Why can't you divide by zero? - TED-Ed

10,186,318 views ・ 2018-04-23

TED-Ed


請雙擊下方英文字幕播放視頻。

譯者: Chen Chi-An 審譯者: Helen Chang
00:07
In the world of math,
0
7785
1519
在數學世界裡,
00:09
many strange results are possible when we change the rules.
1
9304
4080
改變規則可能會造成 很多奇怪的結果,
00:13
But there’s one rule that most of us have been warned not to break:
2
13384
3842
但有一個規則,多數人 都曾被告誡不要打破:
00:17
don’t divide by zero.
3
17226
2379
別除以 0 。
00:19
How can the simple combination of an everyday number
4
19605
2979
這個簡單的組合,
一個常用數字配上基本運算符號,
00:22
and a basic operation cause such problems?
5
22584
3879
何以造成問題呢?
00:26
Normally, dividing by smaller and smaller numbers
6
26463
3230
一般情況下,除以越來越小的數字
00:29
gives you bigger and bigger answers.
7
29693
2628
會得到越來越大的答案,
00:32
Ten divided by two is five,
8
32321
2523
10 除以 2 等於 5 ,
00:34
by one is ten,
9
34844
1599
除以 1 等於 10 ,
00:36
by one-millionth is 10 million,
10
36443
2579
除以百萬分之一等於一千萬,
00:39
and so on.
11
39022
958
00:39
So it seems like if you divide by numbers
12
39980
2311
如此類推。
看起來,如果除以一個數字,
00:42
that keep shrinking all the way down to zero,
13
42291
2609
那數字趨近於 0 ,
00:44
the answer will grow to the largest thing possible.
14
44900
3161
答案會趨近無限大( ∞ )。
00:48
Then, isn’t the answer to 10 divided by zero actually infinity?
15
48061
4662
因此, 10 除以 0 的答案 不正是 ∞ 嗎?
00:52
That may sound plausible.
16
52723
1960
這聽起來很合理,
00:54
But all we really know is that if we divide 10
17
54683
3050
但我們知道,如果 10 除以 某個趨近於 0 的數字,
00:57
by a number that tends towards zero,
18
57733
2941
01:00
the answer tends towards infinity.
19
60674
3060
答案會趨近 ∞ ,
01:03
And that’s not the same thing as saying that 10 divided by zero
20
63734
4130
但這不等於表示,
10 除以 0 就等於 ∞ 。
01:07
is equal to infinity.
21
67864
2650
01:10
Why not?
22
70514
1319
為何不等於?
01:11
Well, let’s take a closer look at what division really means.
23
71833
4389
讓我們仔細看看除法的真正含義。
01:16
Ten divided by two could mean,
24
76222
2352
10 除以 2 可以代表
01:18
"How many times must we add two together to make 10,”
25
78574
4097
「我們要加幾次 2 才等於 10 ?」
01:22
or, “two times what equals 10?”
26
82671
3442
或「 2 乘以多少等於 10 ?」
01:26
Dividing by a number is essentially the reverse of multiplying by it,
27
86113
4340
除以某數本質上是乘以某數的相反,
01:30
in the following way:
28
90453
1948
以下解釋:
01:32
if we multiply any number by a given number x,
29
92401
3022
如果把任何數字乘以數字 X,
01:35
we can ask if there’s a new number we can multiply by afterwards
30
95423
4230
我們能問,是否有一個新數字,
乘以它會回到開始的數字。
01:39
to get back to where we started.
31
99653
2633
01:42
If there is, the new number is called the multiplicative inverse of x.
32
102286
5058
如果有,這新數字 就稱為 X 的「倒數」。
01:47
For example, if you multiply three by two to get six,
33
107344
4101
例如,將 3 乘以 2 得到 6 ,
01:51
you can then multiply by one-half to get back to three.
34
111445
4119
接著再乘以 1/2 ,就能回到 3,
01:55
So the multiplicative inverse of two is one-half,
35
115564
3830
因此 2 的倒數是 1/2 ,
01:59
and the multiplicative inverse of 10 is one-tenth.
36
119394
4570
10 的倒數是 1/10 ,
02:03
As you might notice, the product of any number and its multiplicative inverse
37
123964
5270
你可能發現到,某數和其倒數的乘積
02:09
is always one.
38
129234
2030
永遠等於 1 。
02:11
If we want to divide by zero,
39
131264
2199
如果我們除以 0 ,
02:13
we need to find its multiplicative inverse,
40
133463
2380
我們要找到它的倒數,
02:15
which should be one over zero.
41
135843
3301
這應該是 1/0 ,
02:19
This would have to be such a number that multiplying it by zero would give one.
42
139144
5828
而 0 乘以它,應該要得到 1 。
02:24
But because anything multiplied by zero is still zero,
43
144972
4171
但因為任何數字 乘以 0 仍然是 0 ,
02:29
such a number is impossible,
44
149143
2413
這樣的數字是不存在的,
02:31
so zero has no multiplicative inverse.
45
151556
3286
因此, 0 沒有倒數。
02:34
Does that really settle things, though?
46
154842
2501
然而這能解釋事情嗎?
02:37
After all, mathematicians have broken rules before.
47
157343
3640
畢竟,數學家曾經打破規則,
02:40
For example, for a long time,
48
160983
1730
例如很長一段時間,
02:42
there was no such thing as taking the square root of negative numbers.
49
162713
4061
開根號內的數字不能是負數,
02:46
But then mathematicians defined the square root of negative one
50
166774
4087
但當數學家定義「-1」的開根號
02:50
as a new number called i,
51
170861
2423
是新數字「 i 」時,
02:53
opening up a whole new mathematical world of complex numbers.
52
173284
4519
這開啟一個全新的「複數」世界,
02:57
So if they can do that,
53
177803
1442
如果能這麼做,
02:59
couldn’t we just make up a new rule,
54
179245
1958
我們能不能訂定新規則說,
03:01
say, that the symbol infinity means one over zero,
55
181203
4061
∞ 代表 1/0,
03:05
and see what happens?
56
185264
2279
然後看看會發生什麼事?
03:07
Let's try it,
57
187543
1050
我們試試看,
03:08
imagining we don’t know anything about infinity already.
58
188593
3130
想像我們不知道 ∞ ,
03:11
Based on the definition of a multiplicative inverse,
59
191723
2569
根據倒數的定義,
03:14
zero times infinity must be equal to one.
60
194292
4182
0 乘以 ∞ 必等於 1,
03:18
That means zero times infinity plus zero times infinity should equal two.
61
198474
6056
這表示,0 乘以 ∞ 再加上 0 乘以 ∞ 等於 2,
03:24
Now, by the distributive property,
62
204530
1957
現在,根據分配率,
03:26
the left side of the equation can be rearranged
63
206487
2901
等式左邊的運算可以調整成
03:29
to zero plus zero times infinity.
64
209388
3231
0 加 0 ,然後乘以 ∞ 。
03:32
And since zero plus zero is definitely zero,
65
212619
3569
既然 0 加 0 一定等於 0,
03:36
that reduces down to zero times infinity.
66
216188
3861
則等式簡化成 0 乘以 ∞ ,
03:40
Unfortunately, we’ve already defined this as equal to one,
67
220049
3668
然而,我們已經定義這等於 1 ,
03:43
while the other side of the equation is still telling us it’s equal to two.
68
223717
4636
而等式另一端說這等於 2 ,
03:48
So, one equals two.
69
228353
2885
因此, 1 等於 2 。
03:51
Oddly enough, that's not necessarily wrong;
70
231238
3226
說來奇怪,這不見得是錯的;
03:54
it's just not true in our normal world of numbers.
71
234464
3668
只是在我們平常的 數字世界中錯誤而已。
03:58
There’s still a way it could be mathematically valid,
72
238132
2582
仍有個方法能讓此在數學上成立:
04:00
if one, two, and every other number were equal to zero.
73
240714
4507
假如 1 、 2 和任何數字都等於 0,
04:05
But having infinity equal to zero
74
245221
2493
但讓 ∞ 等於 0
04:07
is ultimately not all that useful to mathematicians, or anyone else.
75
247714
5170
對數學家或任何人並不實用,
04:12
There actually is something called the Riemann sphere
76
252884
3230
事實上,有個稱為 「黎曼球面」的概念,
04:16
that involves dividing by zero by a different method,
77
256114
3295
用不同的方法除以 0 ,
04:19
but that’s a story for another day.
78
259409
2364
但這故事改天再提。
04:21
In the meantime, dividing by zero in the most obvious way
79
261773
4192
同時,以最直覺的方式除以 0
04:25
doesn’t work out so great.
80
265965
1768
效果並不好,
04:27
But that shouldn’t stop us from living dangerously
81
267733
2941
但這不應該阻止我們冒點險
04:30
and experimenting with breaking mathematical rules
82
270674
2931
或嘗試打破數學規則,
04:33
to see if we can invent fun, new worlds to explore.
83
273605
3878
看看我們是否能發明一個 有趣的新世界來探索。
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7