The mathematical secrets of Pascal’s triangle - Wajdi Mohamed Ratemi

3,119,038 views ・ 2015-09-15

TED-Ed


請雙擊下方英文字幕播放視頻。

譯者: Kelly Liu 審譯者: Max Chern
00:07
This may look like a neatly arranged stack of numbers,
0
7603
3397
這看起來像是一堆整齊、 精心排列的數字
00:11
but it's actually a mathematical treasure trove.
1
11000
3506
其實是個數學百寶箱
00:14
Indian mathematicians called it the Staircase of Mount Meru.
2
14506
4148
印度數學家稱之為「須彌山之梯」
00:18
In Iran, it's the Khayyam Triangle.
3
18654
2477
在伊朗稱作「海亞姆三角形」
00:21
And in China, it's Yang Hui's Triangle.
4
21131
2607
在中國稱作「楊輝三角」
00:23
To much of the Western world, it's known as Pascal's Triangle
5
23738
4295
對多數西方世界來說, 它是「帕斯卡三角形」
00:28
after French mathematician Blaise Pascal,
6
28033
3052
由法國數學家 布萊茲·帕斯卡 而得名
00:31
which seems a bit unfair since he was clearly late to the party,
7
31085
4149
似乎有些不公平, 他的研究時間明顯較晚
00:35
but he still had a lot to contribute.
8
35234
2242
但他仍有許多貢獻
00:37
So what is it about this that has so intrigued mathematicians the world over?
9
37476
4794
究竟是什麼讓世界上的數學家 如此感興趣呢?
00:42
In short, it's full of patterns and secrets.
10
42270
3854
簡單來說,它充滿了許多型式和秘密
00:46
First and foremost, there's the pattern that generates it.
11
46124
3304
首先且最重要的, 有個產生三角形的型式
00:49
Start with one and imagine invisible zeros on either side of it.
12
49428
5049
從 1 開始,然後想像它的左右各有一個 0
00:54
Add them together in pairs, and you'll generate the next row.
13
54477
4115
將它們兩兩相加,便能得到下一列
00:58
Now, do that again and again.
14
58592
3474
然後不斷的重複
01:02
Keep going and you'll wind up with something like this,
15
62066
3718
繼續下去,你會得到像這樣的東西
01:05
though really Pascal's Triangle goes on infinitely.
16
65784
3541
按理來說,帕斯卡三角形是無限大的
01:09
Now, each row corresponds to what's called the coefficients of a binomial expansion
17
69325
5589
每一列對應到二項式 (x+y)^n 展開時的係數
01:14
of the form (x+y)^n,
18
74914
3984
01:18
where n is the number of the row,
19
78898
2409
n 代表列數
01:21
and we start counting from zero.
20
81307
2439
從 0 開始算起
01:23
So if you make n=2 and expand it,
21
83746
2806
所以,當 n=2 並將式子展開
01:26
you get (x^2) + 2xy + (y^2).
22
86552
4555
你會得到 (x^2) + 2xy + (y^2)
01:31
The coefficients, or numbers in front of the variables,
23
91107
2916
其係數,即在變數前的數字
01:34
are the same as the numbers in that row of Pascal's Triangle.
24
94023
4374
與帕斯卡三角形裡 對應列的數字完全吻合
01:38
You'll see the same thing with n=3, which expands to this.
25
98397
4859
同樣地,當 n=3 時 展開會得到這樣的係數
01:43
So the triangle is a quick and easy way to look up all of these coefficients.
26
103256
5237
所以,要查詢所有係數時, 這三角形是快又簡單的方式
01:48
But there's much more.
27
108493
1544
還不止這樣
01:50
For example, add up the numbers in each row,
28
110037
2860
譬如,個別把每列的數字加起來
01:52
and you'll get successive powers of two.
29
112897
3142
你會得到連續的 2 的次方
01:56
Or in a given row, treat each number as part of a decimal expansion.
30
116039
5182
或是將其中一列作十進位展開
02:01
In other words, row two is (1x1) + (2x10) + (1x100).
31
121221
6614
也就是說 第二列就變成 (1x1) + (2x10) + (1x100)
02:07
You get 121, which is 11^2.
32
127835
4276
會得到 121,也就是 11^2
02:12
And take a look at what happens when you do the same thing to row six.
33
132111
3761
看看如果對第六列也這樣做, 會發生什麼事
02:15
It adds up to 1,771,561, which is 11^6, and so on.
34
135872
9264
總和是 1,771,561, 也就是 11^6,以此類推
02:25
There are also geometric applications.
35
145136
2754
除此之外也有幾何的運用
02:27
Look at the diagonals.
36
147890
1801
看一下對角線
02:29
The first two aren't very interesting: all ones, and then the positive integers,
37
149691
4426
最前面兩個不怎麼有趣:全都是 1, 再來就是正整數
02:34
also known as natural numbers.
38
154117
2539
即是所謂的自然數
02:36
But the numbers in the next diagonal are called the triangular numbers
39
156656
4051
但下一個對角線數字就是三角形數
02:40
because if you take that many dots,
40
160707
2076
因為如果拿這些數目的點
02:42
you can stack them into equilateral triangles.
41
162783
3606
你可以把它們組成一個個正三角形
02:46
The next diagonal has the tetrahedral numbers
42
166389
2918
下一條對角線是四面體的數字
02:49
because similarly, you can stack that many spheres into tetrahedra.
43
169307
5315
因為同樣地, 你能用這數目的球堆出四面體
02:54
Or how about this: shade in all of the odd numbers.
44
174622
3374
或這樣,把奇數的部分上色
02:57
It doesn't look like much when the triangle's small,
45
177996
2885
當三角形還小時,看起來不怎麼樣
03:00
but if you add thousands of rows,
46
180881
2417
但若是加到好幾千列
03:03
you get a fractal known as Sierpinski's Triangle.
47
183298
4141
會得到一個碎形, 稱為「謝爾賓斯基三角形」
03:07
This triangle isn't just a mathematical work of art.
48
187439
3317
這三角形不只是個數學的藝術
03:10
It's also quite useful,
49
190756
1986
它也相當的實用
03:12
especially when it comes to probability and calculations
50
192742
2739
尤其在組合數學領域裡的 機率和計算
03:15
in the domain of combinatorics.
51
195481
3085
03:18
Say you want to have five children,
52
198566
1888
假設,你想要有 5 個小孩
03:20
and would like to know the probability
53
200454
1816
想知道理想中的家庭
03:22
of having your dream family of three girls and two boys.
54
202270
4320
有 3 個女孩和 2 個男孩的機率
03:26
In the binomial expansion,
55
206590
1798
在二項式展開中
03:28
that corresponds to girl plus boy to the fifth power.
56
208388
3728
相當於女加男的 5 次方
03:32
So we look at the row five,
57
212116
1544
所以我們看第五列
03:33
where the first number corresponds to five girls,
58
213660
3471
第一個數字 代表有 5 個女孩的可能性
03:37
and the last corresponds to five boys.
59
217131
2798
最後一個數字 代表有 5 個男孩的可能性
03:39
The third number is what we're looking for.
60
219929
2763
而第三個數字就是我們要找的
03:42
Ten out of the sum of all the possibilities in the row.
61
222692
3950
整列所有可能性總和 當中的 10 個可能性
03:46
so 10/32, or 31.25%.
62
226642
4848
因此機率為 10/32,也就是 31.25%
03:51
Or, if you're randomly picking a five-player basketball team
63
231490
3826
或是你隨機在 12 個朋友中
03:55
out of a group of twelve friends,
64
235316
1768
挑出 5 人組籃球隊
03:57
how many possible groups of five are there?
65
237084
3018
總共會有多少種五人組合呢?
04:00
In combinatoric terms, this problem would be phrased as twelve choose five,
66
240102
4960
在組合數學術語中, 這問題的用語表達是 12 取 5
04:05
and could be calculated with this formula,
67
245062
2175
可用此公式算出
04:07
or you could just look at the sixth element of row twelve on the triangle
68
247237
4471
或是你可查三角形第 12 列的第 6 個數字
04:11
and get your answer.
69
251708
1675
得到你要的答案
04:13
The patterns in Pascal's Triangle
70
253383
1696
帕斯卡三角形中的諸多型式
04:15
are a testament to the elegantly interwoven fabric of mathematics.
71
255079
4308
是由數學優雅交織而成的驗證
04:19
And it's still revealing fresh secrets to this day.
72
259387
3884
至今仍為我們揭開新的秘密
04:23
For example, mathematicians recently discovered a way to expand it
73
263271
4151
舉例來說, 數學家們最近找到一個方法來展開
04:27
to these kinds of polynomials.
74
267422
2597
像這樣的多項式
04:30
What might we find next?
75
270019
1739
接下來會有怎樣的發現呢?
04:31
Well, that's up to you.
76
271758
2339
就要看你囉!
翻譯:Kelly Liu
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog