The mathematical secrets of Pascal’s triangle - Wajdi Mohamed Ratemi

3,067,494 views ・ 2015-09-15

TED-Ed


请双击下面的英文字幕来播放视频。

翻译人员: Winnie Ling 校对人员: Di SUN
00:07
This may look like a neatly arranged stack of numbers,
0
7603
3397
这些看上去 可能只是一堆排列整齐的数字,
00:11
but it's actually a mathematical treasure trove.
1
11000
3506
实际上,它可是一个数学的宝藏。
00:14
Indian mathematicians called it the Staircase of Mount Meru.
2
14506
4148
印度数学家称它为"须弥山之梯"。
00:18
In Iran, it's the Khayyam Triangle.
3
18654
2477
在伊朗,它是"海亚姆三角"。
00:21
And in China, it's Yang Hui's Triangle.
4
21131
2607
而在中国,它被称为"杨辉三角"。
00:23
To much of the Western world, it's known as Pascal's Triangle
5
23738
4295
在大部分西方国家, 它叫”帕斯卡三角“。
得名于法国数学家, 布莱斯 ·帕斯卡。
00:28
after French mathematician Blaise Pascal,
6
28033
3052
这似乎有点不太公平。
00:31
which seems a bit unfair since he was clearly late to the party,
7
31085
4149
因为帕斯卡的发现比其他人更晚,
00:35
but he still had a lot to contribute.
8
35234
2242
但帕斯卡也对此做出了许多贡献。
00:37
So what is it about this that has so intrigued mathematicians the world over?
9
37476
4794
那么,是什么让世界各地的 数学家们对它如此感兴趣?
00:42
In short, it's full of patterns and secrets.
10
42270
3854
简单地说,它充满了各种形式和秘密。
00:46
First and foremost, there's the pattern that generates it.
11
46124
3304
首先,这是构造三角的形式。
00:49
Start with one and imagine invisible zeros on either side of it.
12
49428
5049
从 1 开始, 并假设两边各有一个看不见的 0,
00:54
Add them together in pairs, and you'll generate the next row.
13
54477
4115
把相邻的数字加起来, 你就会得到下一行。
00:58
Now, do that again and again.
14
58592
3474
现在,重复这样的操作,
01:02
Keep going and you'll wind up with something like this,
15
62066
3718
反复进行, 你最终会得到这样一个图形。
01:05
though really Pascal's Triangle goes on infinitely.
16
65784
3541
实际上,帕斯卡三角是无限大的。
01:09
Now, each row corresponds to what's called the coefficients of a binomial expansion
17
69325
5589
它每一行的数字都对应 (x+y)^n 二项式展开的系数,
01:14
of the form (x+y)^n,
18
74914
3984
01:18
where n is the number of the row,
19
78898
2409
其中 n 是行的序号,
01:21
and we start counting from zero.
20
81307
2439
从 0 开始算。
01:23
So if you make n=2 and expand it,
21
83746
2806
当 n=2时, 二项式展开你会得到
01:26
you get (x^2) + 2xy + (y^2).
22
86552
4555
x^2 + 2xy + y^2。
01:31
The coefficients, or numbers in front of the variables,
23
91107
2916
那些系数,就是每一项变量前的数字,
01:34
are the same as the numbers in that row of Pascal's Triangle.
24
94023
4374
和帕斯卡三角对应行的数字相同。
01:38
You'll see the same thing with n=3, which expands to this.
25
98397
4859
n=3 也是一样,展开得到这个。
01:43
So the triangle is a quick and easy way to look up all of these coefficients.
26
103256
5237
所以,这个三角能让我们 快速得到二项式的系数。
01:48
But there's much more.
27
108493
1544
然而,奥秘远远不止这些。
01:50
For example, add up the numbers in each row,
28
110037
2860
比如说,把每一行的数字加起来,
01:52
and you'll get successive powers of two.
29
112897
3142
你会得到连续的2的次方。
01:56
Or in a given row, treat each number as part of a decimal expansion.
30
116039
5182
或者在某一行,把每一个数字 当成十进制的一部分。
02:01
In other words, row two is (1x1) + (2x10) + (1x100).
31
121221
6614
换句话说,第二行是 (1x1) + (2x10) + (1x100),
02:07
You get 121, which is 11^2.
32
127835
4276
你会得到 121,也就是 11^2。
02:12
And take a look at what happens when you do the same thing to row six.
33
132111
3761
那么,同理到第六行,看看会发生什么。
02:15
It adds up to 1,771,561, which is 11^6, and so on.
34
135872
9264
总和是 1,771,561, 也就是 11^6,其他也一样。
02:25
There are also geometric applications.
35
145136
2754
除此之外,也有一些几何的应用。
02:27
Look at the diagonals.
36
147890
1801
看看那些对角线,
02:29
The first two aren't very interesting: all ones, and then the positive integers,
37
149691
4426
开头两条并不是很有趣,全都是 1。
接下来是正整数,也被称为自然数。
02:34
also known as natural numbers.
38
154117
2539
02:36
But the numbers in the next diagonal are called the triangular numbers
39
156656
4051
而下一条对角线的数字,则被称为三角数。
02:40
because if you take that many dots,
40
160707
2076
因为如果你用那些数量的点,
02:42
you can stack them into equilateral triangles.
41
162783
3606
可以把它们堆成等边三角形。
02:46
The next diagonal has the tetrahedral numbers
42
166389
2918
下一条对角线是四面体数。
02:49
because similarly, you can stack that many spheres into tetrahedra.
43
169307
5315
同理,你可以把那些球堆成四面体。
02:54
Or how about this: shade in all of the odd numbers.
44
174622
3374
或者这样︰ 把所有的奇数画上阴影,
02:57
It doesn't look like much when the triangle's small,
45
177996
2885
当三角形还小,你还看不出什么。
03:00
but if you add thousands of rows,
46
180881
2417
不过如果你加上成千上万行,
03:03
you get a fractal known as Sierpinski's Triangle.
47
183298
4141
你会得到一个分形, 也就是谢尔宾斯基三角形。
03:07
This triangle isn't just a mathematical work of art.
48
187439
3317
这个三角形不仅是一个数学的艺术品,
03:10
It's also quite useful,
49
190756
1986
它还很有用,
03:12
especially when it comes to probability and calculations
50
192742
2739
尤其是在组合学中的概率计算中。
03:15
in the domain of combinatorics.
51
195481
3085
03:18
Say you want to have five children,
52
198566
1888
假设,你想要五个小孩,
03:20
and would like to know the probability
53
200454
1816
你想要知道
拥有三个女孩和两个男孩 这样理想家庭的概率是多少。
03:22
of having your dream family of three girls and two boys.
54
202270
4320
03:26
In the binomial expansion,
55
206590
1798
在二项展开式中,
03:28
that corresponds to girl plus boy to the fifth power.
56
208388
3728
它对应的就是女孩加男孩的五次方。
03:32
So we look at the row five,
57
212116
1544
所以我们看第五行,
03:33
where the first number corresponds to five girls,
58
213660
3471
第一个数字代表五个女孩的可能性,
03:37
and the last corresponds to five boys.
59
217131
2798
最后一个数字代表五个男孩的可能性。
03:39
The third number is what we're looking for.
60
219929
2763
第三个数字就是我们要找的。
03:42
Ten out of the sum of all the possibilities in the row.
61
222692
3950
这一行所有可能性的总和分之10,
03:46
so 10/32, or 31.25%.
62
226642
4848
那就得到 10/32,或者31.25%。
03:51
Or, if you're randomly picking a five-player basketball team
63
231490
3826
再者,如果你从十二个朋友中
03:55
out of a group of twelve friends,
64
235316
1768
随机选出5人组成一个篮球队,
03:57
how many possible groups of five are there?
65
237084
3018
一共可能有多少种五人组合呢?
04:00
In combinatoric terms, this problem would be phrased as twelve choose five,
66
240102
4960
从组合学上看, 这个问题可以看成是从12中挑5,
04:05
and could be calculated with this formula,
67
245062
2175
并可以用这个公式计算,
04:07
or you could just look at the sixth element of row twelve on the triangle
68
247237
4471
或者你可以找到这个三角形的 第十二行第六项,
04:11
and get your answer.
69
251708
1675
就是你要的答案。
04:13
The patterns in Pascal's Triangle
70
253383
1696
帕斯卡三角的诸多形式,
04:15
are a testament to the elegantly interwoven fabric of mathematics.
71
255079
4308
是数学元素优美交织的证明。
04:19
And it's still revealing fresh secrets to this day.
72
259387
3884
到现在,它仍然揭示着新秘密。
04:23
For example, mathematicians recently discovered a way to expand it
73
263271
4151
例如,数学家最近发现了
一个展开这种多项式的方法。
04:27
to these kinds of polynomials.
74
267422
2597
04:30
What might we find next?
75
270019
1739
接下来我们还可能发现什么?
04:31
Well, that's up to you.
76
271758
2339
这就看你了。
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7