请双击下面的英文字幕来播放视频。
翻译人员: Varlum Wei
校对人员: Lipeng Chen
00:07
In the world of math,
0
7785
1519
在数学世界里,
00:09
many strange results are possible
when we change the rules.
1
9304
4080
当我们改变规则时,
有可能产生许多奇怪的结果。
00:13
But there’s one rule that most of us
have been warned not to break:
2
13384
3842
但其中有一条规则,我们很多人
都被告诫说不要去打破它:
00:17
don’t divide by zero.
3
17226
2379
不要把零当除数去除。
00:19
How can the simple combination
of an everyday number
4
19605
2979
为什么将这一日常数字
00:22
and a basic operation
cause such problems?
5
22584
3879
与基本运算结合起来会导致问题呢?
00:26
Normally, dividing by smaller
and smaller numbers
6
26463
3230
通常,随着除数的变小,
00:29
gives you bigger and bigger answers.
7
29693
2628
得到的结果就会变大。
00:32
Ten divided by two is five,
8
32321
2523
10 除以 2 等于 5,
00:34
by one is ten,
9
34844
1599
10 除以 1 等于 10,
00:36
by one-millionth is 10 million,
10
36443
2579
10 除以百万分之一等于一千万,
00:39
and so on.
11
39022
958
00:39
So it seems like if you divide by numbers
12
39980
2311
以此类推。
所以看起来似乎是如果你除以
00:42
that keep shrinking
all the way down to zero,
13
42291
2609
一个小至趋于 0 的数字,
00:44
the answer will grow
to the largest thing possible.
14
44900
3161
得到的结果可能就会无限大。
00:48
Then, isn’t the answer to 10
divided by zero actually infinity?
15
48061
4662
那么 10 除以 0 结果是不是无限大呢?
00:52
That may sound plausible.
16
52723
1960
这听起来似乎很合理。
00:54
But all we really know is
that if we divide 10
17
54683
3050
但我们所知道的是,如果我们用 10
00:57
by a number that tends towards zero,
18
57733
2941
除以一个趋于 0 的数字,
01:00
the answer tends towards infinity.
19
60674
3060
结果会趋于无穷大。
01:03
And that’s not the same thing as
saying that 10 divided by zero
20
63734
4130
这与 10 除以 0
01:07
is equal to infinity.
21
67864
2650
等于无穷大是不同的。
01:10
Why not?
22
70514
1319
为什么不同呢?
01:11
Well, let’s take a closer look
at what division really means.
23
71833
4389
我们仔细来看看除法的真正含义吧。
01:16
Ten divided by two could mean,
24
76222
2352
10 除以 2 可以理解成,
01:18
"How many times must
we add two together to make 10,”
25
78574
4097
“有多少个 2 相加等于 10,”
01:22
or, “two times what equals 10?”
26
82671
3442
或者说,“2 乘以什么等于 10?”
01:26
Dividing by a number is essentially
the reverse of multiplying by it,
27
86113
4340
除以某个数其实就是乘以这个数的倒数,
01:30
in the following way:
28
90453
1948
如下面这些例子:
01:32
if we multiply any number
by a given number x,
29
92401
3022
如果我们用任何一个数乘以已知数 X,
01:35
we can ask if there’s a new number
we can multiply by afterwards
30
95423
4230
我们可能会问,是否可以乘以一个新的数
01:39
to get back to where we started.
31
99653
2633
让我们得到开始时的数字。
01:42
If there is, the new number is called
the multiplicative inverse of x.
32
102286
5058
如果有的话,这个新的数字就叫 X 的倒数。
01:47
For example, if you multiply
three by two to get six,
33
107344
4101
例如,如果你用 3 乘以 2,得到 6,
01:51
you can then multiply
by one-half to get back to three.
34
111445
4119
然后你可以用 6 乘以 1/2 得回原来的数 3。
01:55
So the multiplicative inverse
of two is one-half,
35
115564
3830
所以,2 的倒数是 1/2,
01:59
and the multiplicative inverse
of 10 is one-tenth.
36
119394
4570
10 的倒数是 1/10。
02:03
As you might notice, the product of any
number and its multiplicative inverse
37
123964
5270
你可能会注意到,任何一个数与其倒数相乘
02:09
is always one.
38
129234
2030
结果总是 1。
02:11
If we want to divide by zero,
39
131264
2199
如果我们想除以 0 的话,
02:13
we need to find
its multiplicative inverse,
40
133463
2380
我们需要找到它的倒数,
02:15
which should be one over zero.
41
135843
3301
那应该是 1/0。
02:19
This would have to be such a number that
multiplying it by zero would give one.
42
139144
5828
这个数乘以 0 的话会等于1。
02:24
But because anything multiplied
by zero is still zero,
43
144972
4171
但是因为所有数字乘以 0 结果仍然是 0,
02:29
such a number is impossible,
44
149143
2413
那 1/0 这样的数字是不可能的,
02:31
so zero has no multiplicative inverse.
45
151556
3286
所以 0 没有倒数。
02:34
Does that really settle things, though?
46
154842
2501
然而这样就解决问题了吗?
02:37
After all, mathematicians
have broken rules before.
47
157343
3640
毕竟,数学家们以前还是破例了。
02:40
For example, for a long time,
48
160983
1730
例如,长期以来,
02:42
there was no such thing as taking
the square root of negative numbers.
49
162713
4061
负数是不能取平方根的。
02:46
But then mathematicians defined
the square root of negative one
50
166774
4087
但后来数学家们取 -1 的平方根
02:50
as a new number called i,
51
170861
2423
为一个叫 i 的新数字,
02:53
opening up a whole new
mathematical world of complex numbers.
52
173284
4519
在数学领域里,这为复杂数字打开了全新的世界。
02:57
So if they can do that,
53
177803
1442
所以,如果他们可以那样做的话,
02:59
couldn’t we just make up a new rule,
54
179245
1958
我们不能创建一个新的规则吗,
03:01
say, that the symbol infinity
means one over zero,
55
181203
4061
即,无穷大等于 1/0,
03:05
and see what happens?
56
185264
2279
看看会怎样?
03:07
Let's try it,
57
187543
1050
我们试试,
03:08
imagining we don’t know
anything about infinity already.
58
188593
3130
假设我们对无穷大一无所知。
03:11
Based on the definition
of a multiplicative inverse,
59
191723
2569
基于倒数的定义,
03:14
zero times infinity must be equal to one.
60
194292
4182
0 乘以无穷大一定等于 1。
03:18
That means zero times infinity plus
zero times infinity should equal two.
61
198474
6056
那意味着 0 乘以无穷大再加上
0 乘以无穷大应该等于2。
03:24
Now, by the distributive property,
62
204530
1957
现在,根据乘法分配律,
03:26
the left side of the equation
can be rearranged
63
206487
2901
可以将等式左边的式子整理成
03:29
to zero plus zero times infinity.
64
209388
3231
(0 + 0) 乘以 1/0。
03:32
And since zero plus zero
is definitely zero,
65
212619
3569
既然 0 + 0 一定是等于 0,
03:36
that reduces down to zero times infinity.
66
216188
3861
那可以缩简成 0 乘以 1/0。
03:40
Unfortunately, we’ve already defined
this as equal to one,
67
220049
3668
很遗憾,我们一开始已经得到答案这等于 1 了,
03:43
while the other side of the equation
is still telling us it’s equal to two.
68
223717
4636
然而等式另一边答案仍然是 2。
03:48
So, one equals two.
69
228353
2885
所以,1 等于 2。
03:51
Oddly enough,
that's not necessarily wrong;
70
231238
3226
太奇怪了,这也不一定错;
03:54
it's just not true
in our normal world of numbers.
71
234464
3668
只是在我们正常的数字世界里,这不对。
03:58
There’s still a way it could
be mathematically valid,
72
238132
2582
在数学上,还是有方法可以证明其是合理的,
04:00
if one, two, and every other number
were equal to zero.
73
240714
4507
如果 1, 2 或其它任何一个数字都等于 0 的话。
04:05
But having infinity equal to zero
74
245221
2493
但是无穷大等于 0
04:07
is ultimately not all that useful
to mathematicians, or anyone else.
75
247714
5170
对于数学家或其他任何人来说
最终并不那么有用。
04:12
There actually is something called
the Riemann sphere
76
252884
3230
事实上,有个叫黎曼球面的东西
04:16
that involves dividing by zero
by a different method,
77
256114
3295
它涉及到通过不同的方法来除以 0,
04:19
but that’s a story for another day.
78
259409
2364
但今天我们且不谈这个。
04:21
In the meantime, dividing by zero
in the most obvious way
79
261773
4192
同时,很显然,直接除以 0
04:25
doesn’t work out so great.
80
265965
1768
并没有什么意义。
04:27
But that shouldn’t stop us
from living dangerously
81
267733
2941
但那不应该阻止我们在生活中去冒险
04:30
and experimenting
with breaking mathematical rules
82
270674
2931
及打破数学规则去进行实验,
04:33
to see if we can invent
fun, new worlds to explore.
83
273605
3878
以看看我们是否能创造
新的有趣的世界去探索。
New videos
关于本网站
这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。