Making sense of irrational numbers - Ganesh Pai

Davanje smisla iracionalnim brojevima - Ganeš Pai

1,875,990 views

2016-05-23 ・ TED-Ed


New videos

Making sense of irrational numbers - Ganesh Pai

Davanje smisla iracionalnim brojevima - Ganeš Pai

1,875,990 views ・ 2016-05-23

TED-Ed


Please double-click on the English subtitles below to play the video.

Prevodilac: Mile Živković Lektor: Milenka Okuka
00:06
Like many heroes of Greek myths,
0
6951
1762
Kao mnogi heroji grčkih mitova,
00:08
the philosopher Hippasus was rumored to have been mortally punished by the gods.
1
8713
5217
za filozofa Hipasusa pričalo se da su ga bogovi kaznili na smrt.
00:13
But what was his crime?
2
13930
1676
Ali šta je bio njegov zločin?
00:15
Did he murder guests,
3
15606
1351
Da li je ubio goste,
00:16
or disrupt a sacred ritual?
4
16957
2517
ili prekinuo sveti ritual?
00:19
No, Hippasus's transgression was a mathematical proof:
5
19474
4050
Ne, Hipasusov prestup je bila matematička teorema:
00:23
the discovery of irrational numbers.
6
23524
3059
otkriće iracionalnih brojeva.
00:26
Hippasus belonged to a group called the Pythagorean mathematicians
7
26583
3728
Hipasus je pripadao grupi zvanoj Pitagorini matematičari
00:30
who had a religious reverence for numbers.
8
30311
2611
koja je imala religijsko poštovanje prema brojevima.
00:32
Their dictum of, "All is number,"
9
32922
2541
Izreka "Sve je u brojevima"
00:35
suggested that numbers were the building blocks of the Universe
10
35463
3550
navodi da su brojevi gradivni materijali univerzuma
00:39
and part of this belief was that everything from cosmology and metaphysics
11
39013
4304
i deo ovog uverenja je da sve od kosmologije i metafizike
00:43
to music and morals followed eternal rules
12
43317
3160
do muzike i moralnih načela prate večna pravila
00:46
describable as ratios of numbers.
13
46477
3698
poznata kao proporcija brojeva.
00:50
Thus, any number could be written as such a ratio.
14
50175
3313
Stoga, bilo koji broj može biti napisan u takvoj proporciji
00:53
5 as 5/1,
15
53488
2507
5 kao 5/1
00:55
0.5 as 1/2
16
55995
3090
0,5 kao 1/2
00:59
and so on.
17
59085
1420
i tako dalje.
01:00
Even an infinitely extending decimal like this could be expressed exactly as 34/45.
18
60505
7402
Čak i beskonačne decimale kao ova mogu biti iskazane kao 34/45
01:07
All of these are what we now call rational numbers.
19
67907
3514
Svi ovi brojevi su oni koje mi zovemo racionalnim brojevima.
01:11
But Hippasus found one number that violated this harmonious rule,
20
71421
4630
Hipasus je pronašao jedan broj koji je ugrozio harmoniju,
01:16
one that was not supposed to exist.
21
76051
2774
jedan koji nije trebalo da postoji.
01:18
The problem began with a simple shape,
22
78825
2570
Problem je počeo jednostavnim oblikom,
01:21
a square with each side measuring one unit.
23
81395
3710
kvadrat koji je sa svake strane merio jednu jedinicu
01:25
According to Pythagoras Theorem,
24
85105
1793
Po Pitagorinoj teoremi,
01:26
the diagonal length would be square root of two,
25
86898
3285
dužina dijagonale je jednaka kvadratnom korenu broja dva,
01:30
but try as he might, Hippasus could not express this as a ratio of two integers.
26
90183
5345
ali koliko god pokušavao, Hipasus nije mogao da izrazi ovo
kao proporciju dva cela broja.
01:35
And instead of giving up, he decided to prove it couldn't be done.
27
95528
4311
I umesto odustajanja, odlučio je dokazati da je to neizvodivo.
01:39
Hippasus began by assuming that the Pythagorean worldview was true,
28
99839
4357
Hipasus je počeo pretpostavljajući da je Pitagorejski princip tačan,
01:44
that root 2 could be expressed as a ratio of two integers.
29
104196
4949
da koren broja dva može biti izražen kao odnos dva cela broja.
01:49
He labeled these hypothetical integers p and q.
30
109145
3836
Označio je ova dva hipotetička broja kao p i q.
01:52
Assuming the ratio was reduced to its simplest form,
31
112981
3377
Pretpostavljajući da je odnos sveden na osnovnu formu,
01:56
p and q could not have any common factors.
32
116358
3599
p i q nisu mogli da imaju nijedan zajednički delilac.
01:59
To prove that root 2 was not rational,
33
119957
3030
Da bi dokazao da koren broja dva nije racionalan,
02:02
Hippasus just had to prove that p/q cannot exist.
34
122987
5087
Hipasus je morao da dokaže da p/q ne može postojati.
02:08
So he multiplied both sides of the equation by q
35
128074
3348
Obe strane je pomnožio sa q
02:11
and squared both sides.
36
131422
1869
i stavio na kvadrat,
02:13
which gave him this equation.
37
133291
2029
čime je dobio ovu jednačinu.
02:15
Multiplying any number by 2 results in an even number,
38
135320
3954
Množenje bilo kog broja brojem 2 daje paran broj
02:19
so p^2 had to be even.
39
139274
3058
tako da p^2 mora da bude parno.
02:22
That couldn't be true if p was odd
40
142332
2383
To ne bi moglo biti istinito ako bi p bilo neparno
02:24
because an odd number times itself is always odd,
41
144715
3439
jer neparan broj pomnožen sobom uvek daje drugi neparan broj,
02:28
so p was even as well.
42
148154
2548
tako da je i p bilo parno.
02:30
Thus, p could be expressed as 2a, where a is an integer.
43
150702
5474
Stoga se p moglo izraziti kao 2a, gde je a delilac.
02:36
Substituting this into the equation and simplifying
44
156176
2898
Kada se ovo ubaci u jednačinu i pojednostavi
02:39
gave q^2 = 2a^2
45
159074
4174
dobija se q^2 = 2a^2.
02:43
Once again, two times any number produces an even number,
46
163248
3932
Još jednom, bilo koji broj pomnožen sa dva daje paran broj,
02:47
so q^2 must have been even,
47
167180
2741
tako da q^2 mora biti parno,
02:49
and q must have been even as well,
48
169921
2091
a q mora da bude parno,
02:52
making both p and q even.
49
172012
2381
tako da su i p i q parni.
02:54
But if that was true, then they had a common factor of two,
50
174393
3317
Ali kada bi to bilo tačno, oboje bi imali zajednički faktor dva,
02:57
which contradicted the initial statement,
51
177710
2866
što bi se kosilo sa prvobitnom izjavom
03:00
and that's how Hippasus concluded that no such ratio exists.
52
180576
4220
i tako je Hipasus zaključio da takav odnos ne postoji.
03:04
That's called a proof by contradiction,
53
184796
1960
To se zove dokaz kontradikcijom,
03:06
and according to the legend,
54
186756
1478
i kako navodi legenda,
03:08
the gods did not appreciate being contradicted.
55
188234
3219
bogovima se nije dopalo da im se protivreči.
03:11
Interestingly, even though we can't express irrational numbers
56
191453
3475
Zanimljivo je to da iako ne možemo da izrazimo iracionalne brojeve
03:14
as ratios of integers,
57
194928
1874
kao odnose delilaca,
03:16
it is possible to precisely plot some of them on the number line.
58
196802
4089
moguće je da se neki od njih precizno prikažu na grafikonu.
03:20
Take root 2.
59
200891
1258
Uzmite koren iz dva.
03:22
All we need to do is form a right triangle with two sides each measuring one unit.
60
202149
5695
Treba da napravimo trougao gde dve strane daju jednu jedinicu.
03:27
The hypotenuse has a length of root 2, which can be extended along the line.
61
207844
4752
Hipotenuza ima dužinu korena iz 2, koji se može produžiti.
03:32
We can then form another right triangle
62
212596
2548
Onda možemo da napravimo još jedan trougao
03:35
with a base of that length and a one unit height,
63
215144
3347
sa osnovom te dužine i visinom jedne jedinice
03:38
and its hypotenuse would equal root three,
64
218491
2644
i njegova hipotenuza bila bi jednaka korenu od tri,
03:41
which can be extended along the line, as well.
65
221135
2797
koji se takođe može produžiti duž linije.
03:43
The key here is that decimals and ratios are only ways to express numbers.
66
223932
5021
Ovde je ključ da su decimale i odnosi jedini način izražavanja brojeva.
03:48
Root 2 simply is the hypotenuse of a right triangle
67
228953
3995
Koren i dva je prosto hipotenuza pravog trougla
03:52
with sides of a length one.
68
232948
1927
sa stranicama dužine jedan.
03:54
Similarly, the famous irrational number pi
69
234875
3384
Slično tome, čuveni iracionalni broj pi
03:58
is always equal to exactly what it represents,
70
238259
2869
uvek je jednak tačno onome što predstavlja,
04:01
the ratio of a circle's circumference to its diameter.
71
241128
3442
odnosu prečnika i obima kruga.
04:04
Approximations like 22/7,
72
244570
2995
Približne vrednosti poput 22/7
04:07
or 355/113 will never precisely equal pi.
73
247565
6142
ili 355/113 nikada neće biti precizno jednake broju pi.
04:13
We'll never know what really happened to Hippasus,
74
253707
2511
Nikada nećemo znati šta se desilo Hipasusu,
04:16
but what we do know is that his discovery revolutionized mathematics.
75
256218
4447
ali znamo da je njegovo otkriće napravilo revoluciju u matematici.
04:20
So whatever the myths may say, don't be afraid to explore the impossible.
76
260665
4271
Šta god da mitovi kažu, ne bojte se da istražite nemoguće.
About this website

This site will introduce you to YouTube videos that are useful for learning English. You will see English lessons taught by top-notch teachers from around the world. Double-click on the English subtitles displayed on each video page to play the video from there. The subtitles scroll in sync with the video playback. If you have any comments or requests, please contact us using this contact form.

https://forms.gle/WvT1wiN1qDtmnspy7