How young blood might help reverse aging. Yes, really | Tony Wyss-Coray

270,817 views ใƒป 2015-09-11

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Michal Shargil Ben Sira ืžื‘ืงืจ: Ido Dekkers
00:13
This is a painting from the 16th century from Lucas Cranach the Elder.
0
13134
4659
ื–ื” ืฆื™ื•ืจ ืžื”ืžืื” ื” -16 ืฉืฆื™ื™ืจ ืœื•ืงืืก ืงืจืื ืืš ื”ืื‘.
00:18
It shows the famous Fountain of Youth.
1
18160
2766
ื”ื•ื ืžืฆื™ื’ ืืช ื”ืžื–ืจืงื” ื”ืžืคื•ืจืกืžืช ืฉืœ ืžืขื™ื™ืŸ ื”ื ืขื•ืจื™ื.
00:21
If you drink its water or you bathe in it, you will get health and youth.
2
21308
5726
ืื ืชืฉืชื” ืžืžื ื” ืžื™ื ืื• ืชื˜ื‘ื•ืœ ื‘ื”, ืชืงื‘ืœ ื‘ืจื™ืื•ืช ื•ื ืขื•ืจื™ื.
00:27
Every culture, every civilization has dreamed of finding eternal youth.
3
27857
5549
ื›ืœ ืชืจื‘ื•ืช, ื‘ื›ืœ ืฆึดื™ื‘ึดื™ืœึดื™ื–ึธืฆึดื™ึธื” ื—ืœืžื• ืœืžืฆื ืืช ื ืขื•ืจื™ ื”ื ืฆื—.
00:34
There are people like Alexander the Great or Ponce De Leรณn, the explorer,
4
34044
4752
ืื ืฉื™ื ื›ืžื• ืืœื›ืกื ื“ืจ ื”ื’ื“ื•ืœ ืื• ื—ื•ืืŸ ืคื•ื ืกื” ื“ื” ืœื™ืื•ืŸ, ืžื’ืœื” ื”ืืจืฆื•ืช,
00:38
who spent much of their life chasing the Fountain of Youth.
5
38820
3431
ืฉื‘ื™ืœื• ืืช ืจื•ื‘ ื—ื™ื™ื”ื ื‘ืจื“ื™ืคื” ืื—ืจื™ ืžืขื™ื™ืŸ ื”ื ืขื•ืจื™ื.
00:42
They didn't find it.
6
42726
1168
ื”ื ืœื ืžืฆืื• ืื•ืชื•.
00:45
But what if there was something to it?
7
45450
2600
ืื‘ืœ ืžื” ืื ื™ืฉ ืžืฉื”ื• ื›ื–ื” ?
00:48
What if there was something to this Fountain of Youth?
8
48074
2699
ืžื” ืื ื™ืฉ ืžืฉื”ื• ื›ืžื• ืžืขื™ื™ืŸ ื”ื ืขื•ืจื™ื ?
00:51
I will share an absolutely amazing development in aging research
9
51284
5178
ืื ื™ ืืฉืชืฃ ืื™ืชื›ื ืคื™ืชื•ื— ืžื“ื”ื™ื ืœื—ืœื•ื˜ื™ืŸ ื‘ืžื—ืงืจ ื”ื”ื–ื“ืงื ื•ืช
00:56
that could revolutionize the way we think about aging
10
56486
3610
ืฉื™ื›ื•ืœ ืœื—ื•ืœืœ ืžื”ืคื›ื” ื‘ื“ืจืš ื‘ื” ืื ื—ื ื• ื—ื•ืฉื‘ื™ื ืขืœ ื”ื–ื“ืงื ื•ืช
01:00
and how we may treat age-related diseases in the future.
11
60120
3202
ื•ืื™ืš ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื˜ืคืœ ื‘ืขืชื™ื“ ื‘ืžื—ืœื•ืช ื”ืงืฉื•ืจื•ืช ืœื’ื™ืœ.
01:04
It started with experiments that showed,
12
64145
2509
ื–ื” ื”ืชื—ื™ืœ ืขื ื ื™ืกื•ื™ื™ื ืฉื”ืจืื•,
01:06
in a recent number of studies about growing,
13
66678
3294
ื‘ืžืกืคืจ ืžื—ืงืจื™ื ืื—ืจื•ื ื™ื ืื•ื“ื•ืช ื’ื“ื™ืœื”,
01:09
that animals -- old mice -- that share a blood supply with young mice
14
69996
6001
ื›ื™ ื‘ืขืœื™ ื—ื™ื™ื - ืขื›ื‘ืจื™ื ื–ืงื ื™ื - ืฉื—ื•ืœืงื™ื ืืกืคืงืช ื“ื ืขื ืขื›ื‘ืจื™ื ืฆืขื™ืจื™ื
01:16
can get rejuvenated.
15
76021
1604
ื™ื›ื•ืœื™ื ืœืงื‘ืœ ื”ืชื—ื“ืฉื•ืช ื ืขื•ืจื™ื.
01:18
This is similar to what you might see in humans, in Siamese twins,
16
78148
4609
ื–ื” ื“ื•ืžื” ืœืžื” ืฉืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ื‘ื‘ื ื™ ืื“ื, ื‘ืชืื•ืžื™ื ืกื™ืืžื™ื™ื,
01:22
and I know this sounds a bit creepy.
17
82781
2088
ื•ืื ื™ ื™ื•ื“ืข ืฉื–ื” ื ืฉืžืข ืงืฆืช ืžืคื—ื™ื“.
01:25
But what Tom Rando, a stem-cell researcher, reported in 2007,
18
85338
5947
ืื‘ืœ ืžื” ืฉื˜ื•ื ืจืื ื“ื•, ื—ื•ืงืจ ืชืื™ ื’ื–ืข, ื“ื™ื•ื•ื— ื‘-2007,
01:31
was that old muscle from a mouse can be rejuvenated
19
91309
3500
ื”ื™ื” ืฉื ื™ืชืŸ ืœื”ืฆืขื™ืจ ืฉืจื™ืจื™ื ืžื‘ื•ื’ืจื™ื ืฉืœ ืขื›ื‘ืจ
01:34
if it's exposed to young blood through common circulation.
20
94833
4629
ืื ื”ื ื ื—ืฉืคื™ื ืœื“ื ืฆืขื™ืจ ื“ืจืš ืžื—ื–ื•ืจ ื“ื ืžืฉื•ืชืฃ.
01:39
This was reproduced by Amy Wagers at Harvard a few years later,
21
99903
4643
ื–ื” ืฉื•ื—ื–ืจ ืžื—ื“ืฉ ืขืœ ื™ื“ื™ ืื™ื™ืžื™ ื•ื•ื™ื™ื’'ืจืก ื‘ื”ืจื•ื•ืืจื“ ื›ืžื” ืฉื ื™ื ืžืื•ื—ืจ ื™ื•ืชืจ,
01:44
and others then showed that similar rejuvenating effects could be observed
22
104570
4595
ื•ื’ื ืื—ืจื™ื ื”ืจืื• ื“ื‘ืจ ื“ื•ืžื”, ืฉื ื™ืชืŸ ืœืฆืคื•ืช ื‘ืชื•ืคืขื•ืช ื”ืชื—ื“ืฉื•ืช ื“ื•ืžื•ืช
01:49
in the pancreas, the liver and the heart.
23
109189
2786
ื‘ืœื‘ืœื‘, ื‘ื›ื‘ื“ ื•ื‘ืœื‘.
01:52
But what I'm most excited about, and several other labs as well,
24
112974
4097
ืื‘ืœ ืžื” ืฉืื ื™ ืžืชืจื’ืฉ ืžืžื ื• ื‘ื™ื•ืชืจ, ื•ื›ืžื” ืžืขื‘ื“ื•ืช ืื—ืจื•ืช ื’ื ื›ืŸ,
01:57
is that this may even apply to the brain.
25
117095
2419
ื”ื•ื ืฉืืคืฉืจ ืืคื™ืœื• ืœื™ื™ืฉื ื–ืืช ืขืœ ื”ืžื•ื—.
02:00
So, what we found is that an old mouse exposed to a young environment
26
120715
5331
ืื–, ืžื” ืฉื’ื™ืœื™ื ื• ื”ื•ื ืฉืขื›ื‘ืจ ื–ืงืŸ ืฉื ื—ืฉืฃ ืœืกื‘ื™ื‘ื” ืฆืขื™ืจื”
02:06
in this model called parabiosis,
27
126070
3013
ื‘ืžื•ื“ืœ ื”ื–ื” ืฉื ืงืจื ืคืจื”-ื‘ื™ื•ืกื™ืก (parabiosis),
02:09
shows a younger brain --
28
129107
1792
ื”ืจืื” ืžื— ืฆืขื™ืจ ื™ื•ืชืจ -
02:10
and a brain that functions better.
29
130923
2182
ื•ืžื•ื— ืฉืžืชืคืงื“ ื˜ื•ื‘ ื™ื•ืชืจ.
02:13
And I repeat:
30
133966
1590
ื•ืื ื™ ื—ื•ื–ืจ ื•ืื•ืžืจ:
02:15
an old mouse that gets young blood through shared circulation
31
135580
6213
ืขื›ื‘ืจ ื–ืงืŸ ืฉืžืงื‘ืœ ื“ื ืฆืขื™ืจ ื“ืจืš ืžื—ื–ื•ืจ ื“ื ืžืฉื•ืชืฃ
02:21
looks younger and functions younger in its brain.
32
141817
2984
ื ืจืื” ืฆืขื™ืจ ื™ื•ืชืจ, ื•ืžืชืคืงื“ ื‘ืžื•ื—ื• ื›ืฆืขื™ืจ ื™ื•ืชืจ.
02:25
So when we get older --
33
145998
1532
ืœื›ืŸ, ื›ืืฉืจ ืื ื• ืžื–ืงื ื™ื -
02:27
we can look at different aspects of human cognition,
34
147554
2672
ืื ื• ื™ื›ื•ืœื™ื ืœืจืื•ืช ื”ื™ื‘ื˜ื™ื ืฉื•ื ื™ื ืฉืœ ื”ื›ืจื” ืื ื•ืฉื™ืช,
02:30
and you can see on this slide here,
35
150250
1753
ื•ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืืช ื–ื” ื‘ืฉืงื•ืคื™ืช ื–ื•,
02:32
we can look at reasoning, verbal ability and so forth.
36
152027
3383
ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื”ืกืชื›ืœ ื‘ื—ืฉื™ื‘ื”, ื™ื›ื•ืœืช ืžื™ืœื•ืœื™ืช ื•ื›ืŸ ื”ืœืื”.
02:35
And up to around age 50 or 60, these functions are all intact,
37
155899
5279
ื•ืขื“ ืกื‘ื™ื‘ื•ืช ื’ื™ืœ 50 ืื• 60, ื›ืœ ื”ืคื•ื ืงืฆื™ื•ืช ื”ืืœื” ืชืงื™ื ื•ืช,
02:41
and as I look at the young audience here in the room, we're all still fine.
38
161202
4482
ื•ื›ืžื• ืฉืื ื™ ืจื•ืื” ื‘ืงื”ืœ ื”ืฆืขื™ืจ ื›ืืŸ ื‘ื—ื“ืจ, ืื ื—ื ื• ืขื“ื™ื™ืŸ ื‘ืกื“ืจ.
02:45
(Laughter)
39
165708
1008
(ืฆื—ื•ืง)
02:46
But it's scary to see how all these curves go south.
40
166740
3807
ืื‘ืœ ื–ื” ืžืคื—ื™ื“ ืœืจืื•ืช ืื™ืš ื›ืœ ื”ืขืงื•ืžื•ืช ื”ืืœื” ืคื•ื ื•ืช ื“ืจื•ืžื”.
02:50
And as we get older,
41
170571
1589
ื•ื›ื›ืœ ืฉืื ื• ืžื–ื“ืงื ื™ื,
02:52
diseases such as Alzheimer's and others may develop.
42
172184
4051
ืžื—ืœื•ืช ื›ืžื• ืืœืฆื”ื™ื™ืžืจ ื•ืื—ืจื•ืช ืขืœื•ืœื•ืช ืœื”ืชืคืชื—.
02:57
We know that with age, the connections between neurons --
43
177004
3571
ืื ื• ื™ื•ื“ืขื™ื ืฉืขื ื”ื’ื™ืœ, ื”ืงืฉืจื™ื ื‘ื™ืŸ ื”ื ื•ื™ืจื•ื ื™ื -
03:00
the way neurons talk to each other, the synapses -- they start to deteriorate;
44
180599
4651
ืื™ืš ื”ื ื•ื™ืจื•ื ื™ื ืžืชืงืฉืจื™ื ื‘ื™ื ื™ื”ื, ื”ืกื™ื ืคืกื•ืช -- ื”ืŸ ืžืชื—ื™ืœื•ืช ืœื”ื™ืคื’ื,
03:05
neurons die, the brain starts to shrink,
45
185274
3306
ื ื•ื™ืจื•ื ื™ื ืžืชื™ื, ื”ืžื— ืžืชื—ื™ืœ ืœื”ืชื›ื•ื•ืฅ,
03:08
and there's an increased susceptibility for these neurodegenerative diseases.
46
188604
3992
ื•ื™ืฉ ืจื’ื™ืฉื•ืช ืžื•ื’ื‘ืจืช ืœืžื—ืœื•ืช ื ื™ื•ื•ื ื™ื•ืช ืืœื”.
03:13
One big problem we have -- to try to understand how this really works
47
193573
4909
ื‘ืขื™ื” ื”ื’ื“ื•ืœื” ืฉืœื ื• -- ื”ื™ื ื”ื ืกื™ื•ืŸ ืœื”ื‘ื™ืŸ ืื™ืš ื–ื” ื‘ืืžืช ืขื•ื‘ื“
03:18
at a very molecular mechanistic level --
48
198506
2596
ื‘ืจืžื” ืžืื•ื“ ืžื•ืœืงื•ืœืจื™ืช ื•ืžื›ื ื™ืช -
03:21
is that we can't study the brains in detail, in living people.
49
201126
4050
ื”ื™ื ืฉืื ื—ื ื• ืœื ื™ื›ื•ืœื™ื ืœื—ืงื•ืจ ืืช ื”ืžื•ื— ื‘ืคื™ืจื•ื˜, ื‘ืื ืฉื™ื ื—ื™ื™ื.
03:26
We can do cognitive tests, we can do imaging --
50
206033
2986
ืื ื• ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ืžื‘ื—ื ื™ื ืงื•ื’ื ื™ื˜ื™ื‘ื™ื™ื, ืื ื• ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ื”ื“ืžื™ื” -
03:29
all kinds of sophisticated testing.
51
209043
2696
ื›ืœ ืžื™ื ื™ ืกื•ื’ื™ื ืฉืœ ื‘ื“ื™ืงื•ืช ืžืชื•ื—ื›ืžื•ืช.
03:31
But we usually have to wait until the person dies
52
211763
3618
ืื‘ืœ ื‘ื“ืจืš ื›ืœืœ ื ืฆื˜ืจืš ืœื—ื›ื•ืช ืขื“ ืžื•ืชื• ืฉืœ ื”ืื“ื
03:35
to get the brain and look at how it really changed through age or in a disease.
53
215405
5094
ื›ื“ื™ ืœืงื‘ืœ ืืช ื”ืžื•ื— ื•ืœื”ืกืชื›ืœ ืžื” ื‘ืืžืช ื”ืฉืชื ื” ื‘ืขืงื‘ื•ืช ื”ื’ื™ืœ ืื• ืžื—ืœื”.
03:40
This is what neuropathologists do, for example.
54
220888
3064
ื–ื” ืžื” ืฉื ื•ื™ืจื•ืคืชื•ืœื•ื’ื™ื ืขื•ืฉื™ื, ืœื“ื•ื’ืžื”.
03:44
So, how about we think of the brain as being part of the larger organism.
55
224333
5667
ืื–, ืื•ืœื™ ืžื” ืฉืขืœื™ื ื• ืœืขืฉื•ืช, ื–ื” ืœื—ืฉื•ื‘ ืขืœ ื”ืžื•ื— ื›ื—ืœืง ืžื”ืื•ืจื’ื ื™ื–ื ื”ื’ื“ื•ืœ ื™ื•ืชืจ.
03:50
Could we potentially understand more
56
230024
2477
ื”ืื ืื ื• ื™ื›ื•ืœื™ื ื‘ืื•ืคืŸ ืคื•ื˜ื ืฆื™ืืœื™ ืœื”ื‘ื™ืŸ ื™ื•ืชืจ
03:52
about what happens in the brain at the molecular level
57
232525
2929
ืขืœ ืžื” ืฉืงื•ืจื” ื‘ืชื•ืš ื”ืžื•ื— ื‘ืจืžื” ื”ืžื•ืœืงื•ืœืจื™ืช
03:55
if we see the brain as part of the entire body?
58
235478
3586
ืื ืื ื• ืจื•ืื™ื ืืช ื”ืžื•ื— ื›ื—ืœืง ืžื›ืœ ื”ื’ื•ืฃ?
03:59
So if the body ages or gets sick, does that affect the brain?
59
239088
4877
ืื– ืื ื”ื’ื•ืฃ ืžื–ื“ืงืŸ ืื• ื—ื•ืœื”, ื”ืื ื–ื” ืžืฉืคื™ืข ืขืœ ื”ืžื•ื—?
04:03
And vice versa: as the brain gets older, does that influence the rest of the body?
60
243989
4423
ื•ืœื”ื™ืคืš: ื›ืฉื”ืžื•ื— ืžื–ื“ืงืŸ, ื”ืื ื–ื” ืžืฉืคื™ืข ืขืœ ืฉืืจ ื”ื’ื•ืฃ?
04:09
And what connects all the different tissues in the body
61
249050
3491
ื•ืžื” ืฉืžื—ื‘ืจ ืืช ื›ืœ ื”ืจืงืžื•ืช ื”ืฉื•ื ื•ืช ื‘ื’ื•ืฃ
04:12
is blood.
62
252565
1150
ื–ื” ื”ื“ื.
04:14
Blood is the tissue that not only carries cells that transport oxygen, for example,
63
254366
5825
ื“ื ื”ื•ื ื”ืจืงืžื” ืฉืœื ื ื•ืฉืืช ืจืง ืชืื™ื ืฉืžืขื‘ื™ืจื™ื ื—ืžืฆืŸ, ืœื“ื•ื’ืžื”,
04:20
the red blood cells,
64
260215
1241
ืชืื™ ื”ื“ื ื”ืื“ื•ืžื™ื,
04:21
or fights infectious diseases,
65
261480
2200
ืื• ื ืœื—ื ื‘ืžื—ืœื•ืช ื–ื™ื”ื•ืžื™ื•ืช,
04:23
but it also carries messenger molecules,
66
263704
4271
ืืœื ื”ื•ื ื’ื ื ื•ืฉื ืžื•ืœืงื•ืœื•ืช 'ืฉืœื™ื—ื™ื',
04:27
hormone-like factors that transport information
67
267999
3912
ื’ื•ืจืžื™ื ื“ืžื•ื™ื™ ื”ื•ืจืžื•ืŸ ื”ืžืขื‘ื™ืจื™ื ืžื™ื“ืข
04:31
from one cell to another, from one tissue to another,
68
271935
4133
ืžืชื ืื—ื“ ืœืื—ืจ, ืžืจืงืžื” ืื—ืช ืœืื—ืจืช,
04:36
including the brain.
69
276092
1457
ื›ื•ืœืœ ืืœ ื”ืžื•ื—.
04:37
So if we look at how the blood changes in disease or age,
70
277573
5138
ืื– ืื ื ืกืชื›ืœ ืื™ืš ื”ื“ื ืžืฉืชื ื” ื‘ืžืฉืš ื”ืฉื ื™ื ืื• ื‘ืžื”ืœืš ืžื—ืœื”,
04:42
can we learn something about the brain?
71
282735
2363
ื”ืื ื ื•ื›ืœ ืœืœืžื•ื“ ืžืฉื”ื• ืขืœ ื”ืžื•ื—?
04:45
We know that as we get older, the blood changes as well,
72
285651
4836
ืื ื—ื ื• ื™ื•ื“ืขื™ื ืฉื›ื›ืœ ืฉืื ื• ืžื–ื“ืงื ื™ื, ื’ื ื”ื“ื ืžืฉืชื ื”,
04:50
so these hormone-like factors change as we get older.
73
290511
2959
ื›ืš ืฉื”ื’ื•ืจืžื™ื ื“ืžื•ื™ื™-ื”ื”ื•ืจืžื•ืŸ, ืžืฉืชื ื™ื ื›ืฉืื ื—ื ื• ืžื–ื“ืงื ื™ื,
04:53
And by and large, factors that we know are required
74
293494
4199
ื•ื‘ื’ื“ื•ืœ, ื’ื•ืจืžื™ื ืฉืื ื—ื ื• ื™ื•ื“ืขื™ื ืฉื”ื ื ื“ืจืฉื™ื
04:57
for the development of tissues, for the maintenance of tissues --
75
297717
3421
ืœืคื™ืชื•ื— ืจืงืžื•ืช, ืœืชื—ื–ื•ืงื” ืฉืœ ืจืงืžื•ืช --
05:01
they start to decrease as we get older,
76
301162
2877
ืžืชื—ื™ืœื™ื ืœื”ืชืžืขื˜ ื›ื›ืœ ืฉืื ื• ืžื–ื“ืงื ื™ื,
05:04
while factors involved in repair, in injury and in inflammation --
77
304063
4703
ื‘ืขื•ื“ ื’ื•ืจืžื™ื ื”ืžืขื•ืจื‘ื™ื ื‘ืจื™ืคื•ื™ ื‘ื“ืœืงื•ืช ื•ื‘ืคืฆื™ืขื•ืช--
05:08
they increase as we get older.
78
308790
1950
ื”ื ื™ื’ื“ืœื• ื›ื›ืœ ืฉืื ื• ืžื–ื“ืงื ื™ื.
05:10
So there's this unbalance of good and bad factors, if you will.
79
310764
5042
ืื– ื™ืฉ ื—ื•ืกืจ ืื™ื–ื•ืŸ ืฉืœ ื’ื•ืจืžื™ื ื˜ื•ื‘ื™ื ื•ืจืขื™ื , ืื ืชืจืฆื•.
05:16
And to illustrate what we can do potentially with that,
80
316988
2993
ื•ื›ื“ื™ ืœื”ืžื—ื™ืฉ ืืช ื”ืืคืฉืจื•ื™ื•ืช ืฉืœ ืžื” ืฉื ื•ื›ืœ ืœืขืฉื•ืช ืขื ื–ื”,
05:20
I want to talk you through an experiment that we did.
81
320005
2652
ืื ื™ ืจื•ืฆื” ืœืฉื•ื—ื— ืืชื›ื, ืขืœ ื ื™ืกื•ื™ ืฉืขืฉื™ื ื•.
05:22
We had almost 300 blood samples from healthy human beings
82
322681
3649
ื”ื™ื” ืœื ื• ื›ืžืขื˜ 300 ื“ื’ื™ืžื•ืช ื“ื ืžื‘ื ื™ ืื“ื ื‘ืจื™ืื™ื
05:26
20 to 89 years of age,
83
326354
2517
ื‘ื’ื™ืœืื™ 20 ืขื“ 89 ืฉื ื™ื.
05:28
and we measured over 100 of these communication factors,
84
328895
3895
ื•ืžื“ื“ื ื• ืžืขืœ 100 ื’ื•ืจืžื™ ืชืงืฉื•ืจืช ื›ืืœื•,
05:32
these hormone-like proteins that transport information between tissues.
85
332814
4094
ื—ืœื‘ื•ื ื™ื ื“ืžื•ื™ื™-ื”ื•ืจืžื•ืŸ ื”ืžืขื‘ื™ืจื™ื ืžื™ื“ืข ื‘ื™ืŸ ืจืงืžื•ืช.
05:37
And what we noticed first
86
337266
1676
ื•ืžื” ืฉืฉืžื ื• ืœื‘ ืžื™ื“ ื‘ื”ืชื—ืœื”
05:38
is that between the youngest and the oldest group,
87
338966
2817
ื”ื•ื ืฉื‘ื™ืŸ ื”ืงื‘ื•ืฆื” ื”ืฆืขื™ืจื” ื‘ื™ื•ืชืจ ืœืงื‘ื•ืฆื” ื”ืžื‘ื•ื’ืจืช ื‘ื™ื•ืชืจ,
05:41
about half the factors changed significantly.
88
341807
3297
ื›ืžื—ืฆื™ืช ืžื”ื’ื•ืจืžื™ื ื”ืฉืชื ื• ื‘ืื•ืคืŸ ืžืฉืžืขื•ืชื™.
05:45
So our body lives in a very different environment as we get older,
89
345128
3135
ืื– ื’ื•ืคื ื• ื—ื™ ื‘ืกื‘ื™ื‘ื” ืฉื•ื ื” ืžืื•ื“ ื›ื›ืœ ืฉืื ื• ืžื–ื“ืงื ื™ื
05:48
when it comes to these factors.
90
348287
1751
ื›ืฉืžื“ื•ื‘ืจ ื‘ื’ื•ืจืžื™ื ื”ืืœื•.
05:50
And using statistical or bioinformatics programs,
91
350062
3496
ื•ื‘ืขื–ืจืช ืฉื™ืžื•ืฉ ื‘ืชื•ื›ื ื•ืช ืกื˜ื˜ื™ืกื˜ื™ื•ืช ืื• ืชื•ื›ื ื•ืช ื‘ื™ื•ืื™ื ืคื•ืจืžื˜ื™ืงื”,
05:53
we could try to discover those factors that best predict age --
92
353582
4694
ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื ืกื•ืช ืœื’ืœื•ืช ืืช ื”ื’ื•ืจืžื™ื ื”ื˜ื•ื‘ื™ื ื‘ื™ื•ืชืจ ืœื—ื™ื–ื•ื™ ื”ื’ื™ืœ -
05:58
in a way, back-calculate the relative age of a person.
93
358300
3643
ื•ื‘ืขืฆื, ืœื—ืฉื‘ ืœืื—ื•ืจ ืืช ื’ื™ืœื• ื”ื™ื—ืกื™ ืฉืœ ืื“ื,
06:02
And the way this looks is shown in this graph.
94
362337
2856
ื•ื–ื” ืžื” ืฉืžื•ืฆื’ ื‘ื’ืจืฃ ื”ื–ื”.
06:05
So, on the one axis you see the actual age a person lived,
95
365618
5369
ืื–, ื‘ืฆื™ืจ ื”ืื•ืคืงื™ ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืืช ื’ื™ืœื• ื”ืืžื™ืชื™ ืฉืœ ืื“ื ื—ื™.
06:11
the chronological age.
96
371011
1305
ื”ื’ื™ืœ ื”ื›ืจื•ื ื•ืœื•ื’ื™.
06:12
So, how many years they lived.
97
372340
1722
ืื–, ื›ืžื” ืฉื ื™ื ื”ื ื—ื™ื•.
06:14
And then we take these top factors that I showed you,
98
374086
2708
ื•ืื– ืœืงื—ื ื• ืืช ื”ื’ื•ืจืžื™ื ื”ืžื•ื‘ื™ืœื™ื ืฉื”ืจืื™ืชื™ ืœื›ื,
06:16
and we calculate their relative age, their biological age.
99
376818
4844
ื•ื—ื™ืฉื‘ื ื• ืืช ื’ื™ืœื ื”ื™ื—ืกื™, ื’ื™ืœื ื”ื‘ื™ื•ืœื•ื’ื™.
06:22
And what you see is that there is a pretty good correlation,
100
382708
3634
ื•ืžื” ืฉืืชื ืจื•ืื™ื, ื–ื” ืฉืงื™ื™ื ืžื™ืชืื ื“ื™ ื˜ื•ื‘,
06:26
so we can pretty well predict the relative age of a person.
101
386366
3315
ืื– ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื ื‘ื ื“ื™ ื˜ื•ื‘ ืืช ื’ื™ืœื• ื”ื™ื—ืกื™ ืฉืœ ืื“ื.
06:29
But what's really exciting are the outliers,
102
389705
3915
ืื‘ืœ ืžื” ืฉื‘ืืžืช ืžืจื’ืฉ, ืืœื• ื”ื—ืจื™ื’ื™ื,
06:33
as they so often are in life.
103
393644
1804
ื›ืžื• ืฉืœืขื™ืชื™ื ื›ืœ ื›ืš ืงืจื•ื‘ื•ืช ื–ื” ืงื•ืจื” ื’ื ื‘ื—ื™ื™ื.
06:35
You can see here, the person I highlighted with the green dot
104
395922
4568
ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ื›ืืŸ. ืืช ื”ืื“ื ืฉื”ื“ื’ืฉืชื™ ื‘ื ืงื•ื“ื” ื™ืจื•ืงื”
06:40
is about 70 years of age
105
400514
2596
ื”ื•ื ื‘ืกื‘ื™ื‘ื•ืช ื’ื™ืœ 70
06:43
but seems to have a biological age, if what we're doing here is really true,
106
403134
5006
ืื‘ืœ ื ืจืื” ืฉื’ื™ืœื• ื”ื‘ื™ื•ืœื•ื’ื™ , ืื ืžื” ืฉืื ื—ื ื• ืขื•ืฉื™ื ื›ืืŸ, ื‘ืืžืช ื ื›ื•ืŸ,
06:48
of only about 45.
107
408164
2043
ื”ื•ื ืจืง ื‘ืกื‘ื™ื‘ื•ืช 45.
06:50
So is this a person that actually looks much younger than their age?
108
410231
3484
ืื– ื–ื” ืื“ื ืฉืœืžืขืฉื” ื ืจืื” ื”ืจื‘ื” ื™ื•ืชืจ ืฆืขื™ืจ ืžื›ืคื™ ื’ื™ืœื• ?
06:54
But more importantly: Is this a person who is maybe at a reduced risk
109
414183
4516
ืื‘ืœ ื—ืฉื•ื‘ ื™ื•ืชืจ: ื”ืื ื–ื” ืื“ื ื‘ืกื™ื›ื•ืŸ ืžื•ืคื—ืช
06:58
to develop an age-related disease and will have a long life --
110
418723
3324
ืœืคืชื— ืžื—ืœื•ืช ื”ืงืฉื•ืจื•ืช ืœื’ื™ืœ. ื•ื™ื”ื™ื• ืœื• ื—ื™ื™ื ืืจื•ื›ื™ื --
07:02
will live to 100 or more?
111
422071
1495
ื”ื•ื ื™ื—ื™ื” ืขื“ ื’ื™ืœ ืžืื” ื•ื™ื•ืชืจ?
07:04
On the other hand, the person here, highlighted with the red dot,
112
424402
4561
ืžืฆื“ ืฉื ื™, ื”ืื“ื ืฉื›ืืŸ, ื”ืžื•ื“ื’ืฉ ื‘ื ืงื•ื“ื” ื”ืื“ื•ืžื”,
07:08
is not even 40, but has a biological age of 65.
113
428987
4906
ืืคื™ืœื• ืื™ื ื• ื‘ืŸ 40 ืขื“ื™ื™ืŸ, ืืš ื’ื™ืœื• ื”ื‘ื™ื•ืœื•ื’ื™ ื”ื•ื 65.
07:13
Is this a person at an increased risk of developing an age-related disease?
114
433917
4398
ื”ืื ื–ื” ืื“ื ื‘ืกื™ื›ื•ืŸ ืžื•ื’ื‘ืจ ืœืคืชื— ืžื—ืœื•ืช ื”ืงืฉื•ืจื•ืช ืœื’ื™ืœ?
07:18
So in our lab, we're trying to understand these factors better,
115
438339
3656
ืื– ื‘ืžืขื‘ื“ื” ืฉืœื ื•, ืื ื—ื ื• ืžื ืกื™ื ืœื”ื‘ื™ืŸ ื˜ื•ื‘ ื™ื•ืชืจ ืืช ื”ื’ื•ืจืžื™ื ื”ืืœื•,
07:22
and many other groups are trying to understand,
116
442019
2238
ื•ื”ืจื‘ื” ืงื‘ื•ืฆื•ืช ืื—ืจื•ืช ืžื ืกื•ืช ืœื”ื‘ื™ืŸ,
07:24
what are the true aging factors,
117
444281
2076
ืžื” ื”ื ื’ื•ืจืžื™ ื”ื”ื–ื“ืงื ื•ืช ื”ืืžื™ืชื™ื™ื,
07:26
and can we learn something about them to possibly predict age-related diseases?
118
446381
4973
ื•ื”ืื ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืœืžื•ื“ ืžืฉื”ื• ืขืœื™ื”ื ื›ื“ื™ ืœืืคืฉืจ ื—ื™ื–ื•ื™ ืžื—ืœื•ืช ื”ืงืฉื•ืจื•ืช ืœื’ื™ืœ?
07:32
So what I've shown you so far is simply correlational, right?
119
452281
4062
ืื– ืžื” ืฉื”ืจืื™ืชื™ ืœื›ื ืขื“ ื›ื” ื–ื” ืžื™ืชืืžื™ื ืคืฉื•ื˜ื™ื, ื ื›ื•ืŸ ?
07:36
You can just say, "Well, these factors change with age,"
120
456367
4031
ืืชื ื™ื›ื•ืœื™ื ืคืฉื•ื˜ ืœื•ืžืจ, "ื•ื‘ื›ืŸ, ื’ื•ืจืžื™ื ืืœื” ืžืฉืชื ื™ื ืขื ื”ื’ื™ืœ",
07:40
but you don't really know if they do something about aging.
121
460422
3655
ืื‘ืœ ืืชื ืœื ื‘ืืžืช ื™ื•ื“ืขื™ื ืื ื”ื ืขื•ืฉื™ื ืžืฉื”ื• ื‘ืงืฉืจ ืœื”ื–ื“ืงื ื•ืช.
07:45
So what I'm going to show you now is very remarkable
122
465031
3048
ื•ืœื›ืŸ ืžื” ืฉืื ื™ ืขื•ืžื“ ืœื”ืจืื•ืช ืœื›ื ืขื›ืฉื™ื• ื”ื•ื ืžืื•ื“ ืžืจืฉื™ื
07:48
and it suggests that these factors can actually modulate the age of a tissue.
123
468103
5071
ื•ื”ื•ื ืžืฆื‘ื™ืข ืขืœ ื›ืš ืฉื”ื’ื•ืจืžื™ื ื”ืœืœื• ื‘ืืžืช ื™ื›ื•ืœื™ื ืœื•ื•ืกืช ื•ืœืฉื ื•ืช ืืช ื’ื™ืœ ื”ืจืงืžื•ืช.
07:53
And that's where we come back to this model called parabiosis.
124
473845
3298
ื•ื›ืืŸ ืื ื—ื ื• ื—ื•ื–ืจื™ื ืœืžื•ื“ืœ ืฉื ืงืจื ืคืจื”-ื‘ื™ื•ืกื™ืก,
07:57
So, parabiosis is done in mice
125
477167
2540
ืื–, ื”ืคืจื”-ื‘ื™ื•ืกื™ืก ื ืขืฉื” ื‘ืขื›ื‘ืจื™ื
07:59
by surgically connecting the two mice together,
126
479731
4912
ืขืœ ื™ื“ื™ ื—ื™ื‘ื•ืจ ื›ื™ืจื•ืจื’ื™ ืฉืœ ืฉื ื™ ืขื›ื‘ืจื™ื ื‘ื™ื—ื“,
08:04
and that leads then to a shared blood system,
127
484667
2333
ืžื” ืฉืžื•ื‘ื™ืœ ืื ื›ืŸ ืœืžืขืจื›ืช ื“ื ืžืฉื•ืชืคืช,
08:07
where we can now ask, "How does the old brain get influenced
128
487024
4787
ืžื” ืฉืžืืคืฉืจ ืœื ื• ื›ืขืช ืœืฉืื•ืœ, "ืื™ืš ื”ืžื•ื— ื”ื–ืงืŸ ืžื•ืฉืคืข
08:11
by exposure to the young blood?"
129
491835
1738
ืขืœ ื™ื“ื™ ื”ื—ืฉื™ืคื” ืœื“ื ื”ืฆืขื™ืจ? "
08:14
And for this purpose, we use young mice
130
494144
2204
ื•ืœืžื˜ืจื” ื–ื•, ืื ื• ืžืฉืชืžืฉื™ื ื‘ืขื›ื‘ืจื™ื ืฆืขื™ืจื™ื
08:16
that are an equivalency of 20-year-old people,
131
496372
3453
ืฉื”ื ืฉืงื•ืœื™ื ื‘ื’ื™ืœื ืœืื“ื ื‘ืŸ 20,
08:19
and old mice that are roughly 65 years old in human years.
132
499849
4336
ื•ืขื›ื‘ืจื™ื ื–ืงื ื™ื ืฉื”ื ื‘ืขืจืš ื‘ื ื™ 65 ืฉื ื™ื, ื‘ืžื ื™ื™ืŸ ืฉื ื•ืช ืื“ื.
08:24
What we found is quite remarkable.
133
504958
2826
ื•ืžื” ืฉืžืฆืื ื• ื”ื™ื” ื“ื™ ืžื“ื”ื™ื.
08:27
We find there are more neural stem cells that make new neurons
134
507808
3720
ืžืฆืื ื• ืฉื™ืฉ ื™ื•ืชืจ ืชืื™ ื’ื–ืข ืขืฆื‘ื™ื™ื™ื ืฉื™ื•ืฆืจื™ื ื ื•ื™ืจื•ื ื™ื ื—ื“ืฉื™ื
08:31
in these old brains.
135
511552
1332
ื‘ืžื•ื—ื•ืช ื”ื–ืงื ื™ื ื”ืœืœื•.
08:33
There's an increased activity of the synapses,
136
513351
2582
ื™ืฉ ืขืœื™ื” ื‘ืคืขื™ืœื•ืช ืฉืœ ื”ืกื™ื ืคืกื•ืช,
08:35
the connections between neurons.
137
515957
2039
ื‘ืงืฉืจื™ื ืฉื‘ื™ืŸ ื”ื ื•ื™ืจื•ื ื™ื.
08:38
There are more genes expressed that are known to be involved
138
518020
3285
ื™ืฉ ื™ื•ืชืจ ื’ื ื™ื ืฉื‘ืื™ื ืœื™ื“ื™ ื‘ื™ื˜ื•ื™, ืฉื™ื“ื•ืข ืฉื”ื ืžืขื•ืจื‘ื™ื
08:41
in the formation of new memories.
139
521329
1747
ื‘ื™ืฆื™ืจืช ื–ื›ืจื•ื ื•ืช ื—ื“ืฉื™ื.
08:43
And there's less of this bad inflammation.
140
523659
2508
ื•ื™ืฉ ืคื—ื•ืช ื“ืœืงื•ืช ืจืขื•ืช.
08:47
But we observed that there are no cells entering the brains of these animals.
141
527427
6496
ืื‘ืœ ื”ื‘ื—ื ื• ืฉืื™ืŸ ืชืื™ื ืฉื ื›ื ืกื™ื ืœืžื— ื‘ื—ื™ื•ืช ืืœื•.
08:53
So when we connect them,
142
533947
1386
ืœื›ืŸ, ื›ืืฉืจ ืื ื• ืžื—ื‘ืจื™ื ืื•ืชื,
08:55
there are actually no cells going into the old brain, in this model.
143
535357
5376
ืœืžืขืฉื” ืื™ืŸ ืชืื™ื ืฉื”ื•ืœื›ื™ื ืœืžื•ื— ื”ื–ืงืŸ, ื‘ืžื•ื“ืœ ื”ื–ื”.
09:01
Instead, we've reasoned, then, that it must be the soluble factors,
144
541379
3661
ื‘ืžืงื•ื ื–ืืช, ื”ืกื‘ืจื ื• ื–ืืช ืื ื›ืŸ, ืฉืืœื• ื—ื™ื™ื‘ื™ื ืœื”ื™ื•ืช ื’ื•ืจืžื™ื ืžืกื™ืกื™ื.
09:05
so we could collect simply the soluble fraction of blood which is called plasma,
145
545064
4783
ื•ื›ืš ื™ื›ื•ืœื ื• ื‘ืคืฉื˜ื•ืช ืœืืกื•ืฃ ืืช ื”ื—ืœืงื™ื ื”ืžืกื™ืกื™ื ืฉืœ ื”ื“ื ื”ื ืงืจืื™ื ืคืœืกืžื”,
09:09
and inject either young plasma or old plasma into these mice,
146
549871
3944
ื•ืœื”ื–ืจื™ืง ืื• ืืช ื”ืคืœืกืžื” ื”ืฆืขื™ืจื” ืื• ืืช ื”ืคืœืกืžื” ื”ืžื‘ื•ื’ืจืช ืœืื•ืชื ืขื›ื‘ืจื™ื,
09:13
and we could reproduce these rejuvenating effects,
147
553839
2368
ื›ืš ื™ื›ื•ืœื ื• ืœื™ื™ืฆืจ ืžื—ื“ืฉ ืื• ืœืฉื›ืคืœ ืืช ืืคืงื˜ ื”ื”ืชื—ื“ืฉื•ืช,
09:16
but what we could also do now
148
556231
1714
ืื‘ืœ ืžื” ืฉืขื•ื“ ื ื•ื›ืœ ืœืขืฉื•ืช ื›ืืช
09:17
is we could do memory tests with mice.
149
557969
2450
ื”ื™ื ื• ืฉืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ืžื‘ื—ื ื™ ื–ื™ื›ืจื•ืŸ ื‘ืขื›ื‘ืจื™ื.
09:20
As mice get older, like us humans, they have memory problems.
150
560443
3853
ื›ืฉืขื›ื‘ืจื™ื ืžื–ื“ืงื ื™ื, ื›ืžื•ื ื• ื‘ื ื™ ื”ืื“ื,ื™ืฉ ืœื”ื ื‘ืขื™ื•ืช ื–ื™ื›ืจื•ืŸ.
09:24
It's just harder to detect them,
151
564818
1593
ื–ื” ืคืฉื•ื˜ ื™ื•ืชืจ ืงืฉื” ืœื–ื”ื•ืช ืื•ืชื,
09:26
but I'll show you in a minute how we do that.
152
566435
2344
ืื‘ืœ ืืจืื” ืœื›ื ื‘ืขื•ื“ ื“ืงื” ืื™ืš ืื ื• ืขื•ืฉื™ื ื–ืืช.
09:28
But we wanted to take this one step further,
153
568803
2695
ืื‘ืœ ืื ื—ื ื• ืจืฆื™ื ื• ืœืงื—ืช ื–ืืช ืฆืขื“ ืื—ื“ ืงื“ื™ืžื”,
09:31
one step closer to potentially being relevant to humans.
154
571522
4040
ืฆืขื“ ืื—ื“ ืืคืฉืจื™ ืงืจื•ื‘ ื™ื•ืชืจ ืœื”ื™ื•ืชื• ืจืœื•ื•ื ื˜ื™ ืœื‘ื ื™ ืื“ื.
09:35
What I'm showing you now are unpublished studies,
155
575586
3197
ืžื” ืฉืื ื™ ืืจืื” ืœื›ื ืขื›ืฉื™ื• ื–ื” ืžื—ืงืจื™ื ืฉืœื ืคื•ืจืกืžื•,
09:38
where we used human plasma, young human plasma,
156
578807
4533
ืฉื‘ื• ื”ืฉืชืžืฉื ื• ื‘ืคืœืกืžื” ืื ื•ืฉื™ืช, ืคืœืกืžื” ืื ื•ืฉื™ืช ืฆืขื™ืจื”,
09:43
and as a control, saline,
157
583364
1849
ื•ืœื‘ืงืจื”, ืชืžื™ืกืช ืžืœื—,
09:45
and injected it into old mice,
158
585237
1876
ื•ื”ื–ืจืงื ื• ื–ืืช ืœืขื›ื‘ืจ ื–ืงืŸ,
09:47
and asked, can we again rejuvenate these old mice?
159
587137
4852
ื•ืฉืืœื ื•, ื”ืื ื ื•ื›ืœ ืœื”ืฆืขื™ืจ ืฉื•ื‘ ืขื›ื‘ืจ ื–ืงืŸ ?
09:52
Can we make them smarter?
160
592013
1660
ืœืขืฉื•ืช ืื•ืชื ื—ื›ืžื™ื ื™ื•ืชืจ ?
ื•ื›ื“ื™ ืœืขืฉื•ืช ื–ืืช, ื”ืฉืชืžืฉื ื• ื‘ืžื‘ื—ืŸ. ื–ื” ื ืงืจื ืžื‘ื•ืš ื‘ืืจื ืก.
09:54
And to do this, we used a test. It's called a Barnes maze.
161
594104
3289
09:57
This is a big table that has lots of holes in it,
162
597417
3155
ื–ื” ืฉื•ืœื—ืŸ ื’ื“ื•ืœ ืฉื™ืฉ ื‘ื• ื”ืจื‘ื” ื—ื•ืจื™ื,
10:00
and there are guide marks around it,
163
600596
3483
ื•ื™ืฉ ืกื™ืžื ื™ ื“ืจืš ืกื‘ื™ื‘ื•,
10:04
and there's a bright light, as on this stage here.
164
604103
2606
ื•ื™ืฉ ืื•ืจ ื‘ื”ื™ืจ, ื›ืžื• ื›ืืŸ ืขืœ ื”ื‘ืžื” ื”ื–ื•.
10:06
The mice hate this and they try to escape,
165
606733
3133
ื”ืขื›ื‘ืจื™ื ืฉื•ื ืื™ื ืืช ื–ื” ื•ื”ื ืžื ืกื™ื ืœื‘ืจื•ื—,
10:09
and find the single hole that you see pointed at with an arrow,
166
609890
4256
ื•ืœืžืฆื•ื ืืช ื”ื—ื•ืจ ื”ืื—ื“ ืฉืืชื ืจื•ืื™ื ืฉืžืกื•ืžืŸ ืขื ื—ืฅ,
10:14
where a tube is mounted underneath
167
614170
1945
ืฉื‘ื• ืฆื™ื ื•ืจ ืžื•ืชืงืŸ ืžืชื—ืช
10:16
where they can escape and feel comfortable in a dark hole.
168
616139
3193
ืฉื‘ื• ื”ื ื™ื›ื•ืœื™ื ืœื‘ืจื•ื— ื•ืœื”ืจื’ื™ืฉ ื‘ื ื•ื— ื‘ื—ื•ืจ ื—ืฉื•ืš.
10:19
So we teach them, over several days,
169
619977
1802
ืื– ืื ื—ื ื• ืžืœืžื“ื™ื ืื•ืชื, ืขืœ ืคื ื™ ื›ืžื” ื™ืžื™ื,
10:21
to find this space on these cues in the space,
170
621803
2903
ืœืžืฆื•ื ืืช ื”ืžืงื•ื ื”ื–ื” ืขืœ ืกืžืš ืจืžื–ื™ื ืืœื• ื‘ืžืจื—ื‘,
10:24
and you can compare this for humans,
171
624730
2794
ื•ืืคืฉืจ ืœื”ืฉื•ื•ืช ื–ืืช ืœืื ืฉื™ื,
10:27
to finding your car in a parking lot after a busy day of shopping.
172
627548
4230
ืฉืžื—ืคืฉื™ื ืืช ื”ืžื›ื•ื ื™ืช ืฉืœื”ื ื‘ื—ื ื™ื•ืŸ ืื—ืจื™ ื™ื•ื ืงื ื™ื•ืช ืขืžื•ืก.
10:31
(Laughter)
173
631802
1001
(ืฆื—ื•ืง)
10:32
Many of us have probably had some problems with that.
174
632827
3751
ืจื‘ื™ื ืžืื™ืชื ื• ื›ื ืจืื” ื™ืฉ ืœื”ื ื‘ืขื™ื•ืช ืขื ื–ื”.
10:36
So, let's look at an old mouse here.
175
636602
2018
ืื–, ื‘ื•ืื• ื ืกืชื›ืœ ืขืœ ื”ืขื›ื‘ืจ ื”ื–ืงืŸ ื›ืืŸ.
10:38
This is an old mouse that has memory problems,
176
638954
2176
ื–ื” ืขื›ื‘ืจ ื–ืงืŸ ืฉื™ืฉ ืœื• ื‘ืขื™ื•ืช ื–ื™ื›ืจื•ืŸ,
10:41
as you'll notice in a moment.
177
641154
1689
ื›ืคื™ ืฉืืชื ืชื‘ื—ื™ื ื• ื‘ืขื•ื“ ืจื’ืข.
10:43
It just looks into every hole, but it didn't form this spacial map
178
643305
4724
ื”ื•ื ืคืฉื•ื˜ ืžืกืชื›ืœ ื‘ื›ืœ ื—ื•ืจ. ืื‘ืœ ืœื ื™ื•ืฆืจ ืžืคื” ืžืจื—ื‘ื™ืช,
10:48
that would remind it where it was in the previous trial or the last day.
179
648053
5247
ืฉื”ื™ืชื” ืžื–ื›ื™ืจื” ืœื• ืื™ืคื” ื”ื•ื ื”ื™ื” ื‘ื ื™ืกื•ื™ ื”ืงื•ื“ื ืื• ื‘ื™ื•ื ื”ืงื•ื“ื.
10:53
In stark contrast, this mouse here is a sibling of the same age,
180
653873
5467
ื‘ื ื™ื’ื•ื“ ืžื•ื—ืœื˜, ื”ืขื›ื‘ืจ ื”ื–ื” ื›ืืŸ ื”ื•ื ืงืจื•ื‘ ืžืฉืคื—ื” ื‘ืื•ืชื• ื”ื’ื™ืœ,
10:59
but it was treated with young human plasma for three weeks,
181
659364
5419
ืื‘ืœ ื”ื•ื ื˜ื•ืคืœ ืขื ืคืœืกืžื” ืื ื•ืฉื™ืช ืฆืขื™ืจื” ื‘ืžืฉืš ืฉืœื•ืฉื” ืฉื‘ื•ืขื•ืช,
11:04
with small injections every three days.
182
664807
2533
ืขื ื–ืจื™ืงื•ืช ืงื˜ื ื•ืช ื›ืœ ืฉืœื•ืฉื” ื™ืžื™ื.
11:07
And as you noticed, it almost looks around, "Where am I?" --
183
667741
4223
ื•ื›ืžื• ืฉืฉืžืชื ืœื‘, ื”ื•ื ื›ืžืขื˜ ืžื‘ื™ื˜ ืกื‘ื™ื‘ื•, "ืื™ืคื” ืื ื™?" --
11:11
and then walks straight to that hole and escapes.
184
671988
2907
ื•ืื– ื”ื•ืœืš ื™ืฉืจ ืืœ ื”ื—ื•ืจ ื•ื ืžืœื˜.
11:14
So, it could remember where that hole was.
185
674919
2864
ืื–, ื”ื•ื ื™ื›ืœ ืœื–ื›ื•ืจ ื”ื™ื›ืŸ ื”ื—ื•ืจ ื ืžืฆื.
11:18
So by all means, this old mouse seems to be rejuvenated --
186
678742
3688
ืื– ื‘ื›ืœ ืžื•ื‘ืŸ, ืขื›ื‘ืจ ื–ืงืŸ ื–ื” ื ืจืื” ืฉื ื”ื™ื” ืฆืขื™ืจ ื™ื•ืชืจ -
11:22
it functions more like a younger mouse.
187
682454
2379
ื”ื•ื ืžืชืคืงื“ ื™ื•ืชืจ ื›ืžื• ืขื›ื‘ืจ ืฆืขื™ืจ.
11:24
And it also suggests that there is something
188
684857
2706
ื•ื–ื” ื’ื ืžืฆื‘ื™ืข ืขืœ ื›ืš ืฉื™ืฉ ืžืฉื”ื•
11:27
not only in young mouse plasma, but in young human plasma
189
687587
4991
ืœื ืจืง ื‘ืคืœืกืžื” ืฉืœ ืขื›ื‘ืจื™ื ืฆืขื™ืจื™ื, ืืœื ื‘ืคืœืกืžื” ืื ื•ืฉื™ืช ืฆืขื™ืจื”
11:32
that has the capacity to help this old brain.
190
692602
3660
ืฉื™ืฉ ืœื• ืืช ื”ื™ื›ื•ืœืช ืœืขื–ื•ืจ ืœืžื•ื— ื”ื–ืงืŸ ื”ื–ื”.
11:36
So to summarize,
191
696834
1152
ืื– ืœืกื™ื›ื•ื,
11:38
we find the old mouse, and its brain in particular, are malleable.
192
698010
4199
ืžืฆืื ื• ืฉื”ืขื›ื‘ืจ ื”ื–ืงืŸ, ื•ื”ืžื•ื— ืฉืœื• ื‘ืคืจื˜, ื”ื ื ื–ื™ืœื™ื.
11:42
They're not set in stone; we can actually change them.
193
702233
3451
ื”ื ืœื ื—ืงื•ืงื™ื ื‘ืกืœืข; ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืžืขืฉื” ืœืฉื ื•ืช ืื•ืชื.
11:45
It can be rejuvenated.
194
705708
1473
ื–ื” ืืคืฉืจื™ ืœื”ืฆืขื™ืจื.
11:47
Young blood factors can reverse aging,
195
707680
2597
ื’ื•ืจืžื™ ื“ื ืฆืขื™ืจื™ื ื™ื›ื•ืœื™ื ืœื”ืคื•ืš ืืช ื”ื”ื–ื“ืงื ื•ืช,
11:50
and what I didn't show you --
196
710301
1712
ื•ืžื” ืฉืœื ื”ืจืื™ืชื™ ืœื›ื --
11:52
in this model, the young mouse actually suffers from exposure to the old.
197
712037
5222
ืœืžืขืฉื” ื‘ืžื•ื“ืœ ื”ื–ื”, ื”ื•ื ืฉื”ืขื›ื‘ืจ ื”ืฆืขื™ืจ ื‘ืขืฆื ืกื•ื‘ืœ ืžื”ื—ืฉื™ืคื” ืœืขื›ื‘ืจ ื”ื–ืงืŸ.
11:57
So there are old-blood factors that can accelerate aging.
198
717283
3380
ืื– ื™ืฉ ื’ื•ืจืžื™ื-ื–ืงื ื™ื ื‘ื“ื ืฉื™ื›ื•ืœื™ื ืœื”ืื™ืฅ ืืช ื”ื”ื–ื“ืงื ื•ืช.
12:01
And most importantly, humans may have similar factors,
199
721725
4317
ื•ื”ื›ื™ ื—ืฉื•ื‘, ื™ื™ืชื›ืŸ ืฉืœื‘ื ื™ ืื“ื ื™ืฉ ื’ื•ืจืžื™ื ื“ื•ืžื™ื,
12:06
because we can take young human blood and have a similar effect.
200
726066
4078
ื›ื™ ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืงื—ืช ื“ื ืฉืœ ืื“ื ืฆืขื™ืจ ื•ืœื™ื™ืฆืจ ื”ืฉืคืขื” ื“ื•ืžื”.
12:10
Old human blood, I didn't show you, does not have this effect;
201
730592
3556
ืœื“ื ืฉืœ ืื“ื ื–ืงืŸ, ืœื ื”ืจืื™ืชื™ ืœื›ื, ืื™ืŸ ื”ืฉืคืขื” ื›ื–ื•;
12:14
it does not make the mice younger.
202
734172
1762
ื–ื” ืœื ื”ื•ืคืš ืืช ื”ืขื›ื‘ืจื™ื ืœืฆืขื™ืจื™ื.
12:17
So, is this magic transferable to humans?
203
737071
3628
ืื–, ื”ืื ืืคืฉืจ ืœืชืจื’ื ืืช ื”ืงืกื ื”ื–ื” ื’ื ืœื‘ื ื™ ืื“ื?
12:20
We're running a small clinical study at Stanford,
204
740723
3629
ืื ื—ื ื• ืžืจื™ืฆื™ื ืžื—ืงืจ ืงืœื™ื ื™ ืงื˜ืŸ ื‘ืกื˜ื ืคื•ืจื“,
12:24
where we treat Alzheimer's patients with mild disease
205
744376
3876
ื”ื™ื›ืŸ ืฉืžื˜ืคืœื™ื ื‘ื—ื•ืœื™ ืืœืฆื”ื™ื™ืžืจ ื‘ืฉืœื‘ื™ื ื”ืงืœื™ื ืฉืœ ื”ืžื—ืœื”
12:28
with a pint of plasma from young volunteers, 20-year-olds,
206
748276
6610
ืขื ืžืขื˜ ืคืœืกืžื” ืžืžืชื ื“ื‘ื™ื ืฆืขื™ืจื™ื, ื‘ื ื™ 20,
12:34
and do this once a week for four weeks,
207
754910
2595
ืขืฉื™ื ื• ื–ืืช ืื—ืช ืœืฉื‘ื•ืข, ืœืžืฉืš ืืจื‘ืขื” ืฉื‘ื•ืขื•ืช,
12:37
and then we look at their brains with imaging.
208
757529
3163
ื•ืื– ื‘ื—ื ื• ืืช ื”ืžื•ื— ืฉืœื”ื ื‘ืกืจื™ืงื”.
12:41
We test them cognitively,
209
761050
1844
ื‘ื“ืงื ื• ืื•ืชื ืžื‘ื—ื™ื ื” ืงื•ื’ื ื™ื˜ื™ื‘ื™ืช,
12:42
and we ask their caregivers for daily activities of living.
210
762918
4006
ื•ื‘ื™ืงืฉื ื• ืžื”ืžื˜ืคืœื™ื ืฉืœื”ื ื“ื™ื•ื•ื— ืœื’ื‘ื™ ื‘ื™ืฆื•ืข ื”ืคืขื™ืœื•ื™ื•ืช ื™ื•ืžื™ื•ืžื™ื•ืช ืฉืœื”ื.
12:46
What we hope is that there are some signs of improvement
211
766948
3919
ืžื” ืฉืื ื• ืžืงื•ื•ื™ื, ื–ื” ืฉื™ืฉื ื ื›ืžื” ืกื™ืžื ื™ื ืฉืœ ืฉื™ืคื•ืจ
12:50
from this treatment.
212
770891
1364
ืžื”ื˜ื™ืคื•ืœ ื”ื–ื”.
12:52
And if that's the case, that could give us hope
213
772758
2556
ื•ืื ื–ื” ื”ืžืงืจื”, ื–ื” ื™ื›ื•ืœ ืœืชืช ืœื ื• ืชืงื•ื•ื”
12:55
that what I showed you works in mice
214
775338
2420
ืฉืžื” ืฉื”ืจืื™ืชื™ ืœื›ื ื›ืขื•ื‘ื“ ืขื ืขื›ื‘ืจื™ื
12:57
might also work in humans.
215
777782
1778
ืขืฉื•ื™ ื’ื ืœืขื‘ื•ื“ ื‘ื‘ื ื™ ืื“ื.
13:00
Now, I don't think we will live forever.
216
780478
2358
ืืžื ื, ืื ื™ ืœื ื—ื•ืฉื‘ ืฉืื ื—ื ื• ื ื—ื™ื” ืœื ืฆื—.
13:03
But maybe we discovered
217
783955
2337
ืื‘ืœ ืื•ืœื™ ื’ื™ืœื™ื ื•
13:06
that the Fountain of Youth is actually within us,
218
786316
3087
ืฉืžืขื™ื™ืŸ ื”ื ืขื•ืจื™ื ื”ื•ื ื‘ืขืฆื ื‘ืชื•ื›ื ื•,
13:09
and it has just dried out.
219
789427
1738
ื•ืฉื”ื•ื ืžืžืฉ ืจืง ืขื›ืฉื™ื• ื”ืชื™ื™ื‘ืฉ.
13:11
And if we can turn it back on a little bit,
220
791574
2828
ื•ืื ื ื•ื›ืœ ืœื”ื—ื–ื™ืจ ืืช ื”ื’ืœื’ืœ ืœืื—ื•ืจ ืจืง ืงืฆืช,
13:14
maybe we can find the factors that are mediating these effects,
221
794426
4627
ื ื•ื›ืœ ืœืžืฆื•ื ืืช ื”ื’ื•ืจืžื™ื ืฉืžื™ื™ืฆืจื™ื ืืช ื”ืชื•ืคืขื•ืช ื”ืœืœื•.
13:19
we can produce these factors synthetically
222
799077
2587
ื•ื ื•ื›ืœ ืœื™ื™ืฆืจ ืืช ื”ื’ื•ืจืžื™ื ื”ืืœื• ื‘ืื•ืคืŸ ืžืœืื›ื•ืชื™
13:21
and we can treat diseases of aging, such as Alzheimer's disease
223
801688
4013
ื•ืื– ื ื•ื›ืœ ืœื˜ืคืœ ื‘ืžื—ืœื•ืช ื”ื”ื–ื“ืงื ื•ืช, ื›ืžื• ืžื—ืœืช ื”ืืœืฆื”ื™ื™ืžืจ
13:25
or other dementias.
224
805725
1230
ืื• ืžื—ืœื•ืช ื“ืžื ื˜ื™ื•ืช ืื—ืจื•ืช.
13:27
Thank you very much.
225
807282
1151
ืชื•ื“ื” ืจื‘ื” ืœื›ื.
13:28
(Applause)
226
808457
3293
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7