The mathematical secrets of Pascal’s triangle - Wajdi Mohamed Ratemi

3,056,876 views ・ 2015-09-15

TED-Ed


請雙擊下方英文字幕播放視頻。

譯者: Kelly Liu 審譯者: Max Chern
00:07
This may look like a neatly arranged stack of numbers,
0
7603
3397
這看起來像是一堆整齊、 精心排列的數字
00:11
but it's actually a mathematical treasure trove.
1
11000
3506
其實是個數學百寶箱
00:14
Indian mathematicians called it the Staircase of Mount Meru.
2
14506
4148
印度數學家稱之為「須彌山之梯」
00:18
In Iran, it's the Khayyam Triangle.
3
18654
2477
在伊朗稱作「海亞姆三角形」
00:21
And in China, it's Yang Hui's Triangle.
4
21131
2607
在中國稱作「楊輝三角」
00:23
To much of the Western world, it's known as Pascal's Triangle
5
23738
4295
對多數西方世界來說, 它是「帕斯卡三角形」
00:28
after French mathematician Blaise Pascal,
6
28033
3052
由法國數學家 布萊茲·帕斯卡 而得名
00:31
which seems a bit unfair since he was clearly late to the party,
7
31085
4149
似乎有些不公平, 他的研究時間明顯較晚
00:35
but he still had a lot to contribute.
8
35234
2242
但他仍有許多貢獻
00:37
So what is it about this that has so intrigued mathematicians the world over?
9
37476
4794
究竟是什麼讓世界上的數學家 如此感興趣呢?
00:42
In short, it's full of patterns and secrets.
10
42270
3854
簡單來說,它充滿了許多型式和秘密
00:46
First and foremost, there's the pattern that generates it.
11
46124
3304
首先且最重要的, 有個產生三角形的型式
00:49
Start with one and imagine invisible zeros on either side of it.
12
49428
5049
從 1 開始,然後想像它的左右各有一個 0
00:54
Add them together in pairs, and you'll generate the next row.
13
54477
4115
將它們兩兩相加,便能得到下一列
00:58
Now, do that again and again.
14
58592
3474
然後不斷的重複
01:02
Keep going and you'll wind up with something like this,
15
62066
3718
繼續下去,你會得到像這樣的東西
01:05
though really Pascal's Triangle goes on infinitely.
16
65784
3541
按理來說,帕斯卡三角形是無限大的
01:09
Now, each row corresponds to what's called the coefficients of a binomial expansion
17
69325
5589
每一列對應到二項式 (x+y)^n 展開時的係數
01:14
of the form (x+y)^n,
18
74914
3984
01:18
where n is the number of the row,
19
78898
2409
n 代表列數
01:21
and we start counting from zero.
20
81307
2439
從 0 開始算起
01:23
So if you make n=2 and expand it,
21
83746
2806
所以,當 n=2 並將式子展開
01:26
you get (x^2) + 2xy + (y^2).
22
86552
4555
你會得到 (x^2) + 2xy + (y^2)
01:31
The coefficients, or numbers in front of the variables,
23
91107
2916
其係數,即在變數前的數字
01:34
are the same as the numbers in that row of Pascal's Triangle.
24
94023
4374
與帕斯卡三角形裡 對應列的數字完全吻合
01:38
You'll see the same thing with n=3, which expands to this.
25
98397
4859
同樣地,當 n=3 時 展開會得到這樣的係數
01:43
So the triangle is a quick and easy way to look up all of these coefficients.
26
103256
5237
所以,要查詢所有係數時, 這三角形是快又簡單的方式
01:48
But there's much more.
27
108493
1544
還不止這樣
01:50
For example, add up the numbers in each row,
28
110037
2860
譬如,個別把每列的數字加起來
01:52
and you'll get successive powers of two.
29
112897
3142
你會得到連續的 2 的次方
01:56
Or in a given row, treat each number as part of a decimal expansion.
30
116039
5182
或是將其中一列作十進位展開
02:01
In other words, row two is (1x1) + (2x10) + (1x100).
31
121221
6614
也就是說 第二列就變成 (1x1) + (2x10) + (1x100)
02:07
You get 121, which is 11^2.
32
127835
4276
會得到 121,也就是 11^2
02:12
And take a look at what happens when you do the same thing to row six.
33
132111
3761
看看如果對第六列也這樣做, 會發生什麼事
02:15
It adds up to 1,771,561, which is 11^6, and so on.
34
135872
9264
總和是 1,771,561, 也就是 11^6,以此類推
02:25
There are also geometric applications.
35
145136
2754
除此之外也有幾何的運用
02:27
Look at the diagonals.
36
147890
1801
看一下對角線
02:29
The first two aren't very interesting: all ones, and then the positive integers,
37
149691
4426
最前面兩個不怎麼有趣:全都是 1, 再來就是正整數
02:34
also known as natural numbers.
38
154117
2539
即是所謂的自然數
02:36
But the numbers in the next diagonal are called the triangular numbers
39
156656
4051
但下一個對角線數字就是三角形數
02:40
because if you take that many dots,
40
160707
2076
因為如果拿這些數目的點
02:42
you can stack them into equilateral triangles.
41
162783
3606
你可以把它們組成一個個正三角形
02:46
The next diagonal has the tetrahedral numbers
42
166389
2918
下一條對角線是四面體的數字
02:49
because similarly, you can stack that many spheres into tetrahedra.
43
169307
5315
因為同樣地, 你能用這數目的球堆出四面體
02:54
Or how about this: shade in all of the odd numbers.
44
174622
3374
或這樣,把奇數的部分上色
02:57
It doesn't look like much when the triangle's small,
45
177996
2885
當三角形還小時,看起來不怎麼樣
03:00
but if you add thousands of rows,
46
180881
2417
但若是加到好幾千列
03:03
you get a fractal known as Sierpinski's Triangle.
47
183298
4141
會得到一個碎形, 稱為「謝爾賓斯基三角形」
03:07
This triangle isn't just a mathematical work of art.
48
187439
3317
這三角形不只是個數學的藝術
03:10
It's also quite useful,
49
190756
1986
它也相當的實用
03:12
especially when it comes to probability and calculations
50
192742
2739
尤其在組合數學領域裡的 機率和計算
03:15
in the domain of combinatorics.
51
195481
3085
03:18
Say you want to have five children,
52
198566
1888
假設,你想要有 5 個小孩
03:20
and would like to know the probability
53
200454
1816
想知道理想中的家庭
03:22
of having your dream family of three girls and two boys.
54
202270
4320
有 3 個女孩和 2 個男孩的機率
03:26
In the binomial expansion,
55
206590
1798
在二項式展開中
03:28
that corresponds to girl plus boy to the fifth power.
56
208388
3728
相當於女加男的 5 次方
03:32
So we look at the row five,
57
212116
1544
所以我們看第五列
03:33
where the first number corresponds to five girls,
58
213660
3471
第一個數字 代表有 5 個女孩的可能性
03:37
and the last corresponds to five boys.
59
217131
2798
最後一個數字 代表有 5 個男孩的可能性
03:39
The third number is what we're looking for.
60
219929
2763
而第三個數字就是我們要找的
03:42
Ten out of the sum of all the possibilities in the row.
61
222692
3950
整列所有可能性總和 當中的 10 個可能性
03:46
so 10/32, or 31.25%.
62
226642
4848
因此機率為 10/32,也就是 31.25%
03:51
Or, if you're randomly picking a five-player basketball team
63
231490
3826
或是你隨機在 12 個朋友中
03:55
out of a group of twelve friends,
64
235316
1768
挑出 5 人組籃球隊
03:57
how many possible groups of five are there?
65
237084
3018
總共會有多少種五人組合呢?
04:00
In combinatoric terms, this problem would be phrased as twelve choose five,
66
240102
4960
在組合數學術語中, 這問題的用語表達是 12 取 5
04:05
and could be calculated with this formula,
67
245062
2175
可用此公式算出
04:07
or you could just look at the sixth element of row twelve on the triangle
68
247237
4471
或是你可查三角形第 12 列的第 6 個數字
04:11
and get your answer.
69
251708
1675
得到你要的答案
04:13
The patterns in Pascal's Triangle
70
253383
1696
帕斯卡三角形中的諸多型式
04:15
are a testament to the elegantly interwoven fabric of mathematics.
71
255079
4308
是由數學優雅交織而成的驗證
04:19
And it's still revealing fresh secrets to this day.
72
259387
3884
至今仍為我們揭開新的秘密
04:23
For example, mathematicians recently discovered a way to expand it
73
263271
4151
舉例來說, 數學家們最近找到一個方法來展開
04:27
to these kinds of polynomials.
74
267422
2597
像這樣的多項式
04:30
What might we find next?
75
270019
1739
接下來會有怎樣的發現呢?
04:31
Well, that's up to you.
76
271758
2339
就要看你囉!
翻譯:Kelly Liu
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7