We can start winning the war against cancer | Adam de la Zerda

62,302 views ใƒป 2016-10-26

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Boaz Hovav ืžื‘ืงืจ: Sigal Tifferet
00:12
"We're declaring war against cancer,
0
12880
1855
"ื”ื›ืจื–ื ื• ืžืœื—ืžื” ื›ื ื’ื“ ืžื—ืœืช ื”ืกืจื˜ืŸ,
00:14
and we will win this war by 2015."
1
14760
2600
"ื•ื ื ืฆื— ื‘ืžืœื—ืžื” ืขื“ ืฉื ืช 2015."
00:18
This is what the US Congress and the National Cancer Institute declared
2
18440
3736
ื–ื•ื”ื™ ื”ื›ืจื–ื” ืฉืœ ื”ืงื•ื ื’ืจืก ื”ืืžืจื™ืงืื™ ื•ื”ืžื›ื•ืŸ ื”ืœืื•ืžื™ ืœื—ืงืจ ื”ืกืจื˜ืŸ
00:22
just a few years ago, in 2003.
3
22200
2560
ืฉื ื™ืชื ื” ืœืคื ื™ ืžืกืคืจ ืฉื ื™ื, ื‘ืฉื ืช 2003.
00:25
Now, I don't know about you, but I don't buy that.
4
25560
3096
ืื ื™ ืœื ื™ื•ื“ืข ืžื” ืืชื ื—ื•ืฉื‘ื™ื, ืื‘ืœ ืื ื™ ืœื ื”ืฉืชื›ื ืขืชื™.
00:28
I don't think we quite won this war yet,
5
28680
2056
ืœื ื ืจืื” ืœื™ ืฉื ื™ืฆื—ื ื• ื‘ืžืœื—ืžื” ื”ื–ื• ืขื“ื™ื™ืŸ,
00:30
and I don't think anyone here will question that.
6
30760
2640
ื•ืื ื™ ืœื ื—ื•ืฉื‘ ืฉื™ืฉ ื›ืืŸ ืžื™ืฉื”ื• ืฉืžืคืงืคืง ื‘ื›ืš.
00:33
Now, I will argue that a primary reason
7
33800
2496
ืื ื™ ื˜ื•ืขืŸ ืฉืกื™ื‘ื” ืขื™ืงืจื™ืช
00:36
why we're not winning this war against cancer
8
36320
2136
ื‘ื’ืœืœื” ืื ื• ืœื ืžื ืฆื—ื™ื ื‘ืžืœื—ืžื” ื ื’ื“ ืžื—ืœืช ื”ืกืจื˜ืŸ
00:38
is because we're fighting blindly.
9
38480
2296
ื”ื™ื ืฉืื ื• ื ืœื—ืžื™ื ื‘ืžื—ืœื” ื‘ืขื™ื ื™ื™ื ืขืฆื•ืžื•ืช.
00:40
I'm going to start by sharing with you a story about a good friend of mine.
10
40800
3575
ืื ื™ ืืคืชื— ื‘ืกื™ืคื•ืจ ืขืœ ื—ื‘ืจ ื˜ื•ื‘ ืฉืœื™.
ืฉืžื• ืื”ื•ื“.
00:44
His name is Ehud,
11
44400
1216
00:45
and a few years ago, Ehud was diagnosed with brain cancer.
12
45640
3136
ืœืคื ื™ ืžืกืคืจ ืฉื ื™ื, ืื”ื•ื“ ืื•ื‘ื—ืŸ ื›ื—ื•ืœื” ื‘ืกืจื˜ืŸ ื‘ืžื•ื—.
00:48
And not just any type of brain cancer:
13
48800
1856
ื•ืœื ืกืชื ืกืจื˜ืŸ ื‘ืžื•ื—:
00:50
he was diagnosed with one of the most deadly forms of brain cancer.
14
50680
3176
ืื—ื“ ืžืกื•ื’ื™ ืกืจื˜ืŸ ื”ืžื•ื— ื”ืงื˜ืœื ื™ื™ื ื‘ื™ื•ืชืจ.
00:53
In fact, it was so deadly
15
53880
1216
ืœืžืขืฉื”, ื–ื” ืกืจื˜ืŸ ื›ื” ืงื˜ืœื ื™
00:55
that the doctors told him that they only have 12 months,
16
55120
2656
ืฉื”ืจื•ืคืื™ื ืืžืจื• ืœื• ืฉื™ืฉ ืœื”ื ืจืง 12 ื—ื•ื“ืฉื™ื,
00:57
and during those 12 months, they have to find a treatment.
17
57800
3416
ื•ื‘ืžื”ืœืš 12 ื”ื—ื•ื“ืฉื™ื ื”ืœืœื•, ื”ื ื—ื™ื™ื‘ื™ื ืœืžืฆื•ื ืœื• ื˜ื™ืคื•ืœ.
01:01
They have to find a cure,
18
61240
1456
ื”ื ื—ื™ื™ื‘ื™ื ืœืžืฆื•ื ืœื• ืžืจืคื,
01:02
and if they cannot find a cure, he will die.
19
62720
2160
ื•ืื ื”ื ืœื ื™ืžืฆืื•, ื”ื•ื ื™ืžื•ืช.
01:05
Now, the good news, they said,
20
65800
1456
ื”ื—ื“ืฉื•ืช ื”ื˜ื•ื‘ื•ืช, ื›ืš ื”ื ืืžืจื•,
01:07
is that there are tons of different treatments to choose from,
21
67280
2936
ื”ืŸ ืฉื™ืฉ ื”ืžื•ืŸ ื˜ื™ืคื•ืœื™ื ืฉื•ื ื™ื ืฉื ื™ืชืŸ ืœื”ืฉืชืžืฉ ื‘ื”ื,
01:10
but the bad news is
22
70240
1216
ื”ื—ื“ืฉื•ืช ื”ืจืขื•ืช
01:11
that in order for them to tell if a treatment is even working or not,
23
71480
3536
ื”ืŸ ืฉื›ื“ื™ ืœื“ืขืช ืื ื˜ื™ืคื•ืœ ืขื•ื‘ื“ ืื• ืœื,
01:15
well, that takes them about three months or so.
24
75040
2496
ืฆืจื™ืš ืœื—ื›ื•ืช ื‘ืขืจืš ืฉืœื•ืฉื” ื—ื•ื“ืฉื™ื.
01:17
So they cannot try that many things.
25
77560
2376
ื›ืš ืฉื”ื ืœื ื™ื›ื•ืœื™ื ืœื ืกื•ืช ื”ืจื‘ื” ื˜ื™ืคื•ืœื™ื.
01:19
Well, Ehud is now going into his first treatment,
26
79960
3096
ื›ืš ืฉืื”ื•ื“ ื”ืชื—ื™ืœ ืืช ื”ื˜ื™ืคื•ืœ ื”ืจืืฉื•ืŸ,
01:23
and during that first treatment, just a few days into that treatment,
27
83080
3256
ื•ื‘ืžื”ืœืš ื”ื˜ื™ืคื•ืœ ื”ืจืืฉื•ืŸ, ืžืžืฉ ื‘ื™ืžื™ ื”ื˜ื™ืคื•ืœ ื”ืจืืฉื•ื ื™ื,
01:26
I'm meeting with him, and he tells me, "Adam, I think this is working.
28
86360
3336
ื ืคื’ืฉื ื•, ื•ื”ื•ื ืืžืจ ืœื™, "ืื“ื, ืื ื™ ื—ื•ืฉื‘ ืฉื”ื˜ื™ืคื•ืœ ืขื•ื‘ื“.
01:29
I think we really lucked out here. Something is happening."
29
89720
2816
"ื ืจืื” ืœื™ ืฉื”ื™ื” ืœื ื• ื”ืžื•ืŸ ืžื–ืœ, ืžืฉื”ื• ืงื•ืจื”."
01:32
And I ask him, "Really? How do you know that, Ehud?"
30
92560
2456
ื•ืื ื™ ืฉืืœืชื™, "ื‘ืืžืช? ืื™ืš ืืชื” ื™ื•ื“ืข ืื”ื•ื“?"
ื•ื”ื•ื ืขื ื”, "ืชืฉืžืข, ืื ื™ ืžืจื’ื™ืฉ ืžืžืฉ ื ื•ืจื.
01:35
And he says, "Well, I feel so terrible inside.
31
95040
2216
01:37
Something's gotta be working up there.
32
97280
1856
"ื›ืš ืฉืžืฉื”ื• ื‘ื˜ื•ื— ืขื•ื‘ื“ ืฉื.
"ื–ื” ืคืฉื•ื˜ ื—ื™ื™ื‘ ืœื”ื™ื•ืช."
01:39
It just has to."
33
99160
1216
01:40
Well, unfortunately, three months later, we got the news, it didn't work.
34
100400
4440
ืœืžืจื‘ื” ื”ืฆืขืจ, ืœืื—ืจ ืฉืœื•ืฉื” ื—ื•ื“ืฉื™ื ื—ื–ืจื• ื”ืชื•ืฆืื•ืช. ื”ื˜ื™ืคื•ืœ ืœื ืขื‘ื“.
01:45
And so Ehud goes into his second treatment.
35
105520
2056
ื•ืื”ื•ื“ ื”ืชื—ื™ืœ ืืช ื”ื˜ื™ืคื•ืœ ื”ืฉื ื™.
01:47
And again, the same story.
36
107600
1256
ื•ืฉื•ื‘, ืื•ืชื• ืกื™ืคื•ืจ.
01:48
"It feels so bad, something's gotta be working there."
37
108880
2736
"ื–ื” ืžืจื’ื™ืฉ ืžืžืฉ ื ื•ืจื, ืžืฉื”ื• ื‘ื˜ื•ื— ืขื•ื‘ื“ ื›ืืŸ."
01:51
And then three months later, again we get bad news.
38
111640
2936
ื•ืื—ืจื™ ืฉืœื•ืฉื” ื—ื•ื“ืฉื™ื, ืฉื•ื‘ ืงื™ื‘ืœื ื• ื‘ืฉื•ืจื•ืช ืจืขื•ืช.
01:54
Ehud is going into his third treatment, and then his fourth treatment.
39
114600
3936
ืื”ื•ื“ ืžืชื—ื™ืœ ืืช ื”ื˜ื™ืคื•ืœ ื”ืฉืœื™ืฉื™, ื•ืื– ืืช ื”ืจื‘ื™ืขื™.
01:58
And then, as predicted, Ehud dies.
40
118560
2520
ื•ืื–, ื›ืžื• ืฉื”ืจื•ืคืื™ื ืฆืคื•, ืื”ื•ื“ ื ืคื˜ืจ.
02:01
Now, when someone really close to you is going through such a huge struggle,
41
121800
4576
ืืชื ื™ื•ื“ืขื™ื, ื›ืฉืžื™ืฉื”ื• ืงืจื•ื‘ ืืœื™ื›ื ืขื•ื‘ืจ ืžืื‘ืง ืขืฆื•ื ื›ืœ ื›ืš,
02:06
you get really swamped with emotions.
42
126400
1816
ืืชื” ืžืžืฉ ืžื•ืฆืฃ ื‘ืจื’ืฉื•ืช.
02:08
A lot of things are going through your head.
43
128240
2096
ื”ืžื•ืŸ ื“ื‘ืจื™ื ื—ื•ืœืคื™ื ื‘ืจืืฉ.
02:10
For me, it was mostly outrage.
44
130360
1456
ืืฆืœื™, ื–ื” ื”ื™ื” ื‘ืขื™ืงืจ ื›ืขืก.
02:11
I was just outraged that, how come this is the best that we can offer?
45
131840
4696
ื›ืขืกืชื™ ืขืœ ื”ื›ืœ, ืื™ืš ื™ื™ืชื›ืŸ ืฉื–ื” ื”ื˜ื™ืคื•ืœ ื”ื˜ื•ื‘ ื‘ื™ื•ืชืจ ืฉืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื”ืฆื™ืข?
02:16
And I started looking more and more into this.
46
136560
2296
ื•ื”ืชื—ืœืชื™ ืœืœืžื•ื“ ืืช ื”ื ื•ืฉื.
02:18
As it turns out, this is not just the best that doctors could offer Ehud.
47
138880
3456
ื•ื”ืกืชื‘ืจ ืœื™, ืฉื–ื” ืœื ืจืง ื”ื˜ื™ืคื•ืœ ืฉื”ืจื•ืคืื™ื ื”ืฆื™ืขื• ืœืื”ื•ื“.
02:22
It's not just the best doctors could offer patients with brain cancer generally.
48
142360
3816
ื•ื–ื” ืœื ืจืง ื”ื˜ื™ืคื•ืœ ืฉื”ืจื•ืคืื™ื ืžืฆื™ืขื™ื ืœื›ืœ ื—ื•ืœื™ ืกืจื˜ืŸ ื”ืžื•ื— ื‘ื›ืœืœ.
02:26
We're actually not doing that well all across the board with cancer.
49
146200
3200
ืื ื—ื ื• ืœื ืžืžืฉ ืžืฆืœื™ื—ื™ื ืœืžืฆื•ื ื˜ื™ืคื•ืœ ืœื›ืœ ื—ื•ืœื™ ื”ืกืจื˜ืŸ.
02:30
I picked up one of those statistics,
50
150240
1856
ื‘ื—ืจืชื™ ื ืชื•ืŸ ืกื˜ื˜ื™ืกื˜ื™ ืื—ื“,
02:32
and I'm sure some of you have seen those statistics before.
51
152120
2776
ืื ื™ ื‘ื˜ื•ื— ืฉื—ืœืง ืžื›ื ืžื›ื™ืจื™ื ืื•ืชื•.
02:34
This is going to show you here how many patients actually died of cancer,
52
154920
3456
ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ื›ืืŸ ื›ืžื” ื—ื•ืœื™ื ืžืชื• ืžืกืจื˜ืŸ.
02:38
in this case females in the United States,
53
158400
2016
ื‘ืžืงืจื” ื”ื–ื” ืžื“ื•ื‘ืจ ื‘ื ืฉื™ื ื‘ืืจื”"ื‘,
02:40
ever since the 1930s.
54
160440
1296
ืžืฉื ืช 1930.
02:41
You'll notice that there aren't that many things that have changed.
55
161760
3176
ืชื•ื›ืœื• ืœืจืื•ืช ืฉืœื ื”ืฉืชื ื” ื”ืจื‘ื”.
02:44
It's still a huge issue.
56
164960
1296
ืขื“ื™ื™ืŸ ืžื“ื•ื‘ืจ ื‘ื‘ืขื™ื” ืขืฆื•ืžื”.
02:46
You'll see a few changes, though.
57
166280
1736
ื ื™ืชืŸ ืœื”ื‘ื—ื™ืŸ ื‘ืžืกืคืจ ืฉื™ื ื•ื™ื™ื.
02:48
You'll see lung cancer, for example, on the rise.
58
168040
2536
ื ื™ืชืŸ ืœืจืื•ืช ืฉืกืจื˜ืŸ ื”ืจื™ืื”, ืœื“ื•ื’ืžื, ื ืžืฆื ื‘ืขืœื™ื”.
02:50
Thank you, cigarettes.
59
170600
1200
ืชื•ื“ื” ืœื›ืŸ ืกื™ื’ืจื™ื•ืช.
02:52
And you'll also see that, for example, stomach cancer
60
172360
2496
ื•ื ื™ืชืŸ ืœืจืื•ืช ื’ื, ืœื“ื•ื’ืžื, ืืช ืกืจื˜ืŸ ื”ืงื™ื‘ื”
02:54
once used to be one of the biggest killers of all cancers,
61
174880
3336
ืฉืคืขื ื”ื™ื” ืื—ื“ ืžืกื•ื’ื™ ื”ืกืจื˜ืŸ ื”ืงื˜ืœื ื™ื™ื ื‘ื™ื•ืชืจ,
02:58
is essentially eliminated.
62
178240
1440
ื•ื›ื™ื•ื ื”ื•ื ืžื•ื’ืจ.
03:00
Now, why is that? Anyone knows, by the way?
63
180480
2056
ื•ืœืžื” ื–ื” ืงืจื”? ืžื™ืฉื”ื• ื™ื•ื“ืข?
03:02
Why is it that humanity is no longer struck by stomach cancer?
64
182560
3336
ืžื“ื•ืข ืื ืฉื™ื ื›ื‘ืจ ืœื ืžืชื™ื ืžืกืจื˜ืŸ ื”ืงื™ื‘ื”?
03:05
What was the huge, huge medical technology breakthrough
65
185920
4856
ืžื” ื”ื™ื™ืชื” ืคืจื™ืฆืช ื”ื“ืจืš ื”ืจืคื•ืื™ืช ื”ืขืฆื•ืžื”
03:10
that came to our world that saved humanity from stomach cancer?
66
190800
3360
ืฉื”ื’ื™ืขื” ืœืขื•ืœื ื•ื”ืฆื™ืœื” ืืช ื”ืื ื•ืฉื•ืช ืžืกืจื˜ืŸ ื”ืงื™ื‘ื”?
03:15
Was it maybe a new drug, or a better diagnostic?
67
195240
3816
ื”ืื ืžื“ื•ื‘ืจ ื‘ืชืจื•ืคื” ื—ื“ืฉื”, ืื• ืื‘ื—ื ื” ืžืฉื•ืคืจืช?
03:19
You guys are right, yeah.
68
199080
1296
ืืชื ืฆื•ื“ืงื™ื ื—ื‘ืจ'ื”, ื›ืŸ.
03:20
It's the invention of the refrigerator,
69
200400
2616
ืžื“ื•ื‘ืจ ื‘ื”ืžืฆืืช ื”ืžืงืจืจ,
03:23
and the fact that we're no longer eating spoiled meats.
70
203040
2616
ื•ื‘ืขื•ื‘ื“ื” ืฉืื ื—ื ื• ื›ื‘ืจ ืœื ืื•ื›ืœื™ื ื‘ืฉืจ ืžืงื•ืœืงืœ.
03:25
So the best thing that happened to us so far
71
205680
2296
ื›ืš ืฉื”ื“ื‘ืจ ื”ื˜ื•ื‘ ื‘ื™ื•ืชืจ ืฉืงืจื” ืœื ื• ืขื“ ื›ื”
03:28
in the medical arena in cancer research
72
208000
1936
ื‘ื–ื™ืจื” ื”ืจืคื•ืื™ืช ื•ื‘ื—ืงืจ ื”ืกืจื˜ืŸ
03:29
is the fact that the refrigerator was invented.
73
209960
2191
ื”ื•ื ืœืžืขืฉื” ื”ืžืฆืืช ื”ืžืงืจืจ.
03:32
(Laughter)
74
212175
1201
(ืฆื—ื•ืง)
03:33
And so -- yeah, I know.
75
213400
1256
ื•ื›ืš โ€“ ื›ืŸ, ืื ื™ ื™ื•ื“ืข.
03:34
We're not doing so well here.
76
214680
1416
ืื ื—ื ื• ืœื ืžืžืฉ ืžืฆืœื™ื—ื™ื.
03:36
I don't want to miniaturize the progress
77
216120
2336
ืื ื™ ืœื ืจื•ืฆื” ืœืžื–ืขืจ ืืช ื”ื”ืชืงื“ืžื•ืช
03:38
and everything that's been done in cancer research.
78
218480
3376
ื•ืืช ื›ืœ ืžื” ืฉื ืขืฉื” ื‘ื—ืงืจ ื”ืกืจื˜ืŸ.
03:41
Look, there is like 50-plus years of good cancer research
79
221880
3416
ืชืจืื•, ื™ืฉ ืžืขืœ 50 ืฉื ื•ืช ืžื—ืงืจ ื˜ื•ื‘ ื‘ืชื—ื•ื ื”ืกืจื˜ืŸ
03:45
that discovered major, major things that taught us about cancer.
80
225320
3416
ื‘ื”ืŸ ื”ืชื’ืœื• ืชื’ืœื™ื•ืช ืขืฆื•ืžื•ืช ืฉืœื™ืžื“ื• ืื•ืชื ื• ืขืœ ืžื—ืœืช ื”ืกืจื˜ืŸ.
03:48
But all that said,
81
228760
1736
ื•ืœืžืจื•ืช ื–ืืช,
03:50
we have a lot of heavy lifting to still do ahead of us.
82
230520
2572
ื™ืฉ ืขื•ื“ ื”ืžื•ืŸ ืขื‘ื•ื“ื” ืœืขืฉื•ืช.
03:54
Again, I will argue that the primary reason why this is the case,
83
234920
3096
ื•ืฉื•ื‘, ืื ื™ ื˜ื•ืขืŸ ืฉื”ืกื™ื‘ื” ื”ืขื™ืงืจื™ืช
03:58
why we have not done that remarkably well,
84
238040
2000
ืœื›ืš ืฉืœื ื”ืฆืœื—ื ื• ื›ืœ ื›ืš ืขื“ ื”ื™ื•ื,
04:00
is really we're fighting blindly here.
85
240064
1832
ื”ื™ื ืฉืื ื—ื ื• ื ืœื—ืžื™ื ื‘ืขื™ื ื™ื™ื ืขืฆื•ืžื•ืช.
04:01
And this is where medical imaging comes in.
86
241920
2216
ื•ื›ืืŸ ื ื›ื ืกืช ื˜ื›ื ื•ืœื•ื’ื™ื™ืช ื”ื”ื“ืžื™ื” ื”ืจืคื•ืื™ืช.
04:04
This is where my own work comes in.
87
244160
1680
ื›ืืŸ ื ื›ื ืกืช ื”ืขื‘ื•ื“ื” ืฉืœื™.
04:06
And so to give you a sense of the best medical imaging
88
246400
2736
ื›ื“ื™ ืœื”ื‘ื™ืŸ ืžื”ื™ ื”ื”ื“ืžื™ื” ื”ืจืคื•ืื™ืช ื”ื˜ื•ื‘ื” ื‘ื™ื•ืชืจ
04:09
that's offered today to brain cancer patients,
89
249160
2496
ืฉื ื™ืชืŸ ืœื”ืฆื™ืข ื›ื™ื•ื ืœื—ื•ืœื™ ืกืจื˜ืŸ ื”ืžื•ื—,
04:11
or actually generally to all cancer patients,
90
251680
2176
ื•ื‘ืขืฆื ืœื›ืœืœ ื—ื•ืœื™ ื”ืกืจื˜ืŸ,
04:13
take a look at this PET scan right here.
91
253880
1936
ืชืจืื• ืืช ืกืจื™ืงืช ื”-PET ื”ื–ื•.
04:15
Let's see. There we go.
92
255840
1240
ื‘ื•ืื• ื ืจืื”. ื”ื ื” ื–ื”.
04:17
So this is a PET/CT scan,
93
257640
1696
ื–ื•ื”ื™ ืกืจื™ืงืช PET/CT,
04:19
and what you'll see in this PET/CT scan
94
259360
2456
ื•ืžื” ืฉื ื™ืชืŸ ืœืจืื•ืช ื‘ืกืจื™ืงืช ื”- PET/CT
04:21
is the CT scan will show you where the bones are,
95
261840
3216
ื”ื•ื ืฉื”-CT ืžืจืื” ืœื ื• ืืช ื”ืขืฆืžื•ืช,
04:25
and the PET scan will show you where tumors are.
96
265080
2400
ื•ื”-PET ืžืจืื” ืœื ื• ืืช ื”ื’ื™ื“ื•ืœ.
04:27
Now, what you can see here
97
267960
2216
ืžื” ืฉืจื•ืื™ื ื›ืืŸ
04:30
is essentially a sugar molecule
98
270200
2416
ื”ื•ื ื‘ืขืฆื ืžื•ืœืงื•ืœื•ืช ืฉืœ ืกื•ื›ืจ
04:32
that was added a small little tag
99
272640
1816
ืืœื™ื” ื”ื•ืกืคื ื• ืกืžืŸ ืงื˜ืŸ
04:34
that is signaling to us outside of the body,
100
274480
2096
ืฉื ื™ืชืŸ ืœืงืœื•ื˜ ืžื—ื•ืฅ ืœื’ื•ืฃ,
04:36
"Hey, I'm here."
101
276600
1296
"ื”ื™ื™, ืื ื™ ื›ืืŸ."
04:37
And those sugar molecules are injected into these patients by the billions,
102
277920
3816
ื•ืžื•ืœืงื•ืœื•ืช ื”ืกื•ื›ืจ ื”ืœืœื• ืžื•ื–ืจืงื•ืช ืœื—ื•ืœื™ื ื‘ื›ืžื•ืช ืขืฆื•ืžื”,
04:41
and they're going all over the body
103
281760
1696
ื”ืŸ ื ืขื•ืช ื‘ืจื—ื‘ื™ ื”ื’ื•ืฃ ื›ื•ืœื•
04:43
looking for cells that are hungry for sugar.
104
283480
2080
ื•ืžื—ืคืฉื•ืช ืชืื™ื ืฉืจืขื‘ื™ื ืœืกื•ื›ืจ.
04:46
You'll see that the heart, for example, lights up there.
105
286320
2656
ืชืจืื• ืื™ืš ื”ืœื‘, ืœื“ื•ื’ืžื, ืžื•ืืจ ื‘ืชืžื•ื ื”.
04:49
That's because the heart needs a lot of sugar.
106
289000
2216
ื›ื™ ื”ืœื‘ ืฆื•ืจืš ื”ืžื•ืŸ ืกื•ื›ืจ.
04:51
You'll also see that the bladder lights up there.
107
291240
2336
ืชืจืื• ื’ื ืฉื”ืฉืœืคื•ื—ื™ืช ืžื•ืืจืช ื›ืืŸ.
04:53
That's because the bladder is the thing that's clearing
108
293600
2616
ื›ื™ ื”ืฉืœืคื•ื—ื™ืช ื”ื™ื ื”ืžืงื•ื ืฉืžืคื ื”
04:56
the sugar away from our body.
109
296240
1400
ืืช ื”ืกื•ื›ืจ ืžื”ื’ื•ืฃ ืฉืœื ื•.
04:58
And then you'll see a few other hot spots,
110
298096
2000
ื•ืื– ืชืจืื• ืžืกืคืจ ื ืงื•ื“ื•ืช 'ื—ืžื•ืช' ื ื•ืกืคื•ืช,
05:00
and these are in fact the tumors.
111
300120
1616
ื•ืืœื• ื”ื ืœืžืขืฉื” ื’ื™ื“ื•ืœื™ื ืกืจื˜ื ื™ื™ื.
05:01
Now, this is a really a wonderful technology.
112
301760
2136
ืžื“ื•ื‘ืจ ื‘ื˜ื›ื ื•ืœื•ื’ื™ื” ื ื”ื“ืจืช.
05:03
For the first time it allowed us to look into someone's body
113
303920
3136
ื‘ืคืขื ื”ืจืืฉื•ื ื” ื™ื›ื•ืœื ื• ืœื”ื‘ื™ื˜ ืืœ ืชื•ืš ื’ื•ืคื• ืฉืœ ืื“ื
05:07
without picking up each and every one of the cells
114
307080
2376
ื‘ืœื™ ืœื”ื•ืฆื™ื ืืช ื›ืœ ื”ืชืื™ื ื”ืœืœื•
05:09
and putting them under the microscope,
115
309480
1856
ื•ืœื”ื‘ื™ื˜ ื‘ื”ื ื‘ืžื™ืงืจื•ืกืงื•ืค,
ืืœื ื‘ื“ืจืš ืœื ื—ื•ื“ืจื ื™ืช ืฉืžืืคืฉืจืช ืœื”ื‘ื™ื˜ ืืœ ืชื•ืš ื’ื•ืฃ ื”ืื“ื
05:11
but in a noninvasive way allowing us to look into someone's body
116
311360
3016
05:14
and ask, "Hey, has the cancer metastasized?
117
314400
2136
ื•ืœื”ื’ื™ื“, "ื”ื™ื™, ื”ืื ื”ืกืจื˜ืŸ ืฉืœื— ื’ืจื•ืจื•ืช?
05:16
Where is it?"
118
316560
1216
"ืื™ืคื” ื–ื” ื ืžืฆื?"
05:17
And the PET scans here are showing you very clearly
119
317800
2496
ื•ืกืจื™ืงื•ืช ื”-PET ืฉื›ืืŸ ืžืจืื•ืช ื‘ืฆื•ืจื” ื‘ืจื•ืจื” ืžืื“
05:20
where are these hot spots, where is the tumor.
120
320320
2280
ื”ื™ื›ืŸ ื ืžืฆืื•ืช ื”ื ืงื•ื“ื•ืช ื”ื—ืžื•ืช, ื”ื™ื›ืŸ ื ืžืฆื ื”ื’ื™ื“ื•ืœ.
05:23
So as miraculous as this might seem,
121
323480
3296
ืื‘ืœ ื›ืžื” ืฉื–ื” ื ืจืื” ืœื ื• ืžื•ืคืœื,
05:26
unfortunately, well, it's not that great.
122
326800
2880
ืœืžืจื‘ื” ื”ืฆืขืจ, ื–ื” ืœื ื›ืœ ื›ืš ืžืจืฉื™ื.
05:30
You see, those small little hot spots there.
123
330320
2080
ืืชื ืจื•ืื™ื ืืช ื”ื ืงื•ื“ื•ืช ื”ื—ืžื•ืช ื”ืืœื•.
05:33
Can anyone guess how many cancer cells are in any one of these tumors?
124
333240
3520
ืืชื ื™ื›ื•ืœื™ื ืœื ื—ืฉ ื›ืžื” ืชืื™ ืกืจื˜ืŸ ื™ืฉ ื‘ื›ืœ ื ืงื•ื“ื” ื›ื–ื•?
05:38
So it's about 100 million cancer cells,
125
338600
2336
ืžื“ื•ื‘ืจ ื‘ื›-100 ืžื™ืœื™ื•ืŸ ืชืื™ ืกืจื˜ืŸ,
05:40
and let me make sure that this number sunk in.
126
340960
2696
ืื ื™ ืจื•ืฆื” ืฉืชื—ืฉื‘ื• ืขืœ ื”ืžืกืคืจ ื”ื–ื”.
05:43
In each and every one of these small little blips
127
343680
2336
ื•ื‘ื›ืœ ื ืงื•ื“ื” ืงื˜ื ื” ื›ื–ื•
05:46
that you're seeing on the image,
128
346040
1576
ืฉืืชื ืจื•ืื™ื ื›ืืŸ ื‘ืชืžื•ื ืช ื”ื”ื“ืžื™ื”,
05:47
there needs to be at least 100 million cancer cells
129
347640
4096
ื—ื™ื™ื‘ื™ื ืœื”ื™ื•ืช ืœืคื—ื•ืช 100 ืžื™ืœื™ื•ืŸ ืชืื™ ืกืจื˜ืŸ
05:51
in order for it to be detected.
130
351760
1536
ืขืœ ืžื ืช ืฉื ื•ื›ืœ ืœืจืื•ืช ืื•ืชื ื‘ื”ื“ืžื™ื”.
05:53
Now, if that seemed to you like a very large number,
131
353320
2456
ื•ืื ื ืจืื” ืœื›ื ืฉืžื“ื•ื‘ืจ ื‘ืžืกืคืจ ืขืฆื•ื,
05:55
it is a very large number.
132
355800
1680
ืื›ืŸ, ืžื“ื•ื‘ืจ ื‘ืžืกืคืจ ืขืฆื•ื.
05:58
This is in fact an incredibly large number,
133
358640
2056
ืœืžืขืฉื” ืžื“ื•ื‘ืจ ื‘ืžืกืคืจ ื’ื“ื•ืœ ืœื”ื“ื”ื™ื,
06:00
because what we really need in order to pick up something early enough
134
360720
3336
ื›ื™ ืžื” ืฉื‘ืืžืช ื“ืจื•ืฉ ืœื ื• ืœืื™ืชื•ืจ ืžื•ืงื“ื ืฉืœ ื”ืกืจื˜ืŸ
ื›ื“ื™ ืฉื ื•ื›ืœ ืœื˜ืคืœ ื‘ื• ื‘ื–ืžืŸ, ืœืชืช ื˜ื™ืคื•ืœ ืžืฉืžืขื•ืชื™,
06:04
to do something about it, to do something meaningful about it,
135
364080
2936
ืœืฉื ื›ืš ื ืฆื˜ืจืš ืœืืชืจ ื’ื™ื“ื•ืœื™ื ื‘ื’ื•ื“ืœ ืฉืœ ืืœืฃ ืชืื™ื,
06:07
well, we need to pick up tumors that are a thousand cells in size,
136
367040
3136
ื•ื‘ืื•ืคืŸ ืื™ื“ืืœื™ ืืคื™ืœื• ืชืื™ื ื‘ื•ื“ื“ื™ื.
06:10
and ideally just a handful of cells in size.
137
370200
2136
ื›ืš ืฉื‘ืจื•ืจ ืฉืื ื—ื ื• ืจื—ื•ืงื™ื ืžืื“ ืžื”ื™ืขื“ ื”ื–ื”.
06:12
So we're clearly pretty far away from this.
138
372360
2016
ื‘ื•ืื• ื ืขืจื•ืš ื ื™ืกื•ื™ ืงื˜ืŸ.
06:14
So we're going to play a little experiment here.
139
374400
2256
06:16
I'm going to ask each of you to now play and imagine
140
376680
2456
ืื ื™ ืจื•ืฆื” ืฉืชืขืžื™ื“ื• ืคื ื™ื ื•ืชื“ืžื™ื™ื ื•
06:19
that you are brain surgeons.
141
379160
1360
ืฉืืชื ืžื ืชื—ื™ ืžื•ื—.
06:21
And you guys are now at an operating room,
142
381000
4016
ื•ืืชื ื ืžืฆืื™ื ื›ืจื’ืข ื‘ื—ื“ืจ ื”ื ื™ืชื•ื—,
06:25
and there's a patient in front of you,
143
385040
2016
ื•ื™ืฉ ืžื•ืœื›ื ื—ื•ืœื”,
06:27
and your task is to make sure that the tumor is out.
144
387080
3720
ื•ืžื‘ืงืฉื™ื ืžื›ื ืœื•ื•ื“ื ืฉื”ื•ืฆืืชื ืืช ื›ืœ ื”ื’ื™ื“ื•ืœ.
06:31
So you're looking down at the patient,
145
391400
3376
ื•ืืชื ืžื‘ื™ื˜ื™ื ืขืœ ื”ื—ื•ืœื”,
06:34
the skin and the skull have already been removed,
146
394800
2336
ื”ืขื•ืจ ื•ื”ื’ื•ืœื’ื•ืœืช ื›ื‘ืจ ื”ื•ืกืจื•,
06:37
so you're looking at the brain.
147
397160
1536
ื•ืืชื ืžื‘ื™ื˜ื™ื ืขืœ ื”ืžื•ื—.
06:38
And all you know about this patient
148
398720
1696
ื•ื›ืœ ืžื” ืฉืืชื ื™ื•ื“ืขื™ื ืœื’ื‘ื™ ื”ื—ื•ืœื” ื”ื–ื”
06:40
is that there's a tumor about the size of a golf ball or so
149
400440
2816
ื”ื•ื ืฉื™ืฉ ืœื• ื’ื™ื“ื•ืœ ื‘ื’ื•ื“ืœ ื›ื“ื•ืจ ื’ื•ืœืฃ
06:43
in the right frontal lobe of this person's brain.
150
403280
2320
ื‘ืื•ื ื” ื”ื™ืžื ื™ืช ื”ืงื“ืžื™ืช ืฉืœ ื”ืžื•ื—.
06:46
And that's more or less it.
151
406080
1336
ื•ื–ื”ื•.
06:47
So you're looking down, and unfortunately everything looks the same,
152
407440
3216
ื•ืืชื ืžื‘ื™ื˜ื™ื ื‘ืžื•ื—, ื•ืœืžืจื‘ื” ื”ืฆืขืจ ื”ื›ืœ ื ืจืื” ืื•ืชื• ื”ื“ื‘ืจ,
06:50
because brain cancer tissue and healthy brain tissue
153
410680
3096
ื›ื™ ืจืงืžืช ืกืจื˜ืŸ ื”ืžื•ื— ื•ืจืงืžืช ื”ืžื•ื— ื”ื‘ืจื™ืื”
06:53
really just look the same.
154
413800
1576
ื ืจืื•ืช ืžืžืฉ ืื•ืชื• ื”ื“ื‘ืจ.
06:55
And so you're going in with your thumb,
155
415400
1896
ื•ืืชื ืžืžืฉืฉื™ื ืขื ื”ืื’ื•ื“ืœ,
ื•ืืชื ืœื•ื—ืฆื™ื ืงืฆืช ืขืœ ื”ืžื•ื—,
06:57
and you start to press a little bit on the brain,
156
417320
2336
06:59
because tumors tend to be a little harder, stiffer,
157
419680
2416
ื›ื™ ื’ื™ื“ื•ืœื™ื ื ื•ื˜ื™ื ืœื”ื™ื•ืช ืงืฆืช ื™ื•ืชืจ ืงืฉื™ื, ื ื•ืงืฉื™ื,
07:02
and so you go in and go a little bit like this and say,
158
422120
2616
ืื– ืืชื ืžืชื—ื™ืœื™ื ืœื’ืขืช ื•ืขื•ืฉื™ื ื›ื›ื” ื•ืื•ืžืจื™ื,
07:04
"It seems like the tumor is right there."
159
424760
1976
"ื ืจืื” ืฉื”ื’ื™ื“ื•ืœ ื ืžืฆื ืžืžืฉ ื›ืืŸ."
07:06
Then you take out your knife and start cutting the tumor
160
426760
2656
ื•ืืชื ืžื•ืฆื™ืื™ื ืืช ืกื›ื™ืŸ ื”ืžื ืชื—ื™ื ื•ืžืชื—ื™ืœื™ื ืœื—ืชื•ืš ืืช ื”ื’ื™ื“ื•ืœ
07:09
piece by piece by piece.
161
429440
1256
ื—ืชื™ื›ื” ื‘ื›ืœ ืคืขื.
07:10
And as you're taking the tumor out,
162
430720
1696
ื•ื‘ื–ืžืŸ ืฉืืชื ืžื•ืฆื™ืื™ื ืืช ื”ื’ื™ื“ื•ืœ,
07:12
then you're getting to a stage where you think,
163
432440
2216
ืืชื ืžื’ื™ืขื™ื ืœืฉืœื‘ ื‘ื• ืืชื ื—ื•ืฉื‘ื™ื,
"ืื• ืงื™ื™, ืกื™ื™ืžืชื™. ื”ื•ืฆืืชื™ ืืช ื”ื›ืœ."
07:14
"Alright, I'm done. I took out everything."
164
434680
2136
07:16
And at this stage, if that's --
165
436840
1536
ื•ื‘ืฉืœื‘ ื–ื”, ื’ื ืื โ€“
07:18
so far everything sounded, like, pretty crazy --
166
438400
2696
ืขื“ ื›ื” ื”ื›ืœ ื ืฉืžืข ืงืฆืช ืžืฉื•ื’ืข โ€“
07:21
you're now about to face the most challenging decision of your life here.
167
441120
3696
ืขื›ืฉื™ื• ืืชื ืขื•ืžื“ื™ื ื‘ืคื ื™ ื”ื”ื—ืœื˜ื” ื”ืงืฉื” ื‘ื™ื•ืชืจ ื‘ื—ื™ื™ื›ื.
07:24
Because now you need to decide,
168
444840
1536
ื›ื™ ืขื›ืฉื™ื• ืืชื ืฆืจื™ื›ื™ื ืœื”ื—ืœื™ื˜,
07:26
should I stop here and let this patient go,
169
446400
2696
ื”ืื ืœืกื™ื™ื ืืช ื”ื ื™ืชื•ื— ืขื›ืฉื™ื•, ื•ืœืฉื—ืจืจ ืืช ื”ื—ื•ืœื”,
07:29
risking that there might be some leftover cancer cells behind
170
449120
2936
ืœืงื—ืช ืืช ื”ืกื™ื›ื•ืŸ ืฉื”ืฉืืจืชื ืชืื™ ืกืจื˜ืŸ ื‘ืžื•ื—
07:32
that I just couldn't see,
171
452080
1856
ืชืื™ื ืฉืœื ื™ื›ื•ืœืชื ืœืจืื•ืช,
07:33
or should I take away some extra margins,
172
453960
2656
ืื• ืœื”ื•ืฆื™ื ืขื•ื“ ืจืงืžืช ืžื•ื— ืžื”ืฉื•ืœื™ื™ื,
07:36
typically about an inch or so around the tumor
173
456640
2856
ื‘ื“ืจืš ื›ืœืœ ื›ืฉื ื™ ืกื ื˜ื™ืžื˜ืจ ืกื‘ื™ื‘ ื”ื’ื™ื“ื•ืœ
07:39
just to be sure that I removed everything?
174
459520
2200
ืจืง ื›ื“ื™ ืœื”ื™ื•ืช ื‘ื˜ื•ื—ื™ื ืฉื”ืกืจืชื ื”ื›ืœ?
07:43
So this is not a simple decision to make,
175
463400
3840
ืœื ืžื“ื•ื‘ืจ ื‘ื”ื—ืœื˜ื” ืคืฉื•ื˜ื”,
07:47
and unfortunately this is the decision
176
467840
1936
ื•ืœืฆืขืจื™ ื–ื• ื”ื”ื—ืœื˜ื”
07:49
that brain cancer surgeons have to take every single day
177
469800
3336
ืฉืžื ืชื—ื™ ืกืจื˜ืŸ ื”ืžื•ื— ื—ื™ื™ื‘ื™ื ืœืงื‘ืœ ื‘ื›ืœ ื™ื•ื ื‘ืฉื‘ื•ืข
07:53
as they're seeing their patients.
178
473160
1600
ื›ืฉื”ื ืžื˜ืคืœื™ื ื‘ื—ื•ืœื™ื ืฉืœื”ื.
07:55
And so I remember talking to a few friends of mine in the lab,
179
475320
2936
ื•ืื ื™ ื–ื•ื›ืจ ืฉื“ื™ื‘ืจืชื™ ืขื ื›ืžื” ื—ื‘ืจื™ื ื‘ืžืขื‘ื“ื”,
07:58
and we say, "Boy, there's got to be a better way."
180
478280
2376
ื•ืืžืจื ื•, "ื—ื™ื™ื‘ืช ืœื”ื™ื•ืช ืฉื™ื˜ื” ื˜ื•ื‘ื” ื™ื•ืชืจ."
08:00
But not just like you tell a friend that there's got to be a better way.
181
480680
3416
ืื‘ืœ ืœื ื›ืžื• ืฉืื•ืžืจื™ื ืœื—ื‘ืจื™ื ืฉื—ื™ื™ื‘ืช ืœื”ื™ื•ืช ืฉื™ื˜ื” ื˜ื•ื‘ื” ื™ื•ืชืจ.
ืคืฉื•ื˜ ื—ื™ื™ื‘ืช (!) ืœื”ื™ื•ืช ืฉื™ื˜ื” ื˜ื•ื‘ื” ื™ื•ืชืจ.
08:04
There's just got to be a better way here.
182
484120
1953
08:06
This is just incredible.
183
486097
1519
ื–ื” ืคืฉื•ื˜ ืœื ื™ื™ืืžืŸ.
08:07
And so we looked back.
184
487640
1656
ื•ืื– ื—ืฉื‘ื ื• ืงืฆืช.
08:09
Remember those PET scans I told you about, the sugar and so on.
185
489320
2976
ื–ื•ื›ืจื™ื ืืช ืกืจื™ืงื•ืช ื”-PET, ื”ืกื•ื›ืจ ื•ื›ืœ ื–ื”.
ืืžืจื ื•, ืื•ืœื™ ื‘ืžืงื•ื ืžื•ืœืงื•ืœื•ืช ื”ืกื•ื›ืจ,
08:12
We said, hey, how about instead of using sugar molecules,
186
492320
2736
ื ื™ืงื— ื—ืœืงื™ืงื™ื ืงื˜ื ื™ื ืฉืœ ื–ื”ื‘,
08:15
let's maybe take tiny, tiny little particles made of gold,
187
495080
3136
08:18
and let's program them with some interesting chemistry around them.
188
498240
3656
ื•ื ืชื›ื ืช ืื•ืชื ืขื ื›ืžื” ื—ื•ืžืจื™ื ื›ื™ืžื™ื™ื.
08:21
Let's program them to look for cancer cells.
189
501920
2416
ื ืชื›ื ืช ืื•ืชื ืœื—ืคืฉ ืืช ืชืื™ ื”ืกืจื˜ืŸ.
08:24
And then we will inject these gold particles
190
504360
2096
ื•ืื– ื ื–ืจื™ืง ืืช ื—ืœืงื™ืงื™ ื”ื–ื”ื‘
08:26
into these patients by the billions again,
191
506480
2256
ืœื—ื•ืœื” ื‘ื›ืžื•ืช ืขืฆื•ืžื”,
08:28
and we'll have them go all over the body,
192
508760
1976
ื•ื ื—ื›ื” ืฉื”ื ื™ื’ื™ืขื• ืœื›ืœ ืžืงื•ื ื‘ื’ื•ืฃ,
08:30
and just like secret agents, if you will,
193
510760
1976
ื•ืžืžืฉ ื›ืžื• ืกื•ื›ื ื™ื ื—ืฉืื™ื™ื,
08:32
go and walk by every single cell in our body
194
512760
2816
ื”ื ื™ืขื‘ืจื• ืœื™ื“ ื›ืœ ืชื ื‘ื’ื•ืฃ ืฉืœื ื•
08:35
and knock on the door of that cell,
195
515600
1696
ื•ื™ื ืงืฉื• ืขืœ ื“ืœืชื•ืช ื”ืชื,
08:37
and ask, "Are you a cancer cell or are you a healthy cell?
196
517320
2736
ื•ื™ืฉืืœื•: "ื”ืื ืืชื” ืชื ืกืจื˜ื ื™ ืื• ืชื ื‘ืจื™ื?"
ืื ืืชื” ืชื ื‘ืจื™ื, ื ืžืฉื™ืš ื”ืœืื”.
08:40
If you're a healthy cell, we're moving on.
197
520080
2016
ืื ืืชื” ืชื ืกืจื˜ื ื™, ื ื™ืฆืžื“ ืืœื™ืš ื•ื ื ืฆื ืฅ,
08:42
If you're a cancer cell, we're sticking in and shining out
198
522120
2736
08:44
and telling us, "Hey, look at me, I'm here."
199
524880
2096
ื•ื ื•ื“ื™ืข, "ื”ื™ื™, ืชืจืื• ืื•ืชื™, ืื ื™ ื›ืืŸ."
08:47
And they'll do it through some interesting cameras
200
527000
2376
ื•ื”ื ื™ืขืฉื• ื–ืืช ื‘ืขื–ืจืช ืžืฆืœืžื•ืช ืžืขื ื™ื™ื ื•ืช
ืฉืคื™ืชื—ื ื• ื‘ืžืขื‘ื“ื” ืฉืœื ื•.
08:49
that we developed in the lab.
201
529400
1416
08:50
And once we see that, maybe we can guide brain cancer surgeons
202
530840
2935
ื•ื›ืฉื ืจืื” ืืช ื”ื ืฆื ื•ืฅ, ืื•ืœื™ ื ื•ื›ืœ ืœื”ื ื—ื•ืช ืืช ืžื ืชื—ื™ ื”ืžื•ื—
08:53
towards taking only the tumor and leaving the healthy brain alone.
203
533799
3401
ื•ื ืขื–ื•ืจ ืœื”ื ืœื”ื•ืฆื™ื ืจืง ืืช ื”ื’ื™ื“ื•ืœ ื•ืœื”ืฉืื™ืจ ืืช ืจืงืžืช ื”ืžื•ื— ื”ื‘ืจื™ืื”.
08:57
And so we've tested that, and boy, this works well.
204
537720
3056
ืื– ื‘ื“ืงื ื• ืืช ื”ืฉื™ื˜ื”, ื•ื”ื™ื ืžืžืฉ ืขื•ื‘ื“ืช ื˜ื•ื‘.
09:00
So I'm going to show you an example now.
205
540800
1976
ืืจืื” ืœื›ื ื“ื•ื’ืžื.
09:02
What you're looking at here
206
542800
1776
ืžื” ืฉืืชื ืจื•ืื™ื ื›ืืŸ
09:04
is an image of a mouse's brain,
207
544600
3936
ื”ื•ื ื”ื“ืžื™ื™ื” ืฉืœ ืžื•ื— ืขื›ื‘ืจ,
09:08
and we've implanted into this mouse's brain
208
548560
3136
ื•ื”ืฉืชืœื ื• ื‘ื• ื’ื™ื“ื•ืœ ืงื˜ืŸ
09:11
a small little tumor.
209
551720
1256
ืžืžืฉ ืžืžืฉ ืงื˜ืŸ.
09:13
And so this tumor is now growing in this mouse's brain,
210
553000
2616
ื•ื”ื’ื™ื“ื•ืœ ื”ื–ื” ื’ื“ืœ ื‘ืžื•ื—ื• ืฉืœ ื”ืขื›ื‘ืจ,
09:15
and then we've taken a doctor and asked the doctor
211
555640
2656
ื•ืคื ื™ื ื• ืœืจื•ืคื ื•ื‘ื™ืงืฉื ื• ืžืžื ื•
ืœื ืชื— ืืช ื”ืขื›ื‘ืจ ื›ืื™ืœื• ืฉื”ื•ื ื—ื•ืœื” ืื ื•ืฉื™,
09:18
to please operate on the mouse as if that was a patient,
212
558320
2816
09:21
and take out piece by piece out of the tumor.
213
561160
2416
ื•ืœื”ื•ืฆื™ื ืืช ื›ืœ ื—ืœืงื™ ื”ื’ื™ื“ื•ืœ.
09:23
And while he's doing that,
214
563600
1776
ื•ื‘ื–ืžืŸ ืฉื”ื•ื ืžื ืชื—,
09:25
we're going to take images to see where the gold particles are.
215
565400
2976
ืื ื—ื ื• ื ืฆืœื ืชืžื•ื ื•ืช ื•ื ืจืื” ื”ื™ื›ืŸ ื ืžืฆืื™ื ื—ืœืงื™ืงื™ ื”ื–ื”ื‘.
09:28
And so we're going to first start
216
568400
1616
ืื– ื ืชื—ื™ืœ ืืช ื”ืชื”ืœื™ืš
09:30
by injecting these gold particles into this mouse,
217
570040
2416
ื•ื ื–ืจื™ืง ืืช ื—ืœืงื™ืงื™ ื”ื–ื”ื‘ ืœืขื›ื‘ืจ,
09:32
and we're going to see right here at the very left there
218
572480
2896
ื•ื ืจืื” ื›ืืŸ ื‘ืงืฆื” ื”ืฉืžืืœื™
09:35
that image at the bottom
219
575400
1256
ืฉื”ืชืžื•ื ื” ืฉืœืžื˜ื”
09:36
is the image that shows where the gold particles are.
220
576680
2496
ื”ื™ื ื”ืชืžื•ื ื” ืฉืžืจืื” ืœื ื• ื”ื™ื›ืŸ ื ืžืฆืื™ื ื—ืœืงื™ืงื™ ื”ื–ื”ื‘.
09:39
The nice thing is that these gold particles
221
579200
2056
ืžื” ืฉื™ืคื” ื”ื•ื ืฉื—ืœืงื™ืงื™ ื”ื–ื”ื‘
09:41
actually made it all the way to the tumor,
222
581280
2016
ื—ื“ืจื• ืžืžืฉ ืืœ ืชื•ืš ื”ื’ื™ื“ื•ืœ,
09:43
and then they shine out and tell us, "Hey, we're here. Here's the tumor."
223
583320
3656
ื•ืžืฉื ื”ื ืžื ืฆื ืฆื™ื ื•ืงื•ืจืื™ื ืœื ื•, "ื”ื™ื™, ืื ื—ื ื• ื›ืืŸ. ื”ื’ื™ื“ื•ืœ ื›ืืŸ."
09:47
So now we can see the tumor,
224
587000
1376
ื•ืขื›ืฉื™ื• ืืคืฉืจ ืœืจืื•ืช ืืช ื”ื’ื™ื“ื•ืœ,
09:48
but we're not showing this to the doctor yet.
225
588400
2136
ืื‘ืœ ืื ื—ื ื• ืœื ืžืจืื™ื ื–ืืช ืœืจื•ืคื ืขื“ื™ื™ืŸ.
09:50
We're asking the doctor, now please start cutting away the tumor,
226
590560
3056
ืื ื—ื ื• ืžื‘ืงืฉื™ื ืžืžื ื•, ืชืชื—ื™ืœ ืœื”ืกื™ืจ ืืช ื”ื’ื™ื“ื•ืœ ื‘ื‘ืงืฉื”,
09:53
and you'll see here the doctor just took the first quadrant of the tumor
227
593640
3416
ื•ืจื•ืื™ื ื›ืืŸ ืฉื”ืจื•ืคื ืžื•ืฆื™ื ืืช ื”ืจื‘ืข ื”ืจืืฉื•ืŸ ืฉืœ ื”ื’ื™ื“ื•ืœ
ื•ืจื•ืื™ื ืฉื”ืจื‘ืข ื”ื–ื” ื—ืกืจ ืขื›ืฉื™ื•.
09:57
and you see that first quadrant is now missing.
228
597080
2216
ื•ืื– ื”ืจื•ืคื ื”ื•ืฆื™ื ืจื‘ืข ืฉื ื™, ื•ืฉืœื™ืฉื™,
09:59
The doctor then took the second quadrant, the third,
229
599320
2456
ื•ืขื›ืฉื™ื• ื ืจืื” ืฉื”ื•ื ื”ื•ืฆื™ื ื”ื›ืœ.
10:01
and now it appears to be everything.
230
601800
1736
ื•ื‘ืฉืœื‘ ื”ื–ื”, ื”ืจื•ืคื ื—ื–ืจ ืืœื™ื ื• ื•ืืžืจ,
10:03
And so at this stage, the doctor came back to us and said,
231
603560
2736
"ื–ื”ื•, ืกื™ื™ืžืชื™. ืžื” ืœืขืฉื•ืช ืขื›ืฉื™ื•?
10:06
"Alright, I'm done. What do you want me to do?
232
606320
2256
10:08
Should I keep things as they are
233
608600
1576
"ืœืขืฆื•ืจ ื›ืืŸ
10:10
or do you want me to take some extra margins around?"
234
610200
2496
"ืื• ืœื”ืกื™ืจ ืขื•ื“ ืจืงืžื” ืžื”ืฉื•ืœื™ื™ื?"
10:12
And then we said, "Well, hang on."
235
612720
1656
ื•ืื ื—ื ื• ืืžืจื ื•, "ื—ื›ื” ืจื’ืข."
ืืžืจื ื• ืœื•, "ืคืกืคืกืช ืืช ืฉืชื™ ื”ื ืงื•ื“ื•ืช ื”ืืœื”,
10:14
We told the doctor, "You've missed those two spots,
236
614400
2416
10:16
so rather than taking huge margins around,
237
616840
2000
"ื•ื‘ืžืงื•ื ืœื”ืกื™ืจ ืฉื•ืœื™ื™ื ืขืฆื•ืžื™ื ืžืกื‘ื™ื‘,
"ืชื•ืฆื™ื ืจืง ืืช ืฉื ื™ ื”ืื–ื•ืจื™ื ื”ืงื˜ื ื™ื ื”ืืœื”.
10:18
only take out those tiny little areas.
238
618864
1832
10:20
Take them out, and then let's take a look."
239
620720
2016
"ื•ื ื‘ื“ื•ืง ืฉื•ื‘."
ืื– ื”ืจื•ืคื ื”ื•ืฆื™ื ืื•ืชื, ื•ืชืืžื™ื ื• ืื• ืœื
10:22
And so the doctor took them away, and lo and behold,
240
622760
2856
10:25
the cancer is now completely gone.
241
625640
2016
ื”ืกืจื˜ืŸ ืขื‘ืจ ืœื’ืžืจื™.
10:27
Now, the important thing
242
627680
1376
ื”ื“ื‘ืจ ื”ื—ืฉื•ื‘
10:29
is that it's not just that the cancer is completely gone
243
629080
2620
ื”ื•ื ืฉืœื ืจืง ืฉื”ื•ืฆืื ื• ืืช ื›ืœ ื”ื’ื™ื“ื•ืœ
10:31
from this person's brain,
244
631724
1332
ืžืชื•ืš ื”ืžื•ื— ืฉืœ ื”ื—ื•ืœื”,
10:33
or from this mouse's brain.
245
633080
1320
ืื• ืžื”ืžื•ื— ืฉืœ ื”ืขื›ื‘ืจ.
10:35
The most important thing
246
635160
1256
ื”ื“ื‘ืจ ื”ื—ืฉื•ื‘ ื‘ื™ื•ืชืจ
10:36
is that we did not have to take huge amounts of healthy brain
247
636440
2896
ื”ื•ื ืฉืœื ื”ื™ื™ื ื• ืฆืจื™ื›ื™ื ืœื”ื•ืฆื™ื ื›ืžื•ืช ืขืฆื•ืžื” ืฉืœ ืจืงืžืช ืžื•ื— ื‘ืจื™ืื”
10:39
in the process.
248
639360
1216
ืชื•ืš ื›ื“ื™ ื”ื ื™ืชื•ื—.
10:40
And so now we can actually imagine a world
249
640600
2176
ื›ืš ืฉืขื›ืฉื™ื• ื ื™ืชืŸ ืœื“ืžื™ื™ืŸ ืขื•ืœื
10:42
where doctors and surgeons, as they take away a tumor,
250
642800
3896
ื‘ื• ืจื•ืคืื™ื ื•ืžื ืชื—ื™ื, ื›ืฉื”ื ืžื•ืฆื™ืื™ื ื’ื™ื“ื•ืœ,
10:46
they actually know what to take out,
251
646720
1420
ื™ื•ื“ืขื™ื ื‘ื“ื™ื•ืง ืืช ืžื” ืœื”ื•ืฆื™ื,
10:48
and they no longer have to guess with their thumb.
252
648170
2110
ื‘ืžืงื•ื ืœื ื—ืฉ ื•ืœืžืฉืฉ ื‘ืืฆื‘ืขื•ืช.
10:51
Now, here's why it's extremely important to take those tiny little leftover tumors.
253
651520
3936
ื•ื—ืฉื•ื‘ ืœื”ื‘ื™ืŸ ืžื“ื•ืข ื—ื•ื‘ื” ืœื”ืกื™ืจ ืืช ื”ื’ื™ื“ื•ืœื™ื ื”ื–ืขื™ืจื™ื ื”ืœืœื•.
ืฉืืจื™ื•ืช ื”ื’ื™ื“ื•ืœ ื”ืืœื•, ืืคื™ืœื• ืื ืžื“ื•ื‘ืจ ื‘ื›ืžื•ืช ืชืื™ื ืงื˜ื ื”,
10:55
Those leftover tumors, even if it's just a handful of cells,
254
655480
2856
ื™ื’ื“ืœื• ื•ื™ื”ืคื›ื• ืœื’ื™ื“ื•ืœ ืžื—ื“ืฉ,
10:58
they will grow to recur the tumor,
255
658360
3056
11:01
for the tumor to come back.
256
661440
1656
ื•ื”ื’ื™ื“ื•ืœ ื™ื—ื–ื•ืจ.
11:03
In fact, the reason why 80 to 90 percent
257
663120
1936
ืœืžืขืฉื”, ื”ืกื™ื‘ื” ื‘ื’ืœืœื” 80 ืขื“ 90 ืื—ื•ื–
11:05
of those brain cancer surgeries ultimately fail
258
665080
2216
ืžื ื™ืชื•ื—ื™ ืกืจื˜ืŸ ื”ืžื•ื— ื ื›ืฉืœื™ื ื‘ืฉื•ืจื” ื”ืชื—ืชื•ื ื”
11:07
is because of those small little extra margins that were left positive,
259
667320
3776
ื”ื™ื ืฉื ืฉืืจื™ื ืžืกืคืจ ืชืื™ ื’ื™ื“ื•ืœ ื‘ืฉื•ืœื™ื™ื,
11:11
those small little leftover tumors that were left there.
260
671120
2680
ืฉืืจื™ื•ืช ื”ื’ื™ื“ื•ืœ ื”ืœืœื• ืฉื ืฉืืจื• ื‘ืžื•ื—.
11:15
So this is clearly very nice,
261
675440
2176
ืื– ื‘ืจื•ืจ ืฉื–ื” ืžืื“ ื™ืคื”,
11:17
but what I really want to share with you is where I think we're heading from here.
262
677640
4296
ืื‘ืœ ืžื” ืฉื‘ืืžืช ืจืฆื™ืชื™ ืœืกืคืจ ืœื›ื ื”ื•ื ืžื” ื”ื™ืขื“ ื”ื‘ื ืฉืœื ื•.
11:21
And so in my lab at Stanford,
263
681960
1656
ื•ื‘ืžืขื‘ื“ื” ืฉืœื™ ื‘ืกื˜ื ืคื•ืจื“,
11:23
my students and I are asking, what should we be working on now?
264
683640
5520
ื”ืกื˜ื•ื“ื ื˜ื™ื ืฉืœื™ ื•ืื ื™ ื—ื•ืฉื‘ื™ื, ืขืœ ืžื” ืฆืจื™ืš ืœืขื‘ื•ื“ ืขื›ืฉื™ื•?
11:29
And I think where medical imaging is heading to
265
689600
2856
ื•ืื ื™ ื—ื•ืฉื‘ ืฉื”ื™ืขื“ ื”ื‘ื ืฉืœ ื”ื”ื“ืžื™ื™ื” ื”ืจืคื•ืื™ืช
11:32
is the ability to look into the human body
266
692480
2336
ื”ื•ื ื”ื™ื›ื•ืœืช ืœื”ื‘ื™ื˜ ืืช ืชื•ืš ื’ื•ืฃ ื”ืื“ื
11:34
and actually see each and every one of these cells separately.
267
694840
3440
ื•ืœืจืื•ืช ื›ืœ ืชื ื•ืชื ื‘ื ืคืจื“.
11:39
The ability like this would allow us
268
699000
1736
ื™ื›ื•ืœืช ื›ื–ื• ืชืืคืฉืจ ืœื ื•
11:40
to actually pick up tumors way, way earlier in the process,
269
700760
2896
ืœื–ื”ื•ืช ื’ื™ื“ื•ืœื™ื ืกืจื˜ื ื™ื™ื ื‘ืฉืœื‘ ื”ืจื‘ื” ื™ื•ืชืจ ืžื•ืงื“ื ื‘ืชื”ืœื™ืš,
11:43
way before it's 100 million cells inside, so we can actually do something about it.
270
703680
3920
ื”ืจื‘ื” ืœืคื ื™ ืฉื™ื”ื™ื• 100 ืžื™ืœื™ื•ืŸ ืชืื™ื, ื‘ืฉืœื‘ ืฉื‘ื• ื ื™ืชืŸ ืขื“ื™ื™ืŸ ืœื˜ืคืœ.
11:48
An ability to see each and every one of the cells might also allow us
271
708200
3416
ื”ื™ื›ื•ืœืช ืœืจืื•ืช ื›ืœ ืชื ื•ืชื ืชืืคืฉืจ ืœื ื•
11:51
to ask insightful questions.
272
711640
1376
ืœืฉืื•ืœ ืฉืืœื•ืช ื—ืฉื•ื‘ื•ืช.
11:53
So in the lab, we are now getting to a point
273
713040
2096
ื•ืื ื—ื ื• ืžืชืงืจื‘ื™ื ืœื ืงื•ื“ื”
ื‘ื” ื ื•ื›ืœ ืœืฉืื•ืœ ืืช ืชืื™ ื”ืกืจื˜ืŸ ืฉืืœื•ืช ืžื”ื•ืชื™ื•ืช,
11:55
where we can actually start asking these cancer cells real questions,
274
715160
3256
11:58
like, for example, are you responding to the treatment we are giving you or not?
275
718440
3776
ืœื“ื•ื’ืžื, ื”ืื ืืชื ืžื’ื™ื‘ื™ื ืœื˜ื™ืคื•ืœ ืื• ืœื?
ื›ื™ ืื ืืชื ืœื ืžื’ื™ื‘ื™ื, ื ืคืกื™ืง ืืช ื”ื˜ื™ืคื•ืœ ื”ื–ื” ืžื™ื“,
12:02
So if you're not responding, we'll know to stop the treatment right away,
276
722240
3456
12:05
days into the treatment, not three months.
277
725720
2040
ืœืื—ืจ ืžืกืคืจ ื™ืžื™ื, ืœื ืื—ืจื™ ืฉืœื•ืฉื” ื—ื•ื“ืฉื™ื.
12:08
And so also for patients like Ehud
278
728480
2176
ื›ืš ืฉื—ื•ืœื™ื ื›ืžื• ืื”ื•ื“
12:10
that are going through these nasty, nasty chemotherapy drugs,
279
730680
4416
ืฉืขื•ื‘ืจื™ื ื˜ื™ืคื•ืœื™ื ื›ื™ืžื•ืชืจืคื™ื™ื ืงืฉื™ื,
12:15
for them not to suffer
280
735120
1256
ืœื ื™ืฆื˜ืจื›ื• ืœืกื‘ื•ืœ
12:16
through those horrendous side effects of the drugs
281
736400
2896
ืžืชื•ืคืขื•ืช ื”ืœื•ื•ืื™ ื”ื ื•ืจืื•ืช ืฉืœ ื”ื˜ื™ืคื•ืœ
12:19
when the drugs are in fact not even helping them.
282
739320
2656
ื›ืืฉืจ ื”ื˜ื™ืคื•ืœ ืœื ืžื•ืขื™ืœ ืœื”ื.
12:22
So to be frank here,
283
742000
2936
ื—ืฉื•ื‘ ืœื”ื™ื•ืช ื›ื ื™ื,
12:24
we're pretty far away from winning the war against cancer,
284
744960
3456
ืื ื—ื ื• ืขื“ื™ื™ืŸ ืจื—ื•ืงื™ื ืžืœื ืฆื— ืืช ืžื—ืœืช ื”ืกืจื˜ืŸ,
12:28
just to be realistic.
285
748440
1256
ื—ืฉื•ื‘ ืœื”ื™ื•ืช ืžืฆื™ืื•ืชื™ื™ื.
12:29
But at least I am hopeful
286
749720
1896
ืื‘ืœ ื™ืฉ ืœื™ ืชืงื•ื•ื”
12:31
that we should be able to fight this war with better medical imaging techniques
287
751640
4136
ืฉื ื•ื›ืœ ืœื”ื™ืœื—ื ื‘ืžืœื—ืžื” ื”ื–ื• ืขื ืฉื™ื˜ื•ืช ื”ื“ืžื™ื” ืžืฉื•ืคืจื•ืช
12:35
in the way that is not blind.
288
755800
1856
ื‘ืฆื•ืจื” ืฉืื™ื ื” ืขื™ื•ื•ืจืช.
12:37
Thank you.
289
757680
1216
ืชื•ื“ื” ืœื›ื.
12:38
(Applause)
290
758920
2240
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7