Game theory challenge: Can you predict human behavior? - Lucas Husted

1,566,898 views ・ 2019-11-05

TED-Ed


請雙擊下方英文字幕播放視頻。

譯者: Lilian Chiu 審譯者: SF Huang
00:06
A few months ago we posed a challenge to our community.
0
6646
3656
幾個月前,我們在我們的 社群裡下了個戰帖。
00:10
We asked everyone: given a range of integers from 0 to 100,
1
10302
4890
詢問大家: 從 0 到 100 間的整數,
00:15
guess the whole number closest to 2/3 of the average of all numbers guessed.
2
15192
6864
請猜出哪個整數是最接近
所有猜測答案之平均值的 2/3。
00:22
So if the average of all guesses is 60, the correct guess will be 40.
3
22056
4720
若所有猜測答案之平均值為 60, 正確猜測應該是 40。
00:26
What number do you think was the correct guess at 2/3 of the average?
4
26776
4638
你認為平均值的 2/3 應該是哪個數字?
00:32
Let’s see if we can try and reason our way to the answer.
5
32733
3374
讓我們看看大家是否能推論出答案。
00:36
This game is played under conditions known to game theorists as common knowledge.
6
36107
5299
這個遊戲就是在賽局理論家 所熟知的「常識」下所進行。
00:41
Not only does every player have the same information —
7
41406
3093
所有的玩家不僅擁有相同資訊—— 他們也知道別人都有相同資訊,
00:44
they also know that everyone else does,
8
44499
2207
00:46
and that everyone else knows that everyone else does, and so on, infinitely.
9
46706
5912
且其他人也都知道其他所有人 也都知道,以此無限類推。
00:52
Now, the highest possible average would occur if every person guessed 100.
10
52618
5920
最高的可能平均值會發生在 大家都猜測 100 時。
00:58
In that case, 2/3 of the average would be 66.66.
11
58538
4730
如果這樣的話, 平均值的 2/3 是 66.66。
01:03
Since everyone can figure this out,
12
63268
1937
這點大家都想得出來,
01:05
it wouldn’t make sense to guess anything higher than 67.
13
65205
4420
所以猜測 67 以上的 數字並不合理。
01:09
If everyone playing comes to this same conclusion,
14
69625
3123
如果所有玩家都得到同樣的結論,
01:12
no one will guess higher than 67.
15
72748
2769
就沒有人會猜測 67 以上的數字。
01:15
Now 67 is the new highest possible average,
16
75517
4142
所以 67 是新的最高可能平均值,
01:19
so no reasonable guess should be higher than ⅔ of that, which is 44.
17
79659
5780
所以,合理的猜測 都不會高於 67 的 2/3,
也就是 44。
01:25
This logic can be extended further and further.
18
85439
3541
這個邏輯可以一直延伸下去。
01:28
With each step, the highest possible logical answer keeps getting smaller.
19
88980
4730
每推衍一次,最高可能 平均值就會再變小。
01:33
So it would seem sensible to guess the lowest number possible.
20
93710
4565
所以,合理的做法是去猜 範圍中有可能的最小數字。
01:38
And indeed, if everyone chose zero,
21
98275
2858
的確,如果大家都選 0,
01:41
the game would reach what’s known as a Nash Equilibrium.
22
101133
3932
這個遊戲就會達到所謂的納許均衡。
01:45
This is a state where every player has chosen the best possible strategy
23
105065
4354
這個情況是指:在大家都參與的 前提下,每個玩家都已為自己
01:49
for themselves given everyone else playing,
24
109419
3105
挑選出最佳策略,
01:52
and no individual player can benefit by choosing differently.
25
112524
4810
沒有任何玩家會因 選擇不同策略而從中受惠。
01:57
But, that’s not what happens in the real world.
26
117334
4180
但在真實的世界不會發生這種事。
02:01
People, as it turns out, either aren’t perfectly rational,
27
121514
3965
結果發現,人要嘛不是完全的理性,
02:05
or don’t expect each other to be perfectly rational.
28
125479
3559
不然就是不預期彼此是完全的理性。
02:09
Or, perhaps, it’s some combination of the two.
29
129038
3331
或者是上述兩種狀況的組合。
02:12
When this game is played in real-world settings,
30
132369
2850
在真實的世界玩這個遊戲時,
02:15
the average tends to be somewhere between 20 and 35.
31
135219
5000
平均值通常會在 20 到 35 之間。
02:20
Danish newspaper Politiken ran the game with over 19,000 readers participating,
32
140219
5857
丹麥報紙《政治報》舉辦了這個遊戲,
有一萬九千名讀者參與,
02:26
resulting in an average of roughly 22, making the correct answer 14.
33
146076
5980
結果的平均值大約是 22, 因此正確答案為 14。
02:32
For our audience, the average was 31.3.
34
152056
3702
至於我們的觀眾,平均值為 31.3。
02:35
So if you guessed 21 as 2/3 of the average, well done.
35
155758
5260
所以,若你猜 21 是平均值的 2/3,幹得好。
02:41
Economic game theorists have a way of modeling this interplay
36
161018
3663
經濟賽局理論家有種 叫做 K 級推理的方法,
02:44
between rationality and practicality called k-level reasoning.
37
164681
5121
可以針對這種理性和實際 之間的相互影響來建立模型,
02:49
K stands for the number of times a cycle of reasoning is repeated.
38
169802
4840
K 代表的是推理循環重覆的次數。
02:54
A person playing at k-level 0 would approach our game naively,
39
174642
4307
K 級為 0 級裡的玩家, 是天真的玩家,
02:58
guessing a number at random without thinking about the other players.
40
178949
3727
他會隨機猜測,不考慮其他玩家。
03:02
At k-level 1, a player would assume everyone else was playing at level 0,
41
182676
5200
K 級為 1 表示玩家會假設 其他玩家都用 0 級的方式來玩,
03:07
resulting in an average of 50, and thus guess 33.
42
187876
4540
因此平均值會是 50, 他就會猜答案是 33。
03:12
At k-level 2, they’d assume that everyone else was playing at level 1,
43
192416
4776
K 級為 2 表示玩家假設 其他玩家都用 1 級的方式來玩,
03:17
leading them to guess 22.
44
197192
2300
因此他會猜測 22。
03:19
It would take 12 k-levels to reach 0.
45
199492
3604
要 12 級才會達到 0。
03:23
The evidence suggests that most people stop at 1 or 2 k-levels.
46
203096
4820
證據指出,大部分人的 K 級 會停在 1 或 2 級。
03:27
And that’s useful to know,
47
207916
1479
知道這點很有用,
03:29
because k-level thinking comes into play in high-stakes situations.
48
209395
4610
因為在賭注高的情況下 就會用到 K 級思考。
03:34
For example, stock traders evaluate stocks not only based on earnings reports,
49
214005
5374
比如,股票交易員在評估股票時 不僅只是看盈餘報告,
03:39
but also on the value that others place on those numbers.
50
219379
3733
也會考量他人對 這些數據所賦予的評價。
03:43
And during penalty kicks in soccer,
51
223112
2290
足球罰球時,
03:45
both the shooter and the goalie decide whether to go right or left
52
225402
4141
射球員和守門員都要 判斷要向左或向右,
03:49
based on what they think the other person is thinking.
53
229543
3192
他們判斷的根據就是 推測對方會怎麼想。
03:52
Goalies often memorize the patterns of their opponents ahead of time,
54
232735
3956
守門員通常事先就會記住 對手的踢球模式,
03:56
but penalty shooters know that and can plan accordingly.
55
236691
3597
但罰球的射球員知道這一點, 可以依此來因應。
04:00
In each case, participants must weigh their own understanding
56
240288
3263
在每種情況中, 參與者都必須要權衝
04:03
of the best course of action against how well they think other participants
57
243551
4192
他們自己對於最佳做法的理解,
及他們認為其他參與者 對情況的理解程度。
04:07
understand the situation.
58
247743
2401
04:10
But 1 or 2 k-levels is by no means a hard and fast rule—
59
250144
4780
但 K 級為 1 或 2 絕對不是 不能變通的規則——
04:14
simply being conscious of this tendency can make people adjust their expectations.
60
254924
5421
只要能意識到這種趨勢, 就能讓人調整他們的預期。
04:20
For instance, what would happen if people played the 2/3 game
61
260345
4012
比如,重新想想剛才 2/3 的遊戲,
04:24
after understanding the difference between the most logical approach
62
264357
3893
如果玩家知道最合邏輯
和最常見的方法之間的差別後, 會如何猜測呢?
04:28
and the most common?
63
268250
1600
04:29
Submit your own guess at what 2/3 of the new average will be
64
269850
4441
你自己所猜測 新平均值的 2/3 是多少?
04:34
by using the form below,
65
274291
1942
把答案寫在下面的表格中, 我們就能知道了。
04:36
and we’ll find out.
66
276233
1580
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7