Game theory challenge: Can you predict human behavior? - Lucas Husted
1,569,131 views ・ 2019-11-05
请双击下面的英文字幕来播放视频。
翻译人员: Jiasi Hao
校对人员: 潘 可儿
00:06
A few months ago we posed a challenge
to our community.
0
6646
3656
几个月前,我们在自己的社群上
发起了一个挑战。
00:10
We asked everyone: given a range of
integers from 0 to 100,
1
10302
4890
我们问每个人:
从给定 0 到 100 的整数范围内,
00:15
guess the whole number closest to 2/3
of the average of all numbers guessed.
2
15192
6864
猜测一个最接近
所有猜测数字平均数 2/3 的整数。
00:22
So if the average of all guesses is 60,
the correct guess will be 40.
3
22056
4720
即倘若所有猜测数的平均是 60,
那么正确的猜测将会是 40。
00:26
What number do you think was the
correct guess at 2/3 of the average?
4
26776
4638
你认为哪个数字会是
平均数 2/3 的正确猜测呢?
00:32
Let’s see if we can try and reason
our way to the answer.
5
32733
3374
让我们看看是否可以尝试并推理出
我们猜测答案的方法。
00:36
This game is played under conditions known
to game theorists as common knowledge.
6
36107
5299
这个博弈是在一先决条件下进行的,
该条件被博弈理论家称为常识。
00:41
Not only does every player have
the same information —
7
41406
3093
不仅每一个参与者
都有一样的信息储备——
00:44
they also know that everyone else does,
8
44499
2207
他们也知道其他人都一样,
00:46
and that everyone else knows that
everyone else does, and so on, infinitely.
9
46706
5912
并且其他人也都知道
再其他人也如此,如此无限循环。
00:52
Now, the highest possible average would
occur if every person guessed 100.
10
52618
5920
现在,如果每个人都猜 100,
那最大的可能平均数将会出现。
00:58
In that case, 2/3 of the average
would be 66.66.
11
58538
4730
在那个情况下,平均数的 2/3
将会是 66.66。
01:03
Since everyone can figure this out,
12
63268
1937
既然每个人可以明白这个道理,
01:05
it wouldn’t make sense to guess
anything higher than 67.
13
65205
4420
那就没有理由去猜比 67 大的整数。
01:09
If everyone playing comes to
this same conclusion,
14
69625
3123
如果每个人都在博弈中
得出同样的结论,
01:12
no one will guess higher than 67.
15
72748
2769
没人会猜比 67 大的整数。
01:15
Now 67 is the new highest
possible average,
16
75517
4142
现在 67 是最大的可能平均数,
01:19
so no reasonable guess should be
higher than ⅔ of that, which is 44.
17
79659
5780
所以合理的猜测
就不应该比 67 的 2/3 大,即 44。
01:25
This logic can be extended further
and further.
18
85439
3541
这个逻辑可以不断地被拓展,
01:28
With each step, the highest possible
logical answer keeps getting smaller.
19
88980
4730
随着每一步,符合逻辑的
最大可能猜测数会不断变小。
01:33
So it would seem sensible to guess the
lowest number possible.
20
93710
4565
因此猜测最小的可能数字
看似非常明智。
01:38
And indeed, if everyone chose zero,
21
98275
2858
确实,如果每个人都选择 0,
01:41
the game would reach what’s known
as a Nash Equilibrium.
22
101133
3932
这个博弈将会达到“纳什均衡”。
01:45
This is a state where every player has
chosen the best possible strategy
23
105065
4354
在这一情况中,
每个玩家在都为自己
选择了最优可能策略,
01:49
for themselves given
everyone else playing,
24
109419
3105
01:52
and no individual player can benefit
by choosing differently.
25
112524
4810
并且没有单独的玩家
可以通过不同选择受益。
01:57
But, that’s not what happens
in the real world.
26
117334
4180
但是这在现实世界不会发生。
02:01
People, as it turns out, either aren’t
perfectly rational,
27
121514
3965
事实证明,
人们要么不是完全理智的,
02:05
or don’t expect each other
to be perfectly rational.
28
125479
3559
要么不会预期别人能做到完全理智,
02:09
Or, perhaps, it’s some combination
of the two.
29
129038
3331
再或者可能是这两种情况的组合。
02:12
When this game is played in
real-world settings,
30
132369
2850
当这个博弈在真实世界中发生时,
02:15
the average tends to be somewhere
between 20 and 35.
31
135219
5000
平均数接近于
20 至 35 之间的某个整数。
02:20
Danish newspaper Politiken ran the game
with over 19,000 readers participating,
32
140219
5857
丹麦 Poolitiken 报纸曾开展这个博弈,
有超过 1.9 万读者参与。
02:26
resulting in an average of roughly 22,
making the correct answer 14.
33
146076
5980
其平均数结果约为 22,
使得最终正确答案为 14。
02:32
For our audience, the average was 31.3.
34
152056
3702
而我们的观众参与者,
平均数为 31.3。
02:35
So if you guessed 21 as 2/3 of
the average, well done.
35
155758
5260
所以如果你的猜测数为 21,
那你猜得漂亮!
02:41
Economic game theorists have a
way of modeling this interplay
36
161018
3663
经济博弈理论家有一个
模拟理性和实践相互作用方法,
02:44
between rationality and practicality
called k-level reasoning.
37
164681
5121
称为“ k 级推理”。
02:49
K stands for the number of times a
cycle of reasoning is repeated.
38
169802
4840
其中 k 代表
一个推理周期的重复次数。
02:54
A person playing at k-level 0 would
approach our game naively,
39
174642
4307
一个 k 级为 0 的人
会非常天真地参与我们的博弈,
02:58
guessing a number at random without
thinking about the other players.
40
178949
3727
他不会考虑别人的选择
而只是任意地猜一个数字。
03:02
At k-level 1, a player would assume
everyone else was playing at level 0,
41
182676
5200
一个 k 级为 1 的人
会假设别人都在 0 级博弈,
03:07
resulting in an average of 50,
and thus guess 33.
42
187876
4540
进而平均数为 50,
因此猜测数为 33。
03:12
At k-level 2, they’d assume that everyone
else was playing at level 1,
43
192416
4776
一个 k 级为 2 的人
会假设其他人都在 1 级博弈,
03:17
leading them to guess 22.
44
197192
2300
导致他们最终猜测数为 22。
03:19
It would take 12 k-levels to reach 0.
45
199492
3604
这将要求 12 的 k 级
来达到猜测数为 0。
03:23
The evidence suggests that most
people stop at 1 or 2 k-levels.
46
203096
4820
事实证明大部分人
处于 1 或 2 的 k 级。
03:27
And that’s useful to know,
47
207916
1479
而知道这一点很有用,
03:29
because k-level thinking comes into
play in high-stakes situations.
48
209395
4610
因为 k 级思维
在高风险情况下时常出现。
03:34
For example, stock traders evaluate stocks
not only based on earnings reports,
49
214005
5374
例如,股票交易员
不仅基于收益报告来评估股票,
03:39
but also on the value that others
place on those numbers.
50
219379
3733
也基于其他人
在那些数字上摆放的价值。
03:43
And during penalty kicks in soccer,
51
223112
2290
在球赛的点球环节中,
03:45
both the shooter and the goalie decide
whether to go right or left
52
225402
4141
射门人和守门员
都凭借他们对彼此想法的预判
03:49
based on what they think the other
person is thinking.
53
229543
3192
来决定向右或向左跑。
03:52
Goalies often memorize the patterns of
their opponents ahead of time,
54
232735
3956
守门员时常提前
记住他们对手的习惯模式,
03:56
but penalty shooters know that
and can plan accordingly.
55
236691
3597
但罚球射手知道此事,
并依此做出相应计划。
04:00
In each case, participants must weigh
their own understanding
56
240288
3263
每个情况下,参与者必须衡量
自身对最优行为的理解,
04:03
of the best course of action against how
well they think other participants
57
243551
4192
来对抗他们认为
其他参与者对情况的了解深度。
04:07
understand the situation.
58
247743
2401
04:10
But 1 or 2 k-levels is by no means
a hard and fast rule—
59
250144
4780
但是 1 或 2 的 k 级推理
绝不是硬性且速成的规定——
04:14
simply being conscious of this tendency
can make people adjust their expectations.
60
254924
5421
仅是人们对这种博弈趋势的意识
使人们调整他们的预期。
04:20
For instance, what would happen
if people played the 2/3 game
61
260345
4012
例如,当大家都了解了最符合逻辑的
与最普遍方法之间的区别,
04:24
after understanding the difference between
the most logical approach
62
264357
3893
再来玩这个 2/3 的博弈游戏,
04:28
and the most common?
63
268250
1600
结果又会如何?
04:29
Submit your own guess at what 2/3
of the new average will be
64
269850
4441
将你的新平均数 2/3 的猜测整数
填到以下表格并提交,
04:34
by using the form below,
65
274291
1942
04:36
and we’ll find out.
66
276233
1580
我们再来看看。
New videos
Original video on YouTube.com
关于本网站
这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。