Why can't you divide by zero? - TED-Ed

10,802,627 views ・ 2018-04-23

TED-Ed


请双击下面的英文字幕来播放视频。

翻译人员: Varlum Wei 校对人员: Lipeng Chen
00:07
In the world of math,
0
7785
1519
在数学世界里,
00:09
many strange results are possible when we change the rules.
1
9304
4080
当我们改变规则时, 有可能产生许多奇怪的结果。
00:13
But there’s one rule that most of us have been warned not to break:
2
13384
3842
但其中有一条规则,我们很多人 都被告诫说不要去打破它:
00:17
don’t divide by zero.
3
17226
2379
不要把零当除数去除。
00:19
How can the simple combination of an everyday number
4
19605
2979
为什么将这一日常数字
00:22
and a basic operation cause such problems?
5
22584
3879
与基本运算结合起来会导致问题呢?
00:26
Normally, dividing by smaller and smaller numbers
6
26463
3230
通常,随着除数的变小,
00:29
gives you bigger and bigger answers.
7
29693
2628
得到的结果就会变大。
00:32
Ten divided by two is five,
8
32321
2523
10 除以 2 等于 5,
00:34
by one is ten,
9
34844
1599
10 除以 1 等于 10,
00:36
by one-millionth is 10 million,
10
36443
2579
10 除以百万分之一等于一千万,
00:39
and so on.
11
39022
958
00:39
So it seems like if you divide by numbers
12
39980
2311
以此类推。
所以看起来似乎是如果你除以
00:42
that keep shrinking all the way down to zero,
13
42291
2609
一个小至趋于 0 的数字,
00:44
the answer will grow to the largest thing possible.
14
44900
3161
得到的结果可能就会无限大。
00:48
Then, isn’t the answer to 10 divided by zero actually infinity?
15
48061
4662
那么 10 除以 0 结果是不是无限大呢?
00:52
That may sound plausible.
16
52723
1960
这听起来似乎很合理。
00:54
But all we really know is that if we divide 10
17
54683
3050
但我们所知道的是,如果我们用 10
00:57
by a number that tends towards zero,
18
57733
2941
除以一个趋于 0 的数字,
01:00
the answer tends towards infinity.
19
60674
3060
结果会趋于无穷大。
01:03
And that’s not the same thing as saying that 10 divided by zero
20
63734
4130
这与 10 除以 0
01:07
is equal to infinity.
21
67864
2650
等于无穷大是不同的。
01:10
Why not?
22
70514
1319
为什么不同呢?
01:11
Well, let’s take a closer look at what division really means.
23
71833
4389
我们仔细来看看除法的真正含义吧。
01:16
Ten divided by two could mean,
24
76222
2352
10 除以 2 可以理解成,
01:18
"How many times must we add two together to make 10,”
25
78574
4097
“有多少个 2 相加等于 10,”
01:22
or, “two times what equals 10?”
26
82671
3442
或者说,“2 乘以什么等于 10?”
01:26
Dividing by a number is essentially the reverse of multiplying by it,
27
86113
4340
除以某个数其实就是乘以这个数的倒数,
01:30
in the following way:
28
90453
1948
如下面这些例子:
01:32
if we multiply any number by a given number x,
29
92401
3022
如果我们用任何一个数乘以已知数 X,
01:35
we can ask if there’s a new number we can multiply by afterwards
30
95423
4230
我们可能会问,是否可以乘以一个新的数
01:39
to get back to where we started.
31
99653
2633
让我们得到开始时的数字。
01:42
If there is, the new number is called the multiplicative inverse of x.
32
102286
5058
如果有的话,这个新的数字就叫 X 的倒数。
01:47
For example, if you multiply three by two to get six,
33
107344
4101
例如,如果你用 3 乘以 2,得到 6,
01:51
you can then multiply by one-half to get back to three.
34
111445
4119
然后你可以用 6 乘以 1/2 得回原来的数 3。
01:55
So the multiplicative inverse of two is one-half,
35
115564
3830
所以,2 的倒数是 1/2,
01:59
and the multiplicative inverse of 10 is one-tenth.
36
119394
4570
10 的倒数是 1/10。
02:03
As you might notice, the product of any number and its multiplicative inverse
37
123964
5270
你可能会注意到,任何一个数与其倒数相乘
02:09
is always one.
38
129234
2030
结果总是 1。
02:11
If we want to divide by zero,
39
131264
2199
如果我们想除以 0 的话,
02:13
we need to find its multiplicative inverse,
40
133463
2380
我们需要找到它的倒数,
02:15
which should be one over zero.
41
135843
3301
那应该是 1/0。
02:19
This would have to be such a number that multiplying it by zero would give one.
42
139144
5828
这个数乘以 0 的话会等于1。
02:24
But because anything multiplied by zero is still zero,
43
144972
4171
但是因为所有数字乘以 0 结果仍然是 0,
02:29
such a number is impossible,
44
149143
2413
那 1/0 这样的数字是不可能的,
02:31
so zero has no multiplicative inverse.
45
151556
3286
所以 0 没有倒数。
02:34
Does that really settle things, though?
46
154842
2501
然而这样就解决问题了吗?
02:37
After all, mathematicians have broken rules before.
47
157343
3640
毕竟,数学家们以前还是破例了。
02:40
For example, for a long time,
48
160983
1730
例如,长期以来,
02:42
there was no such thing as taking the square root of negative numbers.
49
162713
4061
负数是不能取平方根的。
02:46
But then mathematicians defined the square root of negative one
50
166774
4087
但后来数学家们取 -1 的平方根
02:50
as a new number called i,
51
170861
2423
为一个叫 i 的新数字,
02:53
opening up a whole new mathematical world of complex numbers.
52
173284
4519
在数学领域里,这为复杂数字打开了全新的世界。
02:57
So if they can do that,
53
177803
1442
所以,如果他们可以那样做的话,
02:59
couldn’t we just make up a new rule,
54
179245
1958
我们不能创建一个新的规则吗,
03:01
say, that the symbol infinity means one over zero,
55
181203
4061
即,无穷大等于 1/0,
03:05
and see what happens?
56
185264
2279
看看会怎样?
03:07
Let's try it,
57
187543
1050
我们试试,
03:08
imagining we don’t know anything about infinity already.
58
188593
3130
假设我们对无穷大一无所知。
03:11
Based on the definition of a multiplicative inverse,
59
191723
2569
基于倒数的定义,
03:14
zero times infinity must be equal to one.
60
194292
4182
0 乘以无穷大一定等于 1。
03:18
That means zero times infinity plus zero times infinity should equal two.
61
198474
6056
那意味着 0 乘以无穷大再加上 0 乘以无穷大应该等于2。
03:24
Now, by the distributive property,
62
204530
1957
现在,根据乘法分配律,
03:26
the left side of the equation can be rearranged
63
206487
2901
可以将等式左边的式子整理成
03:29
to zero plus zero times infinity.
64
209388
3231
(0 + 0) 乘以 1/0。
03:32
And since zero plus zero is definitely zero,
65
212619
3569
既然 0 + 0 一定是等于 0,
03:36
that reduces down to zero times infinity.
66
216188
3861
那可以缩简成 0 乘以 1/0。
03:40
Unfortunately, we’ve already defined this as equal to one,
67
220049
3668
很遗憾,我们一开始已经得到答案这等于 1 了,
03:43
while the other side of the equation is still telling us it’s equal to two.
68
223717
4636
然而等式另一边答案仍然是 2。
03:48
So, one equals two.
69
228353
2885
所以,1 等于 2。
03:51
Oddly enough, that's not necessarily wrong;
70
231238
3226
太奇怪了,这也不一定错;
03:54
it's just not true in our normal world of numbers.
71
234464
3668
只是在我们正常的数字世界里,这不对。
03:58
There’s still a way it could be mathematically valid,
72
238132
2582
在数学上,还是有方法可以证明其是合理的,
04:00
if one, two, and every other number were equal to zero.
73
240714
4507
如果 1, 2 或其它任何一个数字都等于 0 的话。
04:05
But having infinity equal to zero
74
245221
2493
但是无穷大等于 0
04:07
is ultimately not all that useful to mathematicians, or anyone else.
75
247714
5170
对于数学家或其他任何人来说 最终并不那么有用。
04:12
There actually is something called the Riemann sphere
76
252884
3230
事实上,有个叫黎曼球面的东西
04:16
that involves dividing by zero by a different method,
77
256114
3295
它涉及到通过不同的方法来除以 0,
04:19
but that’s a story for another day.
78
259409
2364
但今天我们且不谈这个。
04:21
In the meantime, dividing by zero in the most obvious way
79
261773
4192
同时,很显然,直接除以 0
04:25
doesn’t work out so great.
80
265965
1768
并没有什么意义。
04:27
But that shouldn’t stop us from living dangerously
81
267733
2941
但那不应该阻止我们在生活中去冒险
04:30
and experimenting with breaking mathematical rules
82
270674
2931
及打破数学规则去进行实验,
04:33
to see if we can invent fun, new worlds to explore.
83
273605
3878
以看看我们是否能创造 新的有趣的世界去探索。
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog