The mathematical secrets of Pascal’s triangle - Wajdi Mohamed Ratemi

Matematičke tajne Pascalovog trokuta - Wajdi Mohamed Ratemi

3,043,922 views

2015-09-15 ・ TED-Ed


New videos

The mathematical secrets of Pascal’s triangle - Wajdi Mohamed Ratemi

Matematičke tajne Pascalovog trokuta - Wajdi Mohamed Ratemi

3,043,922 views ・ 2015-09-15

TED-Ed


Dvaput kliknite na engleske titlove ispod za reprodukciju videozapisa.

Prevoditelj: Tamara Rabuzin Recezent: Ivan Stamenković
00:07
This may look like a neatly arranged stack of numbers,
0
7603
3397
Ovo možda izgleda samo kao uredno složen stog brojeva,
00:11
but it's actually a mathematical treasure trove.
1
11000
3506
ali zapravo je matematičko skriveno blago.
00:14
Indian mathematicians called it the Staircase of Mount Meru.
2
14506
4148
Indijski matematičari zvali su ga Stepenice planine Meru.
00:18
In Iran, it's the Khayyam Triangle.
3
18654
2477
U Iranu, to je Khayyamov trokut,
00:21
And in China, it's Yang Hui's Triangle.
4
21131
2607
a u Kini, Yang Huijev trokut.
00:23
To much of the Western world, it's known as Pascal's Triangle
5
23738
4295
Većini zapadnog svijeta poznat je kao Pascalov trokut
00:28
after French mathematician Blaise Pascal,
6
28033
3052
po francukom matematičaru Blaiseu Pascalu,
00:31
which seems a bit unfair since he was clearly late to the party,
7
31085
4149
što je ipak malo nepravedno, jer očito nije izmislio ništa novo,
00:35
but he still had a lot to contribute.
8
35234
2242
ali ipak je i on dao svoj doprinos.
00:37
So what is it about this that has so intrigued mathematicians the world over?
9
37476
4794
Ali zašto je toliko zaokupljao matematičare diljem svijeta?
00:42
In short, it's full of patterns and secrets.
10
42270
3854
Ukratko, pun je obrazaca i tajni.
00:46
First and foremost, there's the pattern that generates it.
11
46124
3304
Prvo i najvažnije, uzorak koji ga generira.
00:49
Start with one and imagine invisible zeros on either side of it.
12
49428
5049
Počnite s jedinicom i zamislite nevidljive nule s obje strane jedinice.
00:54
Add them together in pairs, and you'll generate the next row.
13
54477
4115
Zbrojite po dva broja, i generirat ćete slijedeći red.
00:58
Now, do that again and again.
14
58592
3474
Sada ponavljajte postupak.
01:02
Keep going and you'll wind up with something like this,
15
62066
3718
Nastavite i dobit ćete nešto poput ovog,
01:05
though really Pascal's Triangle goes on infinitely.
16
65784
3541
iako se Pascalov trokut nastavlja u beskonačnost.
01:09
Now, each row corresponds to what's called the coefficients of a binomial expansion
17
69325
5589
Svaki red odgovara nečemu naziva binomni koeficijenti
01:14
of the form (x+y)^n,
18
74914
3984
raspisa (x+y)^n,
01:18
where n is the number of the row,
19
78898
2409
gdje je n broj reda,
01:21
and we start counting from zero.
20
81307
2439
ako krećemo brojiti od nule.
01:23
So if you make n=2 and expand it,
21
83746
2806
Na primjer ako raspišemo izraz za n=2,
01:26
you get (x^2) + 2xy + (y^2).
22
86552
4555
dobit ćemo (x^2)+2xy+(y^2).
01:31
The coefficients, or numbers in front of the variables,
23
91107
2916
Koeficijenti, ili brojevi ispred varijabli,
01:34
are the same as the numbers in that row of Pascal's Triangle.
24
94023
4374
jednaki su brojevima u odgovarajućem redu Pascalovog trokuta.
01:38
You'll see the same thing with n=3, which expands to this.
25
98397
4859
Isto možete vidjeti i za n=3, što se raspisuje ovako.
01:43
So the triangle is a quick and easy way to look up all of these coefficients.
26
103256
5237
Trokut je dakle brz i jednostavan način za pronalaženje koeficijenata.
01:48
But there's much more.
27
108493
1544
Ali to nije sve.
01:50
For example, add up the numbers in each row,
28
110037
2860
Na primjer, zbrojite brojeve u svakom redu,
01:52
and you'll get successive powers of two.
29
112897
3142
i dobit ćete uzastopne potencije od dva.
01:56
Or in a given row, treat each number as part of a decimal expansion.
30
116039
5182
Ili u bilo kojem redu, gledajte svaki broj kao dio decimalnog zapisa.
02:01
In other words, row two is (1x1) + (2x10) + (1x100).
31
121221
6614
Drugim riječima, drugi red je (1x1) + (2x10) + (1x100).
02:07
You get 121, which is 11^2.
32
127835
4276
Rješenje je 121, što je 11^2.
02:12
And take a look at what happens when you do the same thing to row six.
33
132111
3761
Pogledajte što će se dogoditi kada napravite isto u šestom redu.
02:15
It adds up to 1,771,561, which is 11^6, and so on.
34
135872
9264
Rješenje je 1 771 561, što je 11^6, i tako dalje.
02:25
There are also geometric applications.
35
145136
2754
Postoje i geometrijske primjene.
02:27
Look at the diagonals.
36
147890
1801
Pogledajte dijagonale.
02:29
The first two aren't very interesting: all ones, and then the positive integers,
37
149691
4426
Prve dvije nisu posebno zanimljive: samo jedinice, a zatim pozitivni brojevi;
02:34
also known as natural numbers.
38
154117
2539
poznatiji kao prirodni brojevi.
02:36
But the numbers in the next diagonal are called the triangular numbers
39
156656
4051
Ali brojevi u slijedećoj dijagonali zovu se trokutasti brojevi
02:40
because if you take that many dots,
40
160707
2076
jer ako uzmete toliko točkica,
02:42
you can stack them into equilateral triangles.
41
162783
3606
možete ih naslagati u jednakostranične trokute.
02:46
The next diagonal has the tetrahedral numbers
42
166389
2918
Slijedeća dijagonala ima tetraedne brojeve
02:49
because similarly, you can stack that many spheres into tetrahedra.
43
169307
5315
jer se navedeni broj sfera može naslagati u tetraedar.
02:54
Or how about this: shade in all of the odd numbers.
44
174622
3374
Ili primjerice: zasjenčajte sve neparne brojeve.
02:57
It doesn't look like much when the triangle's small,
45
177996
2885
To nije posebno zanimljivo kada je trokut mali,
03:00
but if you add thousands of rows,
46
180881
2417
ali ako se dodaje tisuće redova,
03:03
you get a fractal known as Sierpinski's Triangle.
47
183298
4141
dobije se Sierpinskijev fraktal.
03:07
This triangle isn't just a mathematical work of art.
48
187439
3317
Ovaj trokut nije samo matematičko umjetničko djelo.
03:10
It's also quite useful,
49
190756
1986
On je i koristan,
03:12
especially when it comes to probability and calculations
50
192742
2739
posebice u područjima vjerojatnosti i računanju
03:15
in the domain of combinatorics.
51
195481
3085
u području kombinatorike.
03:18
Say you want to have five children,
52
198566
1888
Ako primjerice želite imati petero djece
03:20
and would like to know the probability
53
200454
1816
i želite znati koja je vjerojatnost
03:22
of having your dream family of three girls and two boys.
54
202270
4320
da dobijete kako ste sanjali: tri djevojčice i dva dječaka.
03:26
In the binomial expansion,
55
206590
1798
U zapisu pomoću potencije binoma,
03:28
that corresponds to girl plus boy to the fifth power.
56
208388
3728
to odgovara djevojčici + dječaku na petu potenciju.
03:32
So we look at the row five,
57
212116
1544
Pa pogledajmo peti red,
03:33
where the first number corresponds to five girls,
58
213660
3471
gdje prvi broj odgovara pet djevojčica,
03:37
and the last corresponds to five boys.
59
217131
2798
a posljednji pet dječaka.
03:39
The third number is what we're looking for.
60
219929
2763
Mi tražimo treći broj.
03:42
Ten out of the sum of all the possibilities in the row.
61
222692
3950
Deset kroz zbroj svih mogućnosti u tom redu.
03:46
so 10/32, or 31.25%.
62
226642
4848
pa je to, 10/32, ili 31.25%.
03:51
Or, if you're randomly picking a five-player basketball team
63
231490
3826
Ili, ako nasumično izabirete peteročlanu košarkašku momčad
03:55
out of a group of twelve friends,
64
235316
1768
iz skupine od 12 prijatelja,
03:57
how many possible groups of five are there?
65
237084
3018
koliko mogućih grupa od pet osoba postoji?
04:00
In combinatoric terms, this problem would be phrased as twelve choose five,
66
240102
4960
Jezikom kombinatorike, ovaj problem izražen je kao 12 povrh 5,
04:05
and could be calculated with this formula,
67
245062
2175
i računa se pomoću ove formule,
04:07
or you could just look at the sixth element of row twelve on the triangle
68
247237
4471
ili jednostavno možete pogledati šesti element dvanaestog reda u trokutu
04:11
and get your answer.
69
251708
1675
i dobit ćete odgovor.
04:13
The patterns in Pascal's Triangle
70
253383
1696
Obrasci u Pascalovom trokutu
04:15
are a testament to the elegantly interwoven fabric of mathematics.
71
255079
4308
dokaz su elegantnog ispreplitanja djelova matematike.
04:19
And it's still revealing fresh secrets to this day.
72
259387
3884
Sve njegove tajne još nisu otkrivene.
04:23
For example, mathematicians recently discovered a way to expand it
73
263271
4151
Na primjer, matematičari su nedavno otkrili način kako ga proširiti
04:27
to these kinds of polynomials.
74
267422
2597
na ovu vrstu polinoma.
04:30
What might we find next?
75
270019
1739
Što ćemo naći slijedeće?
04:31
Well, that's up to you.
76
271758
2339
To je na vama.
O ovoj web stranici

Ova stranica će vas upoznati s YouTube videozapisima koji su korisni za učenje engleskog jezika. Vidjet ćete lekcije engleskog koje vode vrhunski profesori iz cijelog svijeta. Dvaput kliknite na engleske titlove prikazane na svakoj video stranici da biste reproducirali video s tog mjesta. Titlovi se pomiču sinkronizirano s reprodukcijom videozapisa. Ako imate bilo kakvih komentara ili zahtjeva, obratite nam se putem ovog obrasca za kontakt.

https://forms.gle/WvT1wiN1qDtmnspy7