒ์ ์œผ๋กœ ์–‡์€ ์ฅ์˜ ๋‡Œ ๋‹จ๋ฉด์„
04:38
of a mouse brain.
96
278260
2000
๊ฐ€์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
04:40
And we're zooming in by a factor of 100,000 times
97
280260
3000
์‹ญ๋งŒ ๋ฐฐ๋กœ ํ™•๋Œ€ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค
04:44
to obtain the resolution,
98
284260
2000
์ด ํ•ด๋‹ต์„ ์–ป๊ธฐ ์œ„ํ•œ ๊ฒƒ์ด์ฃ ,
04:46
so that we can see the branches of neurons all at the same time.
99
286260
3000
๊ทธ๋ž˜์„œ ์šฐ๋ฆฌ๊ฐ€ ๋‰ด๋Ÿฌ ๊ฐ€์ง€๋ฅผ ๋™์‹œ์— ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
04:50
Except, you still may not really recognize them,
100
290260
3000
์˜ˆ์™ธ๊ฐ€ ์žˆ๋‹ค๋ฉด, ์—ฌ์ „ํžˆ ์ •๋ง๋กœ ๊ทธ๊ฒƒ๋“ค์„ ๋ชป ์•Œ์•„๋ณผ์ง€ ๋ชจ๋ฆ…๋‹ˆ๋‹ค,
04:53
and that's because we have to work in three dimensions.
101
293260
3000
๊ทธ๋ ‡๊ธฐ ๋•Œ๋ฌธ์— ์šฐ๋ฆฌ๋Š” 3์ฐจ์› ์ž‘์—…์„ ํ•ด์•ผ๋งŒ ํ•ฉ๋‹ˆ๋‹ค.
04:56
If we take many images of many slices of the brain
102
296260
2000
์šฐ๋ฆฌ๊ฐ€ ๋งŒ์•ฝ ๋‡Œ์˜ ๋งŽ์€ ๋‹จ๋ฉด ์ด๋ฏธ์ง€๋ฅผ ๊ฐ€์ง€๊ณ 
04:58
and stack them up,
103
298260
2000
๊ทธ๊ฒƒ๋“ค์„ ์Œ“๋Š”๋‹ค๋ฉด,
05:00
we get a three-dimensional image.
104
300260
2000
์šฐ๋ฆฌ๋Š” 3์ฐจ์› ์ด๋ฏธ์ง€๋ฅผ ๊ฐ€์ง€๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
05:02
And still, you may not see the branches.
105
302260
2000
์—ฌ์ „ํžˆ ์šฐ๋ฆฌ๋Š” ๊ทธ ๊ฐ€์ง€์„ ๋ชป ๋ณผ์ง€ ๋ชจ๋ฆ…๋‹ˆ๋‹ค.
05:04
So we start at the top,
106
304260
2000
์ƒ๋‹จ์—์„œ ์‹œ์ž‘ํ•ฉ๋‹ˆ๋‹ค,
05:06
and we color in the cross-section of one branch in red,
107
306260
3000
ํ•˜๋‚˜์˜ ๊ฐ€์ง€์— ๋นจ๊ฐ„ ์ƒ‰์œผ๋กœ ์ƒ‰์„ ์ž…ํžˆ๊ณ ,
05:09
and we do that for the next slice
108
309260
2000
๋‹ค์Œ ๋‹จ๋ฉด์„ ์œ„ํ•ด
05:11
and for the next slice.
109
311260
2000
์–‡๊ฒŒ ์ž๋ฆ…๋‹ˆ๋‹ค.
05:13
And we keep on doing that,
110
313260
2000
์ด ๋‹จ๋ฉด ์ž‘์—…์„
05:15
slice after slice.
111
315260
3000
์ง€์†์ ์œผ๋กœ ํ•ฉ๋‹ˆ๋‹ค.
05:18
If we continue through the entire stack,
112
318260
2000
์ด ์ „์ฒด์ ์ธ ์Œ“์•„ ์˜ฌ๋ฆฌ๋Š” ์ž‘์—…์„ ํ†ตํ•ด ๊ณ„์†ํ•œ๋‹ค๋ฉด,
05:20
we can reconstruct the three-dimensional shape
113
320260
3000
๋‰ด๋Ÿฐ ๊ฐ€์ง€์˜ ์ž‘์€ ๋ถ€๋ถ„์„
05:23
of a small fragment of a branch of a neuron.
114
323260
3000
3์ฐจ์›์œผ๋กœ ์žฌ ์„ค๋ฆฝํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
05:26
And we can do that for another neuron in green.
115
326260
2000
๋…น์ƒ‰์œผ๋กœ ๋ŸํžŒ ๋‹ค๋ฅธ ๋‰ด๋Ÿฐ์—๋„ ์ด ์ž‘์—…์„ ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
05:28
And you can see that the green neuron touches the red neuron
116
328260
2000
๋…น์ƒ‰ ๋‰ด๋Ÿฐ์ด ๋นจ๊ฐ„ ๋‰ด๋Ÿฐ์ด ๋‘ ์žฅ์†Œ์—์„œ ์ ‘ํ•˜๊ณ  ์žˆ๋Š” ๊ฒƒ์„
05:30
at two locations,
117
330260
2000
๋ณด์‹ค์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
05:32
and these are what are called synapses.
118
332260
2000
์ด๊ฒƒ๋“ค์„ ์šฐ๋ฆฌ๋Š” ์‹œ๋ƒ…์Šค๋ผ๊ณ  ํ•˜์ฃ .
05:34
Let's zoom in on one synapse,
119
334260
2000
ํ•˜๋‚˜์˜ ์‹œ๋ƒ…์Šค๋ฅผ ํ™•๋Œ€ํ•ด๋ณด์ฃ .
05:36
and keep your eyes on the interior of the green neuron.
120
336260
3000
๋…น์ƒ‰ ๋‰ด๋Ÿฐ ๋‚ด๋ถ€์— ๋ˆˆ์„ ๋–ผ์ง€ ๋งˆ์„ธ์š”.
05:39
You should see small circles --
121
339260
2000
์ž‘์€ ์›์„ ๋ณด์‹œ๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
05:41
these are called vesicles.
122
341260
3000
์ด๊ฒƒ๋“ค์€ ์†Œํฌ๋ผ๊ณ  ํ•˜์ฃ .
05:44
They contain a molecule know as a neurotransmitter.
123
344260
3000
๊ทธ๊ฒƒ๋“ค์€ ์‹ ๊ฒฝ์ „๋‹ฌ๋ฌผ์งˆ๋กœ ์•Œ๊ณ ์žˆ๋Š” ๋ถ„์ž๋ฅผ ํฌํ•จํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
05:47
And so when the green neuron wants to communicate,
124
347260
2000
๋…น์ƒ‰ ๋‰ด๋Ÿฐ์ด ์˜์‚ฌ์†Œํ†ตํ•˜๊ณ  ์‹ถ์„ ๋•Œ,
05:49
it wants to send a message to the red neuron,
125
349260
2000
์†Œํฌ๋Š” ๋นจ๊ฐ„ ๋‰ด๋Ÿฐ์—๊ฒŒ ๋ฉ”์„ธ์ง€๋ฅผ ์ „๋‹คํ•˜๊ณ  ์‹ถ์–ดํ•ฉ๋‹ˆ๋‹ค,
05:51
it spits out neurotransmitter.
126
351260
3000
์‹ ๊ฒฝ์ „๋‹ฌ๋ฌผ์งˆ์„ ์ „๋‹ฌํ•˜์ฃ .
05:54
At the synapse, the two neurons
127
354260
2000
์‹œ๋ƒ…์Šค์—์„œ, ๋‘ ๋‰ด๋Ÿฐ๋“ค์€
05:56
are said to be connected
128
356260
2000
์—ฐ๊ฒฐ ๋˜์—ˆ๋‹ค๊ณ  ๋งํ•˜์ฃ 
05:58
like two friends talking on the telephone.
129
358260
3000
๋งˆ์น˜ ๋‘ ์นœ๊ตฌ๊ฐ€ ์ „ํ™”์ƒ์œผ๋กœ ์ด์•ผ๊ธฐํ•˜๋Š” ๊ฒƒ์ฒ˜๋Ÿผ ๋ง์ด์ฃ .
06:02
So you see how to find a synapse.
130
362260
2000
์ด๋ ‡๊ฒŒ ์—ฌ๋Ÿฌ๋ถ„์€ ์‹œ๋ƒ…์Šค๋ฅผ ์ฐพ๋Š” ๋ฐฉ๋ฒ•์„ ๋ณด๊ณ  ๊ณ„์‹ญ๋‹ˆ๋‹ค.
06:04
How can we find an entire connectome?
131
364260
3000
์šฐ๋ฆฌ๊ฐ€ ์–ด๋–ป๊ฒŒ ์ด์ฒด์ ์ธ ์ฝ”๋„ฅํ…€์„ ์ฐพ์„ ์ˆ˜ ์žˆ์„๊นŒ์š”?
06:07
Well, we take this three-dimensional stack of images
132
367260
3000
์Œ, ์šฐ๋ฆฌ๋Š” 3์ฐจ์› ์ด๋ฏธ์ง€๋ฅผ ๊ฐ€์ ธ์™€
06:10
and treat it as a gigantic three-dimensional coloring book.
133
370260
3000
๊ฑฐ๋Œ€ํ•œ 3์ฐจ์› ์ปฌ๋Ÿฌ๋ง๋ถ์œผ๋กœ ๋‹ค๋ฃจ์—ˆ์Šต๋‹ˆ๋‹ค.
06:13
We color every neuron in, in a different color,
134
373260
3000
๋ชจ๋“  ๋‰ด๋Ÿฐ์— ๋‹ค๋ฅธ ์ƒ‰๊น”๋กœ ์ƒ‰์„ ์ž…ํžˆ๊ณ ,
06:16
and then we look through all of the images,
135
376260
2000
์ดํ›„ ๋ชจ๋“  ์ด๋ฏธ์ง€๋ฅผ ํ†ตํ•˜์—ฌ ๋ณด์•˜์œผ๋ฉฐ
06:18
find the synapses
136
378260
2000
์‹œ๋ƒ…์Šค๋ฅผ ์ฐพ๊ณ 
06:20
and note the colors of the two neurons involved in each synapse.
137
380260
3000
๊ฐ๊ฐ์˜ ์‹œ๋ƒ…์Šค์— ์—ฐ๊ด€์žˆ๋Š” ์ƒ‰์ด ์žˆ๋Š” ๋‘๊ฐœ์˜ ๋‰ด๋Ÿฐ์„ ์ฃผ๋ชฉํ–ˆ์Šต๋‹ˆ๋‹ค.
06:23
If we can do that throughout all the images,
138
383260
3000
์šฐ๋ฆฌ๊ฐ€ ๋งŒ์•ฝ ๋ชจ๋“  ์ด๋ฏธ์ง€๋ฅผ ํ†ตํ•˜์—ฌ ๊ทธ๊ฒƒ๋“ค์„ ํ•  ์ˆ˜ ์žˆ๋‹ค๋ฉด,
06:26
we could find a connectome.
139
386260
2000
์ฝ”๋„ฅํ…€์„ ์ฐพ์„ ์ˆ˜ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
06:29
Now, at this point,
140
389260
2000
์ง€๊ธˆ, ์ด ์ˆœ๊ฐ„,
06:31
you've learned the basics of neurons and synapses.
141
391260
2000
๊ธฐ๋ณธ์ ์ธ ๋‰ด๋Ÿฐ๊ณผ ์‹œ๋ƒ…์Šค๋ฅผ ๋ฐฐ์šฐ์…จ์Šต๋‹ˆ๋‹ค.
06:33
And so I think we're ready to tackle
142
393260
2000
๊ทธ๋Ÿผ ์ €๋Š” ์ด์ œ ์šฐ๋ฆฌ๊ฐ€ ์‹ ๊ฒฝ๊ณผํ•™์—์„œ
06:35
one of the most important questions in neuroscience:
143
395260
3000
๊ฐ€์žฅ ์ค‘์š”ํ•œ ์งˆ๋ฌธ ์ค‘ ํ•˜๋‚˜๋ฅผ ๋‹ค๋ฃฐ ์ค€๋น„๊ฐ€ ๋˜์–ด ์žˆ๋‹ค๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค;
06:39
how are the brains of men and women different?
144
399260
3000
๋‚จ์„ฑ, ์—ฌ์„ฑ์˜ ๋‡Œ๊ฐ€ ์–ด๋–ป๊ฒŒ ๋‹ค๋ฅผ๊นŒ์š”?
06:42
(Laughter)
145
402260
2000
(์›ƒ์Œ)
06:44
According to this self-help book,
146
404260
2000
์ด ์ž๊ธฐ ์น˜์œ ์„œ ์ฑ…์— ๋”ฐ๋ฅด๋ฉด,
06:46
guys brains are like waffles;
147
406260
2000
๋‚จ์„ฑ์˜ ๋‡Œ๋Š” ์™€ํ”Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค
06:48
they keep their lives compartmentalized in boxes.
148
408260
3000
๊ทธ๋“ค์€ ์‚ถ์„ ๋ฐ•์Šค์— ๊ตฌ๋ถ„ํ™”๋ฅผ ๊ณ„์†ํ•ฉ๋‹ˆ๋‹ค
06:51
Girls' brains are like spaghetti;
149
411260
3000
์—ฌ์„ฑ์˜ ๋‡Œ๋Š” ์ŠคํŒŒ๊ฒŒํ‹ฐ์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค;
06:54
everything in their life is connected to everything else.
150
414260
3000
์‚ถ์˜ ๋ชจ๋“  ๊ฒƒ๋“ค์ด ๋ชจ๋“  ๊ฒƒ๊ณผ ์—ฐ๊ฒฐ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค.
06:57
(Laughter)
151
417260
2000
(์›ƒ์Œ)
06:59
You guys are laughing,
152
419260
2000
์—ฌ๋Ÿฌ๋ถ„๊ป˜์„œ ๋ชจ๋‘ ์›ƒ๊ณ  ๊ณ„์‹ ๋ฐ์š”,
07:01
but you know, this book changed my life.
153
421260
2000
์ด ์ฑ…์€ ์ œ ์‚ถ์„ ๋ณ€ํ™”์‹œ์ผฐ์Šต๋‹ˆ๋‹ค.
07:03
(Laughter)
154
423260
2000
(์›ƒ์Œ)
07:07
But seriously, what's wrong with this?
155
427260
3000
์‹ฌ๊ฐํ•˜๊ฒŒ, ์ด ์ฑ…์— ๋ฌด์Šจ ๋ฌธ์ œ๊ฐ€ ์žˆ์„๊นŒ์š”?
07:10
You already know enough to tell me -- what's wrong with this statement?
156
430260
3000
์ด๋ฏธ ์ €์—๊ฒŒ ๋งํ•  ์ˆ˜ ์žˆ์„ ์ •๋„๋กœ ์ถฉ๋ถ„ํžˆ ์•Œ๊ณ  ๊ณ„์‹ญ๋‹ˆ๋‹ค. ์ด ๋ง์ด ๋ฌด์Šจ ๋ฌธ์ œ๊ฐ€ ์žˆ์„๊นŒ์š”?
07:20
It doesn't matter whether you're a guy or girl,
157
440260
3000
๋‚จ์„ฑ, ์—ฌ์„ฑ์ด ๋ฌธ์ œ๊ฐ€ ๋˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค,
07:23
everyone's brains are like spaghetti.
158
443260
3000
๋ชจ๋“  ์‚ฌ๋žŒ๋“ค์˜ ๋‡Œ๋Š” ์ŠคํŒŒ๊ฒŒํ‹ฐ์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค.
07:26
Or maybe really, really fine capellini with branches.
159
446260
3000
ํ˜น์€ ์ •๋ง๋กœ ๊ฐ€์ง€๊ฐ€ ์—ฌ๋Ÿฌ๊ฐœ ๋‹ฌ๋ฆฐ ์นดํŽ ๋ผ๋‹ˆ(ํŒŒ์Šคํƒ€)์ผ ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
07:30
Just as one strand of spaghetti
160
450260
2000
๋‹จ์ง€ ํ•˜๋‚˜์˜ ์ŠคํŒŒ๊ฒŒํ‹ฐ ๊ฐ€๋‹ฅ์ด
07:32
contacts many other strands on your plate,
161
452260
3000
์ ‘์‹œ์— ๋†“์ธ ๋งŽ์€ ๋‹ค๋ฅธ ๊ฐ€๋‹ฅ๊ณผ ์ ‘์ด‰ํ•˜๋Š” ๊ฒƒ์ฒ˜๋Ÿผ ๋ง์ด์ฃ ,
07:35
one neuron touches many other neurons
162
455260
2000
ํ•˜๋‚˜์˜ ๋‰ด๋Ÿฐ์€ ๋งŽ์€ ๋‹ค๋ฅธ ๋‰ด๋Ÿฐ๊ณผ ์ ‘์ด‰ํ•ฉ๋‹ˆ๋‹ค
07:37
through their entangled branches.
163
457260
2000
๊ทธ๋“ค์˜ ๊ผฌ์ธ ๊ฐ€์ง€๋ฅผ ํ†ตํ•ด์„œ ๋ง์ด์ฃ .
07:39
One neuron can be connected to so many other neurons,
164
459260
3000
ํ•˜๋‚˜์˜ ๋‰ด๋Ÿฐ์€ ๋งค์šฐ ๋งŽ์€ ๋‹ค๋ฅธ ๋‰ด๋Ÿฐ๋“ค๊ณผ ์—ฐ๊ฒฐ ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค,
07:42
because there can be synapses
165
462260
2000
์ ‘์ด‰์‹œ์— ๊ทธ๊ณณ์— ์‹œ๋ƒ…์Šค๊ฐ€
07:44
at these points of contact.
166
464260
3000
์กด์žฌํ•  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
07:49
By now, you might have sort of lost perspective
167
469260
3000
์ง€๊ธˆ๊นŒ์ง€, ์—ฌ๋Ÿฌ๋ถ„๋“ค๊ป˜์„œ ๋‡Œ ์กฐ์ง์„ ๋‹ค๋ฃฌ ์ด ํ๋ธŒ๊ฐ€ ์‹ค์ œ๋กœ
07:52
on how large this cube of brain tissue actually is.
168
472260
3000
์–ผ๋งˆ๋‚˜ ํฐ์ง€์— ๋Œ€ํ•œ ๊ฒฌํ•ด๋ฅผ ์žƒ์œผ์…จ์„์ง€๋„ ๋ชจ๋ฆ…๋‹ˆ๋‹ค.
07:55
And so let's do a series of comparisons to show you.
169
475260
3000
ํ•˜๋‚˜์˜ ์‹œ๋ฆฌ์ฆˆ ๋น„๊ต ์ž‘์—…์„ ํ•ด ์—ฌ๋Ÿฌ๋ถ„๊ป˜ ๋ณด์—ฌ๋“œ๋ฆฌ์ฃ .
07:58
I assure you, this is very tiny. It's just six microns on a side.
170
478260
3000
์ €๋Š” ์ด๊ฒƒ์ด ๋งค์šฐ ์ž‘๋‹ค๊ณ  ํ™•์‹ ํ•ฉ๋‹ˆ๋‹ค, ์ด๊ฒƒ์€ ๋‹จ์ง€ ํ•œ๋ฉด์— 6 ๋ฏธํฌ๋ก ์ž…๋‹ˆ๋‹ค.
08:03
So, here's how it stacks up against an entire neuron.
171
483260
3000
์—ฌ๊ธฐ ์ด์ œ์ ์ธ ๋‰ด๋Ÿฐ์— ๋ฐ˜ํ•˜์—ฌ ์ด๊ฒƒ๋“ค์„ ์Œ“์•„์˜ฌ๋ฆฌ๋Š” ๋ฐฉ๋ฒ•์ด ์žˆ์Šต๋‹ˆ๋‹ค.
08:06
And you can tell that, really, only the smallest fragments of branches
172
486260
3000
๋‹จ์ง€ ๊ฐ€์žฅ ์ž‘์€ ๊ฐ€์ง€์˜ ๋ถ€๋ถ„์ด ์ด ํ๋ธŒ์•ˆ์— ํฌํ•จ๋˜์–ด ์žˆ๋‹ค๊ณ 
08:09
are contained inside this cube.
173
489260
3000
๋งํ•˜์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
08:12
And a neuron, well, that's smaller than brain.
174
492260
3000
ํ•˜๋‚˜์˜ ๋‰ด๋Ÿฐ, ์Œ, ๊ทธ๊ฒƒ๋“ค์€ ๋‡Œ๋ณด๋‹ค ์ž‘์Šต๋‹ˆ๋‹ค.
08:17
And that's just a mouse brain --
175
497260
2000
๊ทธ๊ฒƒ์€ ๋‹จ์ง€ ์ฅ์˜ ๋‡Œ์ž…๋‹ˆ๋‹ค.
08:21
it's a lot smaller than a human brain.
176
501260
3000
์ธ๊ฐ„์˜ ๋‡Œ ๋ณด๋‹ค ๋งŽ์ด ์ž‘์Šต๋‹ˆ๋‹ค.
08:25
So when show my friends this,
177
505260
2000
์ด๋ ‡๊ฒŒ ์นœ๊ตฌ์—๊ฒŒ ์ด๊ฒƒ์„ ๋ณด์—ฌ์คฌ์„ ๋•Œ,
08:27
sometimes they've told me,
178
507260
2000
๋•Œ๋•Œ๋กœ ๊ทธ๋“ค์€ ์ €์—๊ฒŒ ๋งํ–ˆ์—ˆ์ฃ ,
08:29
"You know, Sebastian, you should just give up.
179
509260
3000
"์„ธ๋ฐ”์Šค์ฐฌ, ์•Œ๋‹ค์‹œํ”ผ ํฌ๊ธฐํ•ด์•ผ๋งŒ ํ•ด.
08:32
Neuroscience is hopeless."
180
512260
2000
์‹ ๊ฒฝ๊ณผํ•™์€ ํฌ๋ง์ด ์—†์–ด."
08:34
Because if you look at a brain with your naked eye,
181
514260
2000
์™œ๋ƒํ•˜๋ฉด ๋งŒ์•ฝ ์—ฌ๋Ÿฌ๋ถ„๊ป˜์„œ ํ•˜๋‚˜์˜ ๋‡Œ๋ฅผ ์žˆ๋Š” ๊ทธ๋Œ€๋กœ ๋ณธ๋‹ค๋ฉด,
08:36
you don't really see how complex it is,
182
516260
2000
๋‡Œ์˜ ๋ณต์žก์„ฑ์„ ์ •๋ง๋กœ ์ดํ•ดํ•˜์‹œ์ง€ ๋ชปํ•ฉ๋‹ˆ๋‹ค,
08:38
but when you use a microscope,
183
518260
2000
ํ•˜์ง€๋งŒ ํ˜„๋ฏธ๊ฒฝ์„ ์‚ฌ์šฉํ•  ๋•Œ,
08:40
finally the hidden complexity is revealed.
184
520260
3000
๊ฒฐ๊ตญ ๊ทธ ์ˆจ๊ฒจ์ง„ ๋ณต์žก์„ฑ์ด ๋ฐํ˜€์ง‘๋‹ˆ๋‹ค.
08:45
In the 17th century,
185
525260
2000
17์„ธ๊ธฐ์—,
08:47
the mathematician and philosopher, Blaise Pascal,
186
527260
2000
์ˆ˜ํ•™์ž์ด๋ฉฐ, ์ฒ ํ•™๊ฐ€์ธ ๋ธ”๋ ˆ์ด์ฆˆ ํŒŒ์Šค์นผ์€,
08:49
wrote of his dread of the infinite,
187
529260
3000
๋Š์ž„์—†๋Š” ๊ทธ์˜ ๋‘๋ ด์›€,
08:52
his feeling of insignificance
188
532260
2000
๊ทธ์˜ ์‚ฌ์†Œํ•œ ๊ฐ์ •์„
08:54
at contemplating the vast reaches of outer space.
189
534260
3000
๊ฑฐ๋Œ€ํ•œ ์šฐ์ฃผ๊ณต๊ฐ„์„ ์ƒ๊ฐํ•  ๋•Œ ๊ธฐ์ˆ ํ–ˆ์Šต๋‹ˆ๋‹ค.
08:59
And, as a scientist,
190
539260
2000
๊ณผํ•™์ž๋กœ์จ,
09:01
I'm not supposed to talk about my feelings --
191
541260
3000
์ €๋Š” ์ €์˜ ๊ฐ์ •์— ๊ด€ํ•ด ๋งํ•ด์„œ๋Š” ์•ˆ ๋ฉ๋‹ˆ๋‹ค.
09:04
too much information, professor.
192
544260
2000
๋„ˆ๋ฌด ๋งŽ์€ ์ •๋ณด์˜ˆ์š”, ๊ต์ˆ˜๋‹˜.
09:06
(Laughter)
193
546260
2000
(์›ƒ์Œ)
09:08
But may I?
194
548260
2000
ํ•˜์ง€๋งŒ ์ œ๊ฐ€?
09:10
(Laughter)
195
550260
2000
(์›ƒ์Œ)
09:12
(Applause)
196
552260
2000
(๋ฐ•์ˆ˜)
09:14
I feel curiosity,
197
554260
2000
์ €๋Š” ํ˜ธ๊ธฐ์‹ฌ์„ ๋Š๊ผˆ๊ณ ,
09:16
and I feel wonder,
198
556260
2000
๊ถ๊ธˆํ–ˆ์—ˆ์ฃ ,
09:18
but at times I have also felt despair.
199
558260
3000
ํ•˜์ง€๋งŒ ๊ทธ ๋‹น์‹œ ์ €๋Š” ๋˜ํ•œ ์ขŒ์ ˆํ–ˆ์—ˆ์Šต๋‹ˆ๋‹ค.
09:22
Why did I choose to study
200
562260
2000
๋‚ด๊ฐ€ ์™œ ์ด๋์ด ์—†์„์ง€๋„ ๋ชจ๋ฅด๋Š”
09:24
this organ that is so awesome in its complexity
201
564260
3000
๋ณต์žก์„ฑ์„ ๋ˆ ๋†€๋ผ์šด ๊ธฐ๊ด€์„
09:27
that it might well be infinite?
202
567260
2000
์—ฐ๊ตฌํ•˜๋ ค ์„ ํƒํ–ˆ์„๊นŒ?
09:29
It's absurd.
203
569260
2000
์–ด๋ฆฌ์„์—ˆ์ฃ .
09:31
How could we even dare to think
204
571260
2000
์šฐ๋ฆฌ๊ฐ€ ๊ฐํžˆ ์–ด๋–ป๊ฒŒ ์ด๊ฒƒ์„
09:33
that we might ever understand this?
205
573260
3000
์ดํ•ดํ• ์ˆ˜ ์žˆ์„์ง€ ๋ชจ๋ฅธ๋‹ค๊ณ  ์ƒ๊ฐํ•  ์ˆ˜ ์žˆ์—ˆ์„๊นŒ์š”?
09:38
And yet, I persist in this quixotic endeavor.
206
578260
3000
์•„์ง๋„, ์ €๋Š” ์ด ๊ณต์ƒ์ ์ธ ์—ฐ๊ตฌ๋ฅผ ๊ณ„์†ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
09:41
And indeed, these days I harbor new hopes.
207
581260
3000
์‹ค์ œ๋กœ, ์š”์ฆ˜์— ์ €๋Š” ์ƒˆ๋กœ์šด ํฌ๋ง์„ ํ’ˆ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
09:45
Someday,
208
585260
2000
์–ธ์  ๊ฐ€,
09:47
a fleet of microscopes will capture
209
587260
2000
ํ˜„๋ฏธ๊ฒฝ ํ•จ๋Œ€๊ฐ€ ๊ฑฐ๋Œ€ํ•œ ์ •๋ณด ์ด๋ฏธ์ง€์˜
09:49
every neuron and every synapse
210
589260
2000
๋ชจ๋“  ๋‰ด๋Ÿฐ๊ณผ ์‹œ๋ƒ…์Šค๋ฅผ
09:51
in a vast database of images.
211
591260
3000
ํฌ์ฐฉํ•˜๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
09:54
And some day, artificially intelligent supercomputers
212
594260
3000
์–ธ์  ๊ฐ€, ์ธ๊ณต์ ์œผ๋กœ ์ง€์  ์Šˆํผ์ปดํ“จํ„ฐ๋“ค์ด ์ธ๊ฐ„์˜ ๋ณด์กฐ ๋„์›€์—†์ด
09:57
will analyze the images without human assistance
213
597260
3000
์ฝ”๋„ฅํ…€์— ์žˆ๋Š” ์ด๋ฏธ์ง€๋“ค์„ ํ•˜๋‚˜๋กœ ๋ฌถ๊ธฐ ์œ„ํ•ด
10:00
to summarize them in a connectome.
214
600260
3000
์ด ์ด๋ฏธ์ง€๋ฅผ ๋ถ„์„ํ•˜๊ฒŒ ๋  ๊ฒƒ ์ž…๋‹ˆ๋‹ค.
10:04
I do not know, but I hope that I will live to see that day,
215
604260
3000
๋ชจ๋ฆ…๋‹ˆ๋‹ค, ํ•˜์ง€๋งŒ ๊ทธ๋‚ ์„ ๋ณผ ์ˆ˜ ์žˆ๊ฒŒ ๋˜๊ธฐ๋ฅผ ๋ฐ”๋ž๋‹ˆ๋‹ค.
10:08
because finding an entire human connectome
216
608260
2000
์ข…ํ•ฉ์ ์ธ ์ธ๊ฐ„์˜ ์ฝ”๋„ฅํ…€์„ ์ฐพ๋Š” ์ž‘์—…์€
10:10
is one of the greatest technological challenges of all time.
217
610260
3000
๊ฐ€์žฅ ์œ„๋Œ€ํ•œ ๊ธฐ์ˆ ์  ๋„์ „ ์ค‘ ํ•˜๋‚˜์ด๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
10:13
It will take the work of generations to succeed.
218
613260
3000
์ด๊ฒƒ์€ ๋‹น๋Œ€ ์ตœ๊ณ ์˜ ์„ฑ๊ณต๋ฐ˜์—ด์— ์ด๋ฅด๋Š” ์ž‘ํ’ˆ์ด ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
10:17
At the present time, my collaborators and I,
219
617260
3000
ํ˜„์žฌ, ์ œ ๋™๋ฃŒ์™€ ์ €๋Š”,
10:20
what we're aiming for is much more modest --
220
620260
2000
์šฐ๋ฆฌ๊ฐ€ ๋ชฉ์ ์œผ๋กœ ๋‘๊ณ  ์žˆ๋Š” ๊ฒƒ์€ ์ž‘์€ ๋ฉ์–ด๋ฆฌ์˜
10:22
just to find partial connectomes
221
622260
2000
์‚ฌ๋žŒ๊ณผ ์ฅ์˜ ๋‡Œ์— ๋Œ€ํ•œ ๋ถ€๋ถ„์ ์ธ ์ฝ”๋„ฅํ…€์„
10:24
of tiny chunks of mouse and human brain.
222
624260
3000
์ฐพ๊ธฐ ์œ„ํ•ด ์‹ ์ค‘์„ ๊ฐ€ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
10:27
But even that will be enough for the first tests of this hypothesis
223
627260
3000
ํ•˜์ง€๋งŒ ์‹ฌ์ง€์–ด ๊ทธ๊ฒƒ์€ ๋‚˜๋Š” ๋‚˜์˜ ์ฝ”๋„ฅํ…€์ด๋‹ค๋ผ๋Š” ์ด ๊ฐ€์„ค์„
10:30
that I am my connectome.
224
630260
3000
์ฒซ ๋ฒˆ์งธ๋กœ ๊ฒ€์‚ฌํ•˜๋Š”๋ฐ ์ถฉ๋ถ„ํ•ฉ๋‹ˆ๋‹ค.
10:35
For now, let me try to convince you of the plausibility of this hypothesis,
225
635260
3000
๋‹น๋ถ„๊ฐ„, ์—ฌ๋Ÿฌ๋ถ„๊ป˜ ์ด ๊ฐ€์„ค์„ ๊ทธ๋Ÿด๋“ฏํ•จ์„ ํ™•์‹ ์‹œํ‚ค๋””๋ก ์‹œ๋„ํ•ด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค,
10:38
that it's actually worth taking seriously.
226
638260
3000
์‹ค์ œ๋กœ ์‹ฌ๊ฐํ•˜๊ฒŒ ๋ฐ›์•„๋“ค์ผ ๊ฐ€์น˜๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
10:42
As you grow during childhood
227
642260
2000
์œ ๋…„๊ธฐ ๋™์•ˆ ์„ฑ์žฅํ•ด
10:44
and age during adulthood,
228
644260
3000
์„ฑ์ธ์ด ๋˜์–ด ๋‚˜์ด๋ฅผ ๋จน์„ ๋•Œ,
10:47
your personal identity changes slowly.
229
647260
3000
์—ฌ๋Ÿฌ๋ถ„์˜ ์ •์ฒด์„ฑ์€ ์ฒœ์ฒœํžˆ ๋ณ€ํ•ฉ๋‹ˆ๋‹ค.
10:50
Likewise, every connectome
230
650260
2000
๋ชจ๋“  ์ฝ”๋„ฅํ…€์ด ์‹œ๊ฐ„์ด ํ˜๋Ÿฌ
10:52
changes over time.
231
652260
2000
๋ณ€ํ•˜๋Š” ๊ฒƒ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค.
10:55
What kinds of changes happen?
232
655260
2000
์–ด๋–ค ์ข…๋ฅ˜์˜ ๋ณ€ํ™”๊ฐ€ ์žˆ์„๊นŒ์š”?
10:57
Well, neurons, like trees,
233
657260
2000
์Œ, ๋‰ด๋Ÿฐ์€ ๋‚˜๋ฌด์ฒ˜๋Ÿผ,
10:59
can grow new branches,
234
659260
2000
์ƒˆ๋กœ์šด ๊ฐ€์ง€๊ฐ€ ์ž๋ž๋‹ˆ๋‹ค,
11:01
and they can lose old ones.
235
661260
3000
์˜ค๋ž˜๋œ ๊ฒƒ์„ ์žƒ์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
11:04
Synapses can be created,
236
664260
3000
์‹œ๋ƒ…์Šค๋Š” ๋งŒ๋“ค์–ด์ง€๊ธฐ๋„ ํ•˜๊ณ 
11:07
and they can be eliminated.
237
667260
3000
์—†์–ด์ง€๊ธฐ๋„ ํ•ฉ๋‹ˆ๋‹ค.
11:10
And synapses can grow larger,
238
670260
2000
์‹œ๋ƒ…์Šค๋“ค์€ ๋” ์ปค์งˆ์ˆ˜๋„ ์žˆ๊ณ 
11:12
and they can grow smaller.
239
672260
3000
์ž‘์•„์งˆ ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
11:15
Second question:
240
675260
2000
๋‘๋ฒˆ ์งธ ์งˆ๋ฌธ;
11:17
what causes these changes?
241
677260
3000
๋ฌด์—‡์ด ์ด ๋ณ€ํ™”๋“ค์„ ์•ผ๊ธฐํ• ๊นŒ์š”?
11:20
Well, it's true.
242
680260
2000
์Œ, ์‚ฌ์‹ค์ž…๋‹ˆ๋‹ค.
11:22
To some extent, they are programmed by your genes.
243
682260
3000
์–ด๋Š์ •๋„, ์—ฌ๋Ÿฌ๋ถ„์˜ ์œ ์ „์ž์— ์˜ํ•ด ํ”„๋กœ๊ทธ๋žจํ™” ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
11:25
But that's not the whole story,
244
685260
2000
ํ•˜์ง€๋งŒ ๊ทธ๊ฒƒ์ด ๋ชจ๋“  ๊ฒƒ์„ ๋Œ€๋ณ€ํ•˜์ง€๋Š” ์•Š์Šต๋‹ˆ๋‹ค.
11:27
because there are signals, electrical signals,
245
687260
2000
์ „๊ธฐ์  ์‹ ํ˜ธ๊ฐ€ ์žˆ๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค,
11:29
that travel along the branches of neurons
246
689260
2000
์ด ์‹ ํ˜ธ๋Š” ๋‰ด๋Ÿฐ ๊ฐ€์ง€๋ฅผ ๋”ฐ๋ผ ์—ฌํ–‰ํ•ฉ๋‹ˆ๋‹ค
11:31
and chemical signals
247
691260
2000
๊ทธ๋ฆฌ๊ณ  ํ™”ํ•™์  ์‹ ํ˜ธ๋“ค์€
11:33
that jump across from branch to branch.
248
693260
2000
๊ฐ€์ง€์—์„œ ๊ฐ€์ง€๋กœ ๊ฑด๋„ˆ๋œ๋‹ˆ๋‹ค.
11:35
These signals are called neural activity.
249
695260
3000
์ด ์‹ ํ˜ธ๋“ค์€ ์‹ ๊ฒฝํ™œ๋™์ด๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค.
11:38
And there's a lot of evidence
250
698260
2000
๋งŽ์€ ์ฆ๊ฑฐ๋“ค์ด ์žˆ์Šต๋‹ˆ๋‹ค
11:40
that neural activity
251
700260
3000
์‹ ๊ฒฝํ™œ๋™์€
11:43
is encoding our thoughts, feelings and perceptions,
252
703260
3000
์šฐ๋ฆฌ์˜ ์ƒ๊ฐ, ๊ฐ์ •, ์ง€๊ฐ, ์ •์‹  ๊ฒฝํ—˜์„
11:46
our mental experiences.
253
706260
2000
์•”ํ˜ธํ™”ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
11:48
And there's a lot of evidence that neural activity
254
708260
3000
์‹ ๊ฒฝํ™œ๋™์ด ์—ฐ๊ฒฐ๋“ค์˜ ๋ณ€ํ™”๋ฅผ ์•ผ๊ธฐ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค๋Š”
11:51
can cause your connections to change.
255
711260
3000
๋งŽ์€ ์ฆ๊ฑฐ๋“ค์ด ์žˆ์Šต๋‹ˆ๋‹ค.
11:54
And if you put those two facts together,
256
714260
3000
๋งŒ์•ฝ ์ด ๋‘๊ฐ€์ง€ ์‚ฌ์‹ค์„ ํ•˜๋‚˜๋กœ ๋†“๋Š”๋‹ค๋ฉด,
11:57
it means that your experiences
257
717260
2000
์—ฌ๋Ÿฌ๋ถ„์˜ ๊ฒฝํ—˜์€ ์ฝ”๋„ฅํ…€์„
11:59
can change your connectome.
258
719260
3000
๋ณ€ํ™”์‹œํ‚ฌ ์ˆ˜ ์žˆ์Œ์„ ๋œปํ•ฉ๋‹ˆ๋‹ค.
12:02
And that's why every connectome is unique,
259
722260
2000
์ด๋Ÿฌํ•œ ์ด์œ ๋กœ ๋ชจ๋“  ์ฝ”๋„ฅํ…€์€ ๋…ํŠนํ•ฉ๋‹ˆ๋‹ค,
12:04
even those of genetically identical twins.
260
724260
3000
์‹ฌ์ง€์–ด ์œ ์ „์ ์œผ๋กœ ์ผ๋ž€์„ฑ ์Œ๋‘ฅ์ด๋„ ๋ง์ž…๋‹ˆ๋‹ค.
12:08
The connectome is where nature meets nurture.
261
728260
3000
์ด ์ฝ”๋„ฅํ…€์€ ๋ณธ์„ฑ๊ณผ ์–‘์œก์ด ๋งŒ๋‚  ๋•Œ์ž…๋‹ˆ๋‹ค.
12:12
And it might true
262
732260
2000
๋‹จ์ง€ ์ƒ๊ฐํ•˜๋Š” ํ™œ๋™์ด
12:14
that just the mere act of thinking
263
734260
2000
์ฝ”๋„ฅํ…€์„ ๋ณ€ํ™”์‹คํ‚ฌ ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์ด
12:16
can change your connectome --
264
736260
2000
์‚ฌ์‹ค์ผ์ง€๋„ ๋ชจ๋ฆ…๋‹ˆ๋‹ค --
12:18
an idea that you may find empowering.
265
738260
3000
๊ถŒ๋ ฅ์ด์ž„์„ ์ฐพ์„์ง€๋„ ๋ชจ๋ฅด๋Š” ์•„์ด๋””์–ด๋ผ๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
12:24
What's in this picture?
266
744260
2000
์‚ฌ์ง„์—์„œ ๋ฌด์—‡์ด ์žˆ๋‚˜์š”?
12:28
A cool and refreshing stream of water, you say.
267
748260
3000
์‹œ์›ํ•˜๊ณ  ์ƒ์พŒํ•œ ๊ฐœ์šธ๋ฌผ์ด ์žˆ๋‹ค๊ณ  ๋งํ•˜์‹œ๊ฒ ์ฃ .
12:32
What else is in this picture?
268
752260
2000
๊ทธ๋ฐ–์— ์‚ฌ์ง„์— ๋ฌด์—‡์ด ์žˆ๋‚˜์š”?
12:37
Do not forget that groove in the Earth
269
757260
2000
์ง€๊ตฌ์ƒ์— ์žˆ๋Š” ๊ฐ•์„ ์ด
12:39
called the stream bed.
270
759260
3000
๊ฐœ์šธ ๋ฐ”๋‹ฅ์„ ์—ฐ์ƒ์‹œํ‚จ๋‹ค๋Š” ๊ฒƒ์„ ์žŠ์ง€๋งˆ์„ธ์š”.
12:42
Without it, the water would not know in which direction to flow.
271
762260
3000
๊ฐ•์„  ์—†์ด๋Š”, ๋ฌผ์ด ์–ด๋Š ๋ฐฉํ–ฅ์œผ๋กœ ํ๋ฅผ์ง€ ๋ชจ๋ฆ…๋‹ˆ๋‹ค.
12:45
And with the stream,
272
765260
2000
๊ฐœ์šธ๋ฌผ์—,
12:47
I would like to propose a metaphor
273
767260
2000
์ €๋Š” ์€์œ ์ ์ธ ํ‘œํ˜„์„ ์ œ์•ˆํ•˜๊ณ  ํ•ฉ๋‹ˆ๋‹ค
12:49
for the relationship between neural activity
274
769260
2000
์‹ ๊ฒฝํ™œ๋™๊ณผ ์—ฐ๊ฒฐ ์‚ฌ์ด์˜ ๊ด€๊ณ„์—
12:51
and connectivity.
275
771260
2000
๊ด€ํ•œ ๊ฒƒ์ด์ฃ .
12:54
Neural activity is constantly changing.
276
774260
3000
์‹ ๊ฒฝํ™œ๋™์€ ์ง€์†์ ์œผ๋กœ ๋ณ€ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
12:57
It's like the water of the stream; it never sits still.
277
777260
3000
๊ฐœ์šธ๋ฌผ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค. ์ ˆ๋Œ€๋กœ ๋ฉˆ์ถ”์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
13:00
The connections
278
780260
2000
๋‡Œ์˜ ์‹ ๊ฒฝ ๋„คํŠธ์›Œํฌ์˜
13:02
of the brain's neural network
279
782260
2000
์—ฐ๊ฒฐ๋“ค์€
13:04
determines the pathways
280
784260
2000
์‹ ๊ฒฝํ™œ๋™์ด ๋”ฐ๋ผ ํ๋ฅด๋Š”
13:06
along which neural activity flows.
281
786260
2000
๋ฐฉํ–ฅ ๊ธธ์„ ๊ฒฐ์ •ํ•ฉ๋‹ˆ๋‹ค.
13:08
And so the connectome is like bed of the stream;
282
788260
3000
์ด๋ ‡๊ฒŒ ์ฝ”๋„ฅํ…€์€ ํ•˜์ฒœ ๋ฐ”๋‹ฅ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค.
13:13
but the metaphor is richer than that,
283
793260
3000
ํ•˜์ง€๋งŒ ์€์œ ๋Š” ๊ทธ๊ฒƒ๋ณด๋‹ค ์ข€๋” ํ’๋ถ€ํ•˜๊ฒŒ ํ‘œํ˜„ํ•˜์ฃ .
13:16
because it's true that the stream bed
284
796260
3000
ํ•˜์ฒœ ๋ฐ”๋‹ฅ์ด ๋ฌผ์˜ ํ๋ฆ„์„
13:19
guides the flow of the water,
285
799260
2000
์˜ค๋žœ์‹œ๊ฐ„๋™ ์ด๋Œ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ,
13:21
but over long timescales,
286
801260
2000
๋ฌผ์€ ๋˜ํ•œ ํ•˜์ฒœ์˜ ๋ฐ”๋‹ฅ์„
13:23
the water also reshapes the bed of the stream.
287
803260
3000
์žฌํ˜•์„ฑํ•œ๋‹ค๋Š” ๊ฒƒ์ด ์‚ฌ์‹ค์ด๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
13:26
And as I told you just now,
288
806260
2000
์ œ๊ฐ€ ๋‹จ์ง€ ์ด์•ผ๊ธฐ ํ–ˆ๋˜ ๊ฒƒ์ฒ˜๋Ÿผ,
13:28
neural activity can change the connectome.
289
808260
3000
์‹ ๊ฒฝ ํ™œ๋™์€ ์ฝ”๋„ฅํ…€์„ ๋ณ€ํ™”์‹œํ‚ฌ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
13:33
And if you'll allow me to ascend
290
813260
2000
์—ฌ๋Ÿฌ๋ถ„๊ป˜์„œ ์ œ๊ฐ€ ์€์œ ์ ์ธ ํ‘œํ˜„์„
13:35
to metaphorical heights,
291
815260
3000
์‚ฌ์šฉํ•˜๋„๋ก ํ—ˆ์šฉํ•˜์‹ ๋‹ค๋ฉด,
13:38
I will remind you that neural activity
292
818260
3000
์—ฌ๋Ÿฌ๋ถ„๊ป˜ ์‹ ๊ฒฝํ™œ๋™์ด ๋ฌผ๋ฆฌ์  ๊ธฐ๋ฐ˜์ด๋ผ๋Š” ๊ฒƒ์„
13:41
is the physical basis -- or so neuroscientists think --
293
821260
2000
์ƒ๊ธฐ์‹œํ‚ฌ ๊ฒƒ์ž…๋‹ˆ๋‹ค -- ๊ทธ๋ž˜์„œ ์‹ ๊ฒฝ๊ณผํ•™์ž๋“ค์€
13:43
of thoughts, feelings and perceptions.
294
823260
3000
์ƒ๊ฐ, ๊ฐ์ •, ์ธ์ง€๋ฅผ ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
13:46
And so we might even speak of
295
826260
2000
๋˜ํ•œ ์šฐ๋ฆฌ๋Š” ์‹ฌ์ง€์–ด ์˜์‹์˜ ํ๋ฆ„์— ๋Œ€ํ•ด
13:48
the stream of consciousness.
296
828260
2000
๋งํ•˜์ง€๋„ ๋ชจ๋ฆ…๋‹ˆ๋‹ค.
13:50
Neural activity is its water,
297
830260
3000
์‹ ๊ฒฝํ™œ๋™์€ ํ•˜์ฒœ ํ๋ฆ„๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค,
13:53
and the connectome is its bed.
298
833260
3000
์ฝ”๋„ฅํ…€์€ ํ•˜์ฒœ ๋ฐ”๋‹ฅ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค.
13:57
So let's return from the heights of metaphor
299
837260
2000
์€์œ ์  ํ‘œํ˜„์œผ๋กœ ๋‹ค์‹œ ๋Œ์•„๊ฐ€์„œ
13:59
and return to science.
300
839260
2000
๊ณผํ•™์œผ๋กœ ๋Œ์•„๊ฐ€ ๋ณด์ฃ .
14:01
Suppose our technologies for finding connectomes
301
841260
2000
์ฝ”๋„ฅํ…€์„ ์ฐพ๋Š” ์šฐ๋ฆฌ์˜ ๊ธฐ์ˆ ์ด ์‹ค์ œ๋กœ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ๋‹ค๊ณ 
14:03
actually work.
302
843260
2000
๊ฐ€์ •ํ•ด๋ณด์‹ญ๋‹ค.
14:05
How will we go about testing the hypothesis
303
845260
2000
"๋‚˜๋Š” ๋‚˜์˜ ์ฝ”๋„ฅํ…€์ด๋‹ค."๋ผ๋Š” ์ด ๊ฐ€์„ค ๊ฒ€์‚ฌ์— ๋Œ€ํ•ด
14:07
"I am my connectome?"
304
847260
3000
์šฐ๋ฆฌ๊ฐ€ ์–ด๋–ป๊ฒŒ ๋‚˜์•„๊ฐ€๊ฒŒ ๋ ๊นŒ์š”?
14:10
Well, I propose a direct test.
305
850260
3000
์Œ, ์ €๋Š” ์ง์ ‘์ ์ธ ๊ฒ€์‚ฌ๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค.
14:13
Let us attempt
306
853260
2000
์ฝ”๋„ฅํ…€์— ์žˆ๋Š”
14:15
to read out memories from connectomes.
307
855260
3000
๊ธฐ์–ต ์ฝ๊ธฐ๋ฅผ ์‹œ๋„ํ•ด ๋ด…์‹œ๋‹ค.
14:18
Consider the memory
308
858260
2000
๋ฒ ํ† ๋ฒค ์†Œ๋‚˜ํƒ€๋ฅผ
14:20
of long temporal sequences of movements,
309
860260
3000
์—ฐ์ฃผํ•˜๋Š” ํ”ผ์•„๋‹ˆ์ŠคํŠธ์˜ ์›€์ง์ž„์ฒ˜๋Ÿผ ์˜ค๋ž˜๋œ ์‹œ๊ฐ„๋™์•ˆ
14:23
like a pianist playing a Beethoven sonata.
310
863260
3000
ํŠน์ •ํ•œ ๋ฐฐ์—ด์„ ๊ฐ€์ง„ ๊ธฐ์–ต์„ ์ƒ๊ธฐํ•ด๋ณด์„ธ์š”.
14:26
According to a theory that dates back to the 19th century,
311
866260
3000
19์„ธ๊ธฐ๋กœ ์ด๋ก ์— ๋”ฐ๋ฅด๋ฉด,
14:29
such memories are stored
312
869260
2000
๊ทธ๋Ÿฐ ๊ธฐ์–ต๋“ค์€ ๋‡Œ ์•ˆ์— ์žˆ๋Š”
14:31
as chains of synaptic connections inside your brain.
313
871260
3000
์‹œ๋ƒ…์Šค ์—ฐ๊ฒฐ ์ฒด์ธ์œผ๋กœ ์ €์žฅ๋˜์–ด์žˆ์Šต๋‹ˆ๋‹ค.
14:35
Because, if the first neurons in the chain are activated,
314
875260
3000
์™œ๋ƒํ•˜๋ฉด, ๊ทธ ์ฒด์ธ ์•ˆ์— ์žˆ๋Š” ์ฒซ ๋ฒˆ์งธ ๋‰ด๋Ÿฐ์ด
14:38
through their synapses they send messages to the second neurons, which are activated,
315
878260
3000
์‹œ๋ƒ…์Šค๋ฅผ ํ†ตํ•ด ํ™œ์„ฑํ™”๊ฐ€ ๋œ๋‹ค๋ฉด ๋‰ด๋Ÿฐ์€ ํ™œ์„ฑํ™” ๋˜๋Š” ๋‘ ๋ฒˆ์งธ ๋‰ด๋Ÿฐ์—
14:41
and so on down the line,
316
881260
2000
๋ฉ”์„ธ์ง€๋ฅผ ์ „๋‹ฌํ•ฉ๋‹ˆ๋‹ค
14:43
like a chain of falling dominoes.
317
883260
2000
ํ•˜๋‚˜์˜ ๋–จ์–ด์ง€๊ณ  ์žˆ๋Š” ๋„๋ฏธ๋…ธ ์ฒด์ธ๊ณผ ๊ฐ™์ฃ .
14:45
And this sequence of neural activation
318
885260
2000
์ด๋Ÿฐ ์‹ ๊ฒฝํ™œ๋™์˜ ํŠน์ •ํ•œ ๋ฐฐ์—ด์€
14:47
is hypothesized to be the neural basis
319
887260
3000
์›€์ง์ž„์— ๊ด€ํ•œ ํŠน์ •ํ•œ ๋ฐฐ์—ด์˜
14:50
of those sequence of movements.
320
890260
2000
์‹ ๊ฒฝ๊ธฐ๋ฐ˜์ด ํ˜•์„ฑ ๋œ๋‹ค๊ณ  ๊ฐ€์ •ํ™” ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
14:52
So one way of trying to test the theory
321
892260
2000
์ด ์ด๋ก ์„ ๊ฒ€์‚ฌ ์‹œ๋„๋ฅผ ํ•˜๋Š” ํ•œ๊ฐ€์ง€ ๋ฐฉ๋ฒ•์€
14:54
is to look for such chains
322
894260
2000
์ฝ”๋„ฅํ…€ ์•ˆ์— ์žˆ๋Š”
14:56
inside connectomes.
323
896260
2000
์ฒด์ธ๋“ค์„ ์ฐพ์•„๋ณด๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
14:58
But it won't be easy, because they're not going to look like this.
324
898260
3000
ํ•˜์ง€๋งŒ ์ด๋Š” ์‰ฝ์ง€ ์•Š์Šต๋‹ˆ๋‹ค, ๊ทธ ๊ณผ์ •์€ ์ด์™€ ๊ฐ™๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
15:01
They're going to be scrambled up.
325
901260
2000
์ฒด์ธ๋“ค์€ ๋’ค์„ž์ด๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
15:03
So we'll have to use our computers
326
903260
2000
๊ทธ๋ž˜์„œ ์ด ์ฒด์ธ์„ ์ •๋ฆฌํ•˜๊ธฐ ์œ„ํ•ด
15:05
to try to unscramble the chain.
327
905260
3000
์ปดํ“จํ„ฐ๋ฅผ ์‚ฌ์šฉํ•ด์•ผ๋งŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
15:08
And if we can do that,
328
908260
2000
๋งŒ์•ฝ ์šฐ๋ฆฌ๊ฐ€ ์ด๊ฒƒ์„ ํ•  ์ˆ˜ ์žˆ๋‹ค๋ฉด,
15:10
the sequence of the neurons we recover from that unscrambling
329
910260
3000
์ด ๊ณผ์ •์„ ํ†ตํ•ด ํšŒ๋ณตํ•œ ํŠน์ €ํ•œ ๋ฐฐ์—ด์˜ ์‹ ๊ฒฝ๋“ค์€
15:13
will be a prediction of the pattern of neural activity
330
913260
3000
์‹ ๊ฒฝํ™œ๋™์˜ ํŒจํ„ด์„ ์˜ˆ์ธกํ•˜๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค
15:16
that is replayed in the brain during memory recall.
331
916260
3000
์ด ํ™œ๋™์€ ๊ธฐ์–ต์„ ์ƒ๊ธฐ์‹œํ‚ฌ ๋•Œ ๋‹ค์‹œ ์žฌ์ƒ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
15:19
And if that were successful,
332
919260
2000
๋งŒ์•ฝ ๊ทธ๊ฒƒ์ด ์„ฑ๊ณต์ ์ด๋ผ๋ฉด,
15:21
that would be the first example of reading a memory from a connectome.
333
921260
3000
๊ทธ๊ฒƒ์€ ์ฝ”๋„ฅํ…€์—์„œ ๊ธฐ์–ต์„ ์ฝ๋Š” ์ฒซ ๋ฒˆ์งธ ์‚ฌ๋ก€๊ฐ€ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
15:28
(Laughter)
334
928260
2000
(์›ƒ์Œ)
15:30
What a mess --
335
930260
2000
์•„์ฃผ ์—‰๋ง์ง„์ฐฝ์ด๊ตฐ์š”.
15:33
have you ever tried to wire up a system
336
933260
2000
์ด๊ฒƒ๊ณผ ๊ฐ™์€ ๋ณต์žกํ•œ ์‹œ์Šคํ…œ์„ ์—ฎ๊ธฐ๋ฅผ
15:35
as complex as this?
337
935260
2000
์‹œ๋„ํ•ด๋ณด์‹  ์ ์ด ์žˆ๋‚˜์š”?
15:37
I hope not.
338
937260
2000
์•„๋‹ˆ์‹œ๊ธฐ๋ฅผ ๋ฐ”๋ž๋‹ˆ๋‹ค.
15:39
But if you have, you know it's very easy to make a mistake.
339
939260
3000
ํ•˜์ง€๋งŒ ๋งŒ์•ฝ ๊ทธ๋žฌ๋‹ค๋ฉด, ์•Œ๋‹ค์‹œํ”ผ ์‹ค์ˆ˜ํ•˜๊ธฐ๋Š” ๋ฌด์ฒ™ ์‰ฝ์Šต๋‹ˆ๋‹ค.
15:45
The branches of neurons are like the wires of the brain.
340
945260
2000
๋‰ด๋Ÿฐ๋“ค์˜ ๊ฐ€์ง€๋“ค์€ ์„œ๋กœ ์–ฝํ˜€ ์žˆ๋Š” ๋‡Œ์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค.
15:47
Can anyone guess: what's the total length of wires in your brain?
341
947260
4000
๋‡Œ์˜ ์—ฐ๊ฒฐ ๋œ ์„ ๋“ค์˜ ์ด ๊ธธ์ด๊ฐ€ ์–ด๋Š์ •๋„ ๋˜๋Š”์ง€ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ์„๊นŒ์š”?
15:54
I'll give you a hint. It's a big number.
342
954260
2000
ํžŒํŠธ๋ฅผ ๋“œ๋ฆฌ๊ฒ ์Šต๋‹ˆ๋‹ค. ๋งค์šฐ ํฐ ์ˆซ์ž์ž…๋‹ˆ๋‹ค.
15:56
(Laughter)
343
956260
2000
(์›ƒ์Œ)
15:59
I estimate, millions of miles,
344
959260
3000
์ €๋Š” ์ธก์ •ํ–ˆ์Šต๋‹ˆ๋‹ค, ์ˆ˜๋ฐฑ๋งŒ ๋งˆ์ผ์ด์—ˆ์ฃ .
16:02
all packed in your skull.
345
962260
3000
๋ชจ๋“  ๊ฒƒ์ด ์—ฌ๋Ÿฌ๋ถ„ ๋จธ๋ฆฌ์— ๊ฝ‰ ์ฐจ์žˆ์Šต๋‹ˆ๋‹ค.
16:05
And if you appreciate that number,
346
965260
2000
๋งŒ์•ฝ ๊ทธ ์ˆซ์ž๋ฅผ ์ธก์ •ํ•˜์‹ ๋‹ค๋ฉด,
16:07
you can easily see
347
967260
2000
์—ฌ๋Ÿฌ๋ถ„๋“ค์€ ์‰ฝ๊ฒŒ
16:09
there is huge potential for mis-wiring of the brain.
348
969260
2000
์ž˜๋ชป๋œ ์—ฐ๊ฒฐ์„ ๊ฐ€์ง„ ๋‡Œ์— ๋Œ€ํ•œ ํฐ ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
16:11
And indeed, the popular press loves headlines like,
349
971260
3000
์‹ค์ œ๋กœ, ์–ธ๋ก ์€ ์ด ๊ฐ™์€ ์ œ๋ชฉ์„ ์ข‹์•„ํ•˜์ฃ ,
16:14
"Anorexic brains are wired differently,"
350
974260
2000
"์‹์š• ๋ถ€์ง„์ฆ ๋‡Œ๋Š” ๋‹ค๋ฅด๊ฒŒ ์—ฐ๊ฒฐ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค."
16:16
or "Autistic brains are wired differently."
351
976260
2000
ํ˜น์€"์žํ์ฆ ๋‡Œ๋Š” ๋‹ค๋ฅธ ์—ฐ๊ฒฐ์„ ๊ฐ€์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค."
16:18
These are plausible claims,
352
978260
2000
์ด๊ฒƒ๋“ค์€ ๊ทธ๋Ÿด๋“ฏํ•œ ์ฃผ์žฅ์ž…๋‹ˆ๋‹ค.
16:20
but in truth,
353
980260
2000
ํ•˜์ง€๋งŒ ์‹ค์ œ๋กœ,
16:22
we can't see the brain's wiring clearly enough
354
982260
2000
์šฐ๋ฆฌ๋Š” ๋ถ„๋ช…ํ•˜๊ฒŒ ์ถฉ๋ถ„ํžˆ ๊ทธ ์ฃผ์žฅ๋“ค์ด ์‚ฌ์‹ค์ด๋ผ๊ณ 
16:24
to tell if these are really true.
355
984260
2000
๋งํ•  ์ˆ˜ ์žˆ์„ ๋งŒํผ ํ™•์ธํ•  ์ˆ˜๋Š” ์—†์Šต๋‹ˆ๋‹ค.
16:26
And so the technologies for seeing connectomes
356
986260
3000
ํ•˜์ง€๋งŒ ์ฝ”๋„ฅํ…€์„ ๋ณด๋Š” ์ด ๊ธฐ์ˆ ์€
16:29
will allow us to finally
357
989260
2000
๊ฒฐ๊ตญ์—๋Š” ์—ฌ๋Ÿฌ๋ถ„๊ป˜
16:31
read mis-wiring of the brain,
358
991260
2000
์ž˜๋ชป ์—ฐ๊ฒฐ ๋œ ๋‡Œ๋ฅผ ์ฝ๋Š” ๊ฒƒ๊ณผ,
16:33
to see mental disorders in connectomes.
359
993260
3000
์ฝ”๋„ฅํ…€์•ˆ์˜ ์ •์‹ ๋ณ‘์„ ๋ณผ ์ˆ˜ ์žˆ๋„๋ก ํ—ˆ์šฉํ•˜๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
16:40
Sometimes the best way to test a hypothesis
360
1000260
3000
๋•Œ๋•Œ๋กœ ๊ฐ€์„ค์„ ๊ฒ€์‚ฌํ•˜๋Š” ๊ฐ€์žฅ ์ข‹์€ ๋ฐฉ๋ฒ•์€
16:43
is to consider its most extreme implication.
361
1003260
3000
๊ทน๋‹จ์ ์ธ ๋ฐฉ๋ฒ•์„ ๊ณ ๋ คํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
16:46
Philosophers know this game very well.
362
1006260
3000
์ฒ ํ•™์ž๋“ค์€ ์ด ๊ฒŒ์ž„์„ ๋งค์šฐ ์ž˜ ์••๋‹ˆ๋‹ค.
16:50
If you believe that I am my connectome,
363
1010260
3000
๋งŒ์•ฝ ๋‚˜๋Š” ๋‚˜์˜ ์ฝ”๋„ฅํ…€์ด๋‹ค๋ผ๋Š” ์‚ฌ์‹ค์„ ๋ฏฟ๋Š”๋‹ค๋ฉด,
16:53
I think you must also accept the idea
364
1013260
3000
์ €๋Š” ์—ฌ๋Ÿฌ๋ถ„๊ป˜์„œ ์ฃฝ์Œ์€ ์—ฌ๋Ÿฌ๋ถ„์˜
16:56
that death is the destruction
365
1016260
2000
์ฝ”๋„ฅํ…€์˜ ํŒŒ๊ดด๋ผ๋Š” ์ด ์•„์ด๋””์–ด
16:58
of your connectome.
366
1018260
3000
๋˜ํ•œ ๋ฐ›์•„๋“ค์—ฌ์•ผ ๋œ๋‹ค๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
17:02
I mention this because there are prophets today
367
1022260
3000
์™œ๋ƒํ•˜๋ฉด ์˜ค๋Š˜๋‚  ์ด ๊ธฐ์ˆ ์ด ๊ธฐ๋ณธ์ ์œผ๋กœ
17:05
who claim that technology
368
1025260
3000
์ธ๊ฐ„์˜ ์ƒํƒœ์™€ ์‹ฌ์ง€์–ด
17:08
will fundamentally alter the human condition
369
1028260
3000
์•„๋งˆ๋„ ์ธ์ข…์„ ๋ณ€ํ™”์‹œํ‚ค๊ฒŒ ๋ ๊ฑฐ๋ผ ์ฃผ์žฅํ•˜๋Š”
17:11
and perhaps even transform the human species.
370
1031260
3000
์„ ์ง€์ž๋“ค์ด ์žˆ๊ธฐ๋•Œ๋ฌธ์— ์ด ์•„์ด๋””์–ด๋ฅผ ์–ธ๊ธ‰ํ–ˆ์Šต๋‹ˆ๋‹ค.
17:14
One of their most cherished dreams
371
1034260
3000
๊ฐ€์žฅ ์†Œ์ค‘ํ–ˆ์—ˆ๋˜ ๊ฟˆ ์ค‘ ํ•˜๋‚˜๋Š”
17:17
is to cheat death
372
1037260
2000
์ฃฝ์Œ์„ ์†์ด๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค
17:19
by that practice known as cryonics.
373
1039260
2000
๋ƒ‰๋™ ๋ณด์กด์ˆ ์ด๋ผ๊ณ  ์•Œ๊ณ  ์žˆ๋Š” ๋ฐฉ๋ฒ•์— ์˜ํ•œ ๊ฒƒ์ด์ฃ .
17:21
If you pay 100,000 dollars,
374
1041260
2000
10 ๋งŒ$๋ฅผ ์ง€๋ถˆํ•˜์‹ ๋‹ค๋ฉด,
17:23
you can arrange to have your body frozen after death
375
1043260
3000
์ฃฝ์Œ ์ดํ›„ ์—ฌ๋Ÿฌ๋ถ„์˜ ์‹ ์ฒด๋ฅผ ์–ผ๋ฆฌ๋„๋ก ์กฐ์ •ํ•  ์ˆ˜ ์žˆ๊ณ 
17:26
and stored in liquid nitrogen
376
1046260
2000
์•„๋ฆฌ์กฐ๋‚˜ ์ฐฝ๊ณ ์— ์žˆ๋Š”
17:28
in one of these tanks in an Arizona warehouse,
377
1048260
2000
ํƒฑํฌ๋“ค ์ค‘ ํ•˜๋‚˜์— ์•ก์ฒด์งˆ์†Œ๋กœ ์ €์žฅํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค,
17:30
awaiting a future civilization
378
1050260
2000
์—ฌ๋Ÿฌ๋ถ„์„ ๋ถ€ํ™œ์‹œํ‚ค๋Š” ๋ฏธ๋ž˜ ๋ฌธ๋ช…์„
17:32
that is advanced to resurrect you.
379
1052260
3000
๊ธฐ๋‹ค๋ฆฌ๋ฉด์„œ ๋ง์ž…๋‹ˆ๋‹ค.
17:36
Should we ridicule the modern seekers of immortality,
380
1056260
2000
์šฐ๋ฆฌ๊ฐ€ ์˜์›ํ•œ ์ƒ๋ช…์„ ์ถ”๊ตฌํ•˜๋Š” ํ˜„๋Œ€์ธ๋“ค์„
17:38
calling them fools?
381
1058260
2000
๋ฐ”๋ณด๋ผ ๋ถ€๋ฅด๋ฉฐ ๋น„์›ƒ์–ด์•ผํ• ๊นŒ์š”?
17:40
Or will they someday chuckle
382
1060260
2000
ํ˜น์€ ๊ทธ๋“ค์ด ์–ธ์  ๊ฐ€ ์šฐ๋ฆฌ์˜ ๋ฌด๋ค์—์„œ
17:42
over our graves?
383
1062260
2000
์›ƒ๊ฒŒ ๋ ๊นŒ์š”?
17:45
I don't know --
384
1065260
2000
๋ชจ๋ฆ…๋‹ˆ๋‹ค.
17:47
I prefer to test their beliefs, scientifically.
385
1067260
3000
์ €๋Š” ๊ณผํ•™์ ์œผ๋กœ ์ด ๋ฏฟ์Œ๋“ค์„ ์‹œํ—˜ํ•˜๊ธฐ ์ข‹์•„ํ•ฉ๋‹ˆ๋‹ค.
17:50
I propose that we attempt to find a connectome
386
1070260
2000
์ €๋Š” ์šฐ๋ฆฌ๊ฐ€ ์–ผ๋ ค์žˆ๋Š” ๋‡Œ์˜ ์ฝ”๋„ฅํ…€์„ ์ฐพ์•„์•ผ๋งŒ ๋œ๋‹ค๊ณ 
17:52
of a frozen brain.
387
1072260
2000
์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค.
17:54
We know that damage to the brain
388
1074260
2000
์šฐ๋ฆฌ๋Š” ์‚ฌํ›„ ๋‡Œ์˜ ๋ƒ‰๋™๋ณด๊ด€ ๊ธฐ๊ฐ„๋™์•ˆ
17:56
occurs after death and during freezing.
389
1076260
2000
๋‡Œ๊ฐ€ ์†์ƒ๋œ๋‹ค๋Š” ๊ฒƒ์„ ์•Œ๊ณ ์žˆ์Šต๋‹ˆ๋‹ค.
17:58
The question is: has that damage erased the connectome?
390
1078260
3000
๋ฌธ์ œ๋Š” '๋‡Œ์˜ ์†์ƒ์ด ์ฝ”๋„ฅํ…€์„ ์ง€์›Œ๋ฒ„๋ ธ์„๊นŒ?' ์ž…๋‹ˆ๋‹ค.
18:01
If it has, there is no way that any future civilization
391
1081260
3000
๋งŒ์•ฝ ๊ทธ๋žฌ๋‹ค๋ฉด, ๋‹ค๋ฅธ ์–ด๋–ค ๋ฏธ๋ž˜ ๋ฌธ๋ช…์ด
18:04
will be able to recover the memories of these frozen brains.
392
1084260
3000
๊ทธ ์–ผ๋ฆฐ ๋‡Œ์˜ ๊ธฐ์–ต๋“ค์„ ํšŒ๋ณต์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์€ ์กด์žฌํ•˜์ง€ ์•Š์„ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
18:07
Resurrection might succeed for the body,
393
1087260
2000
๋ถ€ํ™œ์€ ์‹ ์ฒด ๋ถ€๋ถ„์—์„œ๋Š” ์„ฑ๊ณตํ• ์ง€๋„ ๋ชจ๋ฆ…๋‹ˆ๋‹ค,
18:09
but not for the mind.
394
1089260
2000
ํ•˜์ง€๋งŒ ๋งˆ์Œ์€ ํ•ด๋‹น์ด ๋˜์ง€๊ฐ€ ์•Š์Šต๋‹ˆ๋‹ค.
18:11
On the other hand, if the connectome is still intact,
395
1091260
3000
๋ฐ˜๋ฉด์—, ๋งŒ์•ฝ ์ฝ”๋„ฅํ…€์ด ์—ฌ์ „ํžˆ ์˜จ์ „ํ•˜๋‹ค๋ฉด,
18:14
we cannot ridicule the claims of cryonics so easily.
396
1094260
3000
๋ƒ‰๋™ ๋ณด์กด์ˆ  ์ฃผ์žฅ์„ ๋งค์šฐ ์‰ฝ๊ฒŒ ๋น„์›ƒ์„ ์ˆ˜๋Š” ์—†์Šต๋‹ˆ๋‹ค.
18:20
I've described a quest
397
1100260
2000
์ €๋Š” ์„ธ๊ณ„์—์„œ
18:22
that begins in the world of the very small,
398
1102260
3000
์ •๋ง ์ž‘์€ ๋ถ€๋ถ„์—์„œ ์‹œ์ž‘ํ•˜๊ณ  ๋จผ ๋ฏธ๋ž˜ ์„ธ๊ณ„๋กœ
18:25
and propels us to the world of the far future.
399
1105260
3000
์šฐ๋ฆฌ๋ฅผ ์ด๋„๋Š” ํƒ์ƒ‰์„ ์„ค๋ช…ํ•ด์™”์Šต๋‹ˆ๋‹ค.
18:28
Connectomes will mark a turning point in human history.
400
1108260
3000
์ฝ”๋„ฅํ…€์€ ์ธ๋ฅ˜ ์—ญ์‚ฌ์— ์ „ํ™˜์ ์„ ๋งŒ๋“ค๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
18:32
As we evolved from our ape-like ancestors
401
1112260
2000
์šฐ๋ฆฌ๋Š” ์•„ํ”„๋ฆฌ์นด ์‚ฌ๋ฐ”๋‚˜ ์ง€์—ญ ์„ ์กฐ๋กœ ๊ฐ„์ฃผ๋œ
18:34
on the African savanna,
402
1114260
2000
์œ ์ธ์›์—์„œ ์ง„ํ™” ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
18:36
what distinguished us was our larger brains.
403
1116260
3000
์ฐจ์ด๊ฐ€ ์žˆ๋‹ค๋ฉด ์šฐ๋ฆฌ๊ฐ€ ์ข€๋” ํฐ ๋‡Œ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
18:40
We have used our brains to fashion
404
1120260
2000
์šฐ๋ฆฌ๋Š” ๋‡Œ๋ฅผ ์‚ฌํšŒ์— ๊ทธ๋ฆฌ๊ณ  ์‹ฌ์ง€์–ด
18:42
ever more amazing technologies.
405
1122260
3000
์ข€๋” ๋†€๋ผ์šด ๊ธฐ์ˆ ์— ์‚ฌ์šฉํ•ด์™”์Šต๋‹ˆ๋‹ค.
18:45
Eventually, these technologies will become so powerful
406
1125260
3000
๊ฒฐ๊ณผ์ ์œผ๋กœ ์ด ๊ธฐ์ˆ ๋“ค์€ ๋งค์šฐ ๊ฐ•๋ ฅํ•˜๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค
18:48
that we will use them to know ourselves
407
1128260
3000
์šฐ๋ฆฌ๋Š” ๊ทธ๊ธฐ์ˆ ์„ ์‚ฌ์šฉํ•˜์—ฌ ์Šค์Šค๋กœ๋ฅผ ์•Œ๊ฒŒ ๋ฉ๋‹ˆ๋‹ค
18:51
by deconstructing and reconstructing
408
1131260
3000
์šฐ๋ฆฌ์˜ ๋‡Œ๋ฅผ ๋ถ„ํ•ดํ•˜๊ณ  ์žฌ๊ตฌ์„ฑ
18:54
our own brains.
409
1134260
3000
ํ•จ์œผ๋กœ์จ ๋ง์ž…๋‹ˆ๋‹ค
18:57
I believe that this voyage of self-discovery
410
1137260
3000
์ด ๋…๋‹จ์ ์ธ ๋ฐœ๊ฒฌ์ด ๋‹จ์ง€ ๊ณผํ•™์ž๋“ค๋งŒ์„
19:00
is not just for scientists,
411
1140260
3000
์œ„ํ•œ ๊ฒƒ์ด ์•„๋‹ˆ๋ผ,
19:03
but for all of us.
412
1143260
2000
์šฐ๋ฆฌ ๋ชจ๋‘๋ฅผ ์œ„ํ•œ ๊ฒƒ์ด๋ผ ์ €๋Š” ๋ฏฟ์Šต๋‹ˆ๋‹ค.
19:05
And I'm grateful for the opportunity to share this voyage with you today.
413
1145260
3000
์ด ํ•ญํ•ด๋ฅผ ์—ฌ๋Ÿฌ๋ถ„๊ณผ ํ•จ๊ป˜ ๋‚˜๋ˆŒ์ˆ˜ ์žˆ๋Š” ๊ธฐํšŒ๋ฅผ ์ฃผ์…”์„œ ๊ฐ์‚ฌ๋“œ๋ฆฝ๋‹ˆ๋‹ค.
19:08
Thank you.
414
1148260
2000
๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค.
19:10
(Applause)
415
1150260
8000
(๋ฐ•์ˆ˜)
์ด ์›น์‚ฌ์ดํŠธ ์ •๋ณด

์ด ์‚ฌ์ดํŠธ๋Š” ์˜์–ด ํ•™์Šต์— ์œ ์šฉํ•œ YouTube ๋™์˜์ƒ์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ „ ์„ธ๊ณ„ ์ตœ๊ณ ์˜ ์„ ์ƒ๋‹˜๋“ค์ด ๊ฐ€๋ฅด์น˜๋Š” ์˜์–ด ์ˆ˜์—…์„ ๋ณด๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ฐ ๋™์˜์ƒ ํŽ˜์ด์ง€์— ํ‘œ์‹œ๋˜๋Š” ์˜์–ด ์ž๋ง‰์„ ๋”๋ธ” ํด๋ฆญํ•˜๋ฉด ๊ทธ๊ณณ์—์„œ ๋™์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค. ๋น„๋””์˜ค ์žฌ์ƒ์— ๋งž์ถฐ ์ž๋ง‰์ด ์Šคํฌ๋กค๋ฉ๋‹ˆ๋‹ค. ์˜๊ฒฌ์ด๋‚˜ ์š”์ฒญ์ด ์žˆ๋Š” ๊ฒฝ์šฐ ์ด ๋ฌธ์˜ ์–‘์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฌธ์˜ํ•˜์‹ญ์‹œ์˜ค.

https://forms.gle/WvT1wiN1qDtmnspy7